首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
近50 年来天山地区典型冰川厚度及储量变化   总被引:8,自引:2,他引:6  
冰川储量变化与冰川水资源量变化以及冰川对河川径流的贡献量密切相关。在GPR-3S技术支持下, 本研究基于雷达测厚数据、不同时期的高分辨率遥感影像、地形图及实测资料, 分析了天山三个典型地区四条代表性冰川近期厚度及储量变化特征, 并通过对比探讨了造成变化差异的可能原因。结果表明, 1962-2006 年乌鲁木齐河源1 号冰川厚度平均减薄0.15m a-1, 冰储量亏损26.2×106 m3, 冰川末端平均退缩3.8 m a-1;博格达峰南坡的黑沟8 号冰川在1986-2009 年间, 冰舌平均减薄0.57 m a-1, 冰储量损失了25.5×106 m3, 末端平均退缩11.0 m a-1;位于博格达峰北坡的四工河4 号冰川在1962-2009 年间冰舌平均减薄0.32 m a-1, 冰储量亏损14.0×106 m3, 末端平均后退8.0 m a-1;1964-2008 年间, 托木尔峰青冰滩72 号冰川冰舌平均减薄0.22 m a-1, 由此至少造成冰储量亏损14.1×106 m3, 末端退缩达40.0 m a-1。对比分析显示, 青冰滩72 号冰川消融退缩最为强烈, 黑沟8 号冰川次之, 与乌鲁木齐河源1 号冰川、科其喀尔冰川相差不大, 稍大于四工河4 号冰川和哈密庙尔沟冰川。这种差异可能与区域气候变化和冰川物理特征有直接关系。  相似文献   

2.
基于修订后的祁连山区第一次冰川编目(1956-1983年)和最新发布的第二次冰川编目数据(2005-2010年),对祁连山区冰川变化进行分析。结果表明:1祁连山区现有冰川2684条,面积1597.81±70.30 km2,冰储量约84.48 km3。其中,甘肃省和青海省各有冰川1492条和1192条,面积分别为760.96 km2和836.85 km2。2祁连山区冰川数量和面积分别以面积1.0 km2的冰川和面积介于1~5 km2的冰川为主;冰川平均中值面积海拔为4972.7 m,并自东向西由4483.8 m逐渐上升为5234.1 m。3疏勒河流域冰川面积和冰储量最大,占祁连山冰川总量的31.91%和35.11%;其次是哈尔腾河流域,巴音郭勒河流域冰川面积最小,为2.20 km2;黑河流域是祁连山区冰川平均面积最小的四级流域,冰川平均面积仅0.21 km2。4近50年间祁连山冰川面积和冰储量分别减少420.81 km2(-20.88%)和21.63 km3(-20.26%)。面积1.0 km2的冰川急剧萎缩是该区冰川面积减少的主要原因,海拔4000 m以下山区冰川已完全消失,海拔4350~5100 m区间冰川面积减少量占冰川面积总损失的84.24%。冰川数量和面积在各个朝向均呈减少态势,其中朝北冰川面积减少最多,朝东冰川面积减少最快,而西北朝向冰川变化最为缓慢。5祁连山冰川变化呈现明显的经度地带性分异,东段冰川退缩较快,中西段冰川面积减少较慢。  相似文献   

3.
冰川冰储量不仅是冰川的重要属性,而且是核算冰川水资源及预测冰川变化的基础数据,因此准确计算冰川冰储量及其变化具有重要的理论与现实意义。目前冰川储量估算的主要方法有经验公式法、冰厚模型估算法、探地雷达法;冰川储量相对变化计算方法有实地测量法和遥感监测法。通过系统分析和讨论各计算方法的原理、现状及存在的问题,以期为冰川储量估算提供方法参考。研究表明:对于冰川冰储量计算而言,经验公式法适用于区域性或全球性的冰川储量估算;模型估算法适用于个体或小范围冰川储量估算;探地雷达法适用于人类易到达区域冰川储量的估算。对于冰川冰储量相对变化计算,实地测量法适用于对精度要求高且满足实地测量条件的单条或中小型冰川,遥感监测法适用于全球性冰储量变化估算,但需改进算法和提高数据空间分辨率。目前,随着无人机技术的逐步应用,以及冰川流速等理论模型的提出,为冰川冰储量估算方法的发展提供了新契机。  相似文献   

4.
近50a祁连山西段大雪山和党河南山的冰川变化   总被引:1,自引:0,他引:1  
以祁连山西段大雪山和党河南山冰川为例,利用1957/1966航摄地形图、1994年Landsat TM遥感影像、2000年ASTER影像、2010年的SPOT5影像及数字高程模型,运用RS和GIS对祁连山西段大雪山和党河南山冰川变化进行研究。结果表明:1957/1966-2010年研究区冰川面积缩小了17.21%,冰储量减小了24.1%。其中,1957-2010年间大雪山冰川面积缩小了16.03%(0.30%/a),平均每条冰川缩小0.133 km~2,末端平均退缩181 m(3.4 m/a),冰储量减小了22.4%;1966-2010年间党河南山冰川面积缩小了18.32%(0.42%/a),平均每条冰川缩小0.111 km~2,末端平均退缩159 m(3.6 m/a),冰储量减小了25.7%。大雪山南北坡冰川面积分别减小了22.82%和15.51%,党河南山南北坡冰川面积分别减小了22.39%和16.76%,总体来看,南坡冰川退缩幅度强于北坡。分析认为,气温上升是研究区冰川退缩的主导因素。与祁连山东、中部冰川变化相比,研究区冰川面积缩小幅度相对较小,这是区域气候差异、冰川规模等因素综合作用的结果。  相似文献   

5.
基于天山托木尔峰青冰滩72号冰川2008年高精度差分GPS测量资料,2009年末端重复测量数据以及1964年地形图,通过对比研究近45 a来该冰川的变化特征,结果表明:1964~2009年,青冰滩72号冰川末端退缩1 852 m,年均后退41 m,由此造成面积减少约为1.53 km2,年均减少0.03 km2;1964~2008年,冰舌平均减薄9.59±6 m,年均减薄约0.22±0.14 m,冰储量亏损达14.1±8.8×10-3 km3(12.7±7.9×10-3 km3 w.e.)。与天山其它区域典型监测冰川相比,青冰滩72号冰川消融强烈,是区域气候、末端海拔、冰川类型、表碛覆盖等因素综合影响的结果。  相似文献   

6.
本文基于90 m分辨率DEM,利用Arc GIS10.1软件对达日断裂地形起伏度、条带剖面、水系等方面进行提取分析,对其构造地貌特征进行研究。从最大高差-面积比法得到最佳分析窗口为43×43,其最大高差稳定的区域范围为14.98 km2。地形起伏度在15~870 m,地形起伏度大于270 m的区域占83.89%,其中起伏度大于575 m的区域占48.50%,其地形以山地地形为主。研究区的坡度在0°~50°,并且起伏度大的区域往往坡度也比较大,其受区域构造活动性影响比较大。研究区域内山体上部有多级夷平面发育,主要夷平面是4 400 m和4550 m左右,最高海拔约为4 720 m,最低海拔约为4 100 m。研究区内水系比较发育,研究区水系密度在0~0.81 km/km2,水系流向和水系密度大致NW向,与断裂走向大致相当,故研究区的水系受断裂活动构造的影响非常大。研究区的地貌特征受活动构造影响所控制,其造成地形起伏度较大,在达日断裂的影响下,断裂上下盘的地貌特征表现出明显的差异。  相似文献   

7.
冰川运动控制着冰量输送变化,为冰川变化和冰川灾害研究提供重要信息。为了探讨东帕米尔高原冰川运动特征及其影响因素,基于ITS_LIVE和GoLIVE分析了不同规模、不同地形条件、表碛/非表碛区域的冰川运动速度状况。研究结果表明:(1)东帕米尔高原冰川平均运动速度为5.31 m·a^-1,冰川运动速度与冰川规模相关,表现为大冰川比小冰川运动快;(2)冰川运动速度与平均坡度相关,表现为随平均坡度增加先增后减,坡度过大不利于冰川积累,表现为厚度(规模)小,则速度慢。(3)西南(8.69 m·a^-1)、东南(11.67 m·a^-1)坡向的冰川运动速度大于其它坡向的冰川运动速度,与各个坡向的冰川规模相关。(4)表碛覆盖型冰川的运动速度小于非表碛覆盖型冰川,表碛对冰川运动速度起到抑制作用。(5)1989-2018年东帕米尔高原冰川运动速度表现稳定,与冰川年际变化稳定相对应。消融期冰川运动速度小于其它季节,与年内冰川厚度变化相关。  相似文献   

8.
阿尔泰山冰川系统结构、近期变化及趋势预测   总被引:4,自引:0,他引:4  
地跨中、俄、哈、蒙四国的阿尔泰山共有冰川面积约1 700 km2,其中中国约280 km2,俄罗斯及哈萨克斯坦约880 km2,可作为统一的冰川系统进行研究.本文首先应用中国及前苏联冰川编目数据分析了本系统冰川的结构特征.表明本区冰川平衡线约为2 983 m,为中国的小型冰川(平均面积0.8 km2)作用区.应用最新的...  相似文献   

9.
基于GIS技术,利用GPS测量数据和1962年地形图分别建立两期DEM,通过对比重点研究了四工河4号冰川1962-2009年冰舌区的表面高程变化特征。结果表明:1962-2009年间,冰舌区平均减薄15±10 m,年均减薄约0.32±0.2 m,冰储量亏损达(14.3±9.5)×10-3km3,折合水当量(12.9±8.6)×10-3km3。不同海拔、坡度区间冰面高程变化差异显著,海拔较低、坡度较缓区域的变化最为强烈。在气候变暖的趋势下,四工河4号冰川发生强烈消融,标志着博格达峰地区的冰川正处于物质严重亏损的状态,直接影响到流域水资源状况。  相似文献   

10.
念青唐古拉山作为青藏高原东南缘重要山古冰川分布区,受季风影响,各区域冰川变化特征差异明显。论文通过Landsat TM/ETM+/OLI资料、ASRTMGDEM与气象数据,采用比值—阈值法、目视解译和VOLTA模型,结合实地考察,对1990—2020年间念青唐古拉山中段北坡边坝地区现代冰川进退状况、面积变化、冰储量变化以及冰川变化对气候变化响应特征进行研究。结果表明:① 1990—2020年5条冰川(玉贡拉冰川、玛拉波冰川、祥格拉冰川、孔嘎冰川、贡日—庚东冰川)末端高程逐渐升高,面积和冰储量分别减少30.38 km2和4.64 km3,总体缩减并呈现加速趋势。② 冰川冰储量减少0.14~1.92 km3,总体变化率为0.40%·a-1。2020年上述5条冰川储量占1990年冰川储量的比例分别为0.70、0.99、0.98、0.91和0.82,显示出冰川规模越大,在短时间尺度的变化量越小。③ 气象数据分析显示,1990—2020年研究区冰川变化受气温升高主导,平均气温变化率为0.51 ℃。水热组合呈现温度升高—降水减少,且在最后10 a日益显著,预测未来冰川变化仍受气温控制并呈加速退缩趋势。④ 区域对比研究表明,念青唐古拉山冰川面积变化总体呈退缩状态,但各区域冰川变化特征差异明显。同时,不同研究方法对同一冰川区冰储量模拟结果相差较大,相对误差范围为34.45%~115.49%,精确的冰储量可对比研究方法仍有待进一步研究。  相似文献   

11.
We describe a radio-echo sounding (RES) survey for the determination of ice thickness, subglacial topography and ice volume of Glacier No. 1 , in Tien Shan, China, using ground-penetrating radar (GPR). Radar data were collected with 100-MHz antennas that were spaced at 4 m with a step size of 8 m. The images produced from radar survey clearly show the continuity of bedrock echoes and the undulation features of the bedrock surface. Radar results show that the maximum ice thickness of Glacier No. 1 is 133 m, the thickness of the east branch of Glacier No. 1 averages at 58. 77 m while that of the west branch of Glacier No. 1 averages at 44. 84 m. Calculation on ice volume indicates that the ice volume of the east branch of Glacier No. 1 is 51. 87 × 106 m3 and that of the west branch of Glacier No. 1 is 20. 21 × 106 m3. The amplitude of the undulation of the bedrock surface topography revealed by radar profiles is larger than that of the glacier surface topography, indicating that the surface relief does  相似文献   

12.
The englacial structures and ice thickness of the Laohugou No. 12 (L12) Glacier in the Qilian Mountains, China, were retrieved from ground-penetrating radar (GPR) profile data acquired in August of 2007. Here the interpretation of a typical GPR image is validated using two-dimensional, Finite-Difference Time-Domain (FDTD) numerical modeling. Data analyses revealed many englacial characteristics, such as temperate ice, crevasses, and cavities at the position of convergence between the eastern and western glacial branches of L12, and at an altitude between 4,600 and 4,750 m a.s.l. on the east branch. Combining ice thickness, englacial structures, subglacial topography, and surface flow velocities of this glacier, we analyzed the reasons for the distribution of temperate ice. The results show that greater englacial water content is associated with englacial crevassing and surface moulins, which allow water to be channeled to the temperate ice aquifer beneath the surface cold ice layer. Analysis of air temperature data shows that as more meltwater imports into the ice body, this has a great effect on water conservation and dynamics conditions. With climate warming, and under the influence of crevasses, subglacial structures, and ice thickness, ice thickness reduction on the L12 east branch is more rapid than that on the west branch.  相似文献   

13.
In July, 2009, we investigated the Ningchan River Glacier No. 3. A control network was established around the glacier and the expedition used a GPS-RTK to measure glacial area, terminal and surface altitude, and used an EKKO GPR to measure glacier thickness. We used a topographic map based on 1972 aerial photo, two TM images in 1995, 2009, and GPS-RTK data in 2009, to analyze the change of the Ningchan River Glacier No. 3 since 1972. Through analysis we found this glacier has been seriously shrinking over the past 37 years. The glacier terminal retreated about 6%, the area was reduced about 13.1%, the volume was reduced about 35.3%, and glacier shrinkage is mainly in the form of thinning. Glacier average thickness reduced from 36.8 m in 1972, to 27.4 m in 2009. Meteorological data around the study area shows that this region in recent decades has undergone differential warming which is the main reason for rapid glacier shrinkage.  相似文献   

14.
A total of 71,177 glaciers exist on the Qinghai-Tibet Plateau, according to the Randolph Glacier Inventory (RGI 6.0). Despite their large number, glacier ice thickness data are relatively scarce. This study utilizes digital elevation model data and ground-penetrating radar thickness measurements to estimate the distribution and variation of ice thickness of the Longbasaba Glacier using Glacier bed Topography (GlabTop), a full-width expansion model, and the Huss and Farinotti (HF) model. Results show that the average absolute deviations of GlabTop, the full-width expansion model, and the HF model are 9.8, 15.5, and 10.9 m, respectively, indicating that GlabTop performs the best in simulating glacier thickness distribution. During 1980-2015, the Longbasaba Glacier thinned by an average of 7.9±1.3 m or 0.23±0.04 m/a, and its ice volume shrunk by 0.28±0.04 km3 with an average reduction rate of 0.0081±0.0001 km3/a. In the investigation period, the area and volume of Longbasaba Lake expanded at rates of 0.12±0.01 km2/a and 0.0132±0.0018 km3/a, respectively. This proglacial lake could potentially extend up to 5,000 m from the lake dam.  相似文献   

15.
使用一台300MHz高频脉冲雷达,对柯林斯冰帽150个测点进行冰厚探测,描绘出15km冰床雷达回波剖面。该冰帽小冰穹最大冰厚125-131m,位于其顶部,小冰穹顶至主冰穹顶脊线上的平均厚度约109m;主冰穹顶部附近50-85m深度处有一被钻探证实为含水界面的雷达回波;小冰穹近乎南北向的冰下地形与该岛北方台地地形相似。  相似文献   

16.
The bed topography of Jutulstraumen is of interest in connection with glaciological modelling for climatic and geological studies. During the Norwegian Antarctic Research Expedition 1996/97 (NARE 96/97) 971 km of bed topography profiles were mapped using ground-penetrating radar (GPR) and a global positioning system (GPS). As additional information to the GPR data for the map compilation, surface features connected to the bed topography were identified in optical satellite images, and relative velocities derived from interferometric synthetic aperture radar (INSAR) data were interpreted using principles of ice flow related to the bed topography. Grids (250 x 250 m) covering the area 73° to 71°S, 0° to 4°E of bed topography and ice thickness were developed. Several observations are confirmed by the independent data sets. The Jutulstraumen outlet glacier shows extreme topography with subglacial plateaus and deep valleys due to faulting. A previously unmapped valley in connection with the fault system is identified. The data sets provide evidence of a grounding line position 6-20 km further inland than previously expected, and a trough occurs 60 km up-glacier from this position.  相似文献   

17.
We applied an image correlation method to Japanese Earth Resources Satellite-1 (JERS-1) synthetic aperture radar (SAR) data obtained from 1996 to 1998 to examine flow velocity within Shirase Glacier, Antarctica. From the grounding line to the downstream region of the glacier, the obtained ice-flow velocity was systematically higher on the western streamline than the eastern. The differences between the two streamlines were 0.31 km/a in 1996 and 0.37 km/a in 1998, significantly larger than the error estimate of 0.03 km/a. The direction of ice flow was about 312° at the grounding line and changed to 327° at 10 km, 346° at 20 km and 2° at 30 km downstream from the grounding line. The total accumulated deflection is 50° to the east. Under the assumption of the conservation of ice mass across the glacier, the observed eastward change in flow direction can be explained by an asymmetric deepening of bedrock topography, that is, across the 8 km width of the glacier, the eastern side is 50 m (10%) deeper than the western side. This eastward turning of flow direction appears to be accelerated by tributary inlets, that flow to the north and northeast at 60–75% of the velocity of inlets on the western streamline.  相似文献   

18.
廖海军  刘巧  钟妍  鲁旭阳 《地理学报》2021,76(11):2647-2659
表碛覆盖型冰川是中国西部较为常见的冰川类型。表碛层存在于大气—冰川冰界面,强烈影响大气圈与冰冻圈之间的热交换。表碛厚度的空间异质性可极大地改变冰川的消融率和物质平衡过程,进而影响冰川径流过程和下游水资源。基于Landsat TM/TIRS数据,运用能量平衡方程反演了贡嘎山地区冰川表碛厚度,研究了贡嘎山地区冰川在1990—2019年间表碛覆盖范围及厚度变化情况,同时对比了东西坡差异。结果表明:① 贡嘎山地区冰川表碛扩张总面积达43.824 km2。其中,海螺沟冰川扩张2.606 km2、磨子沟冰川1.959 km2、燕子沟冰川1.243 km2、大贡巴冰川0.896 km2、小贡巴冰川0.509 km2、南门关沟冰川2.264 km2,年均扩张率分别为3.2%、11.1%、1.5%、0.9%、1.0%和6.5%;② 海螺沟冰川、磨子沟冰川、燕子沟冰川、大贡巴冰川、小贡巴冰川、南门关沟冰川表碛平均增厚分别为5.2 cm、3.1 cm、3.7 cm、6.8 cm、7.3 cm和13.1 cm;③ 西坡冰川表碛覆盖度高,表碛覆盖年均扩张率低,冰川末端退缩量小;东坡冰川表碛覆盖年均扩张率高,但表碛覆盖度总体低于西坡,冰川末端退缩量大。  相似文献   

19.
The Sachette rock glacier is an active rock glacier located between 2660 and 2480 m a.s.l. in the Vanoise Massif, Northern French Alps (45° 29′ N, 6° 52′ E). In order to characterize its status as permafrost feature, shallow ground temperatures were monitored and the surface velocity measured by photogrammetry. The rock glacier exhibits near‐surface thermal regimes suggesting permafrost occurrence and also displays significant surface horizontal displacements (0.6–1.3 ± 0.6 m yr–1). In order to investigate its internal structure, a ground‐penetrating radar (GPR) survey was performed. Four constant‐offset GPR profiles were performed and analyzed to reconstruct the stratigraphy and model the radar wave velocity in two dimensions. Integration of the morphology, the velocity models and the stratigraphy revealed, in the upper half of the rock glacier, the good correspondence between widespread high radar wave velocities (>0.15–0.16 m ns–1) and strongly concave reflector structures. High radar wave velocity (0.165–0.170 m ns–1) is confirmed with the analysis of two punctual common mid‐point measurements in areas of exposed shallow pure ice. These evidences point towards the existence of a large buried body of ice in the upper part of the rock glacier. The rock glacier was interpreted to result from the former advance and decay of a glacier onto pre‐existing deposits, and from subsequent creep of the whole assemblage. Our study of the Sachette rock glacier thus highlights the rock glacier as a transitional landform involving the incorporation and preservation of glacier ice in permafrost environments with subsequent evolution arising from periglacial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号