首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.

This paper is a review of research works concerning the nutrient transportation, transformation and exchange between water, sediment and biota in the lakes from the middle and lower reaches of the Yangtze River conducted in the context of project entitled “The Processes and Mechanism of Lake Eutrophication in Middle and Lower Reaches of Yangtze River”. All the lakes from this area are shallow lakes. According to the typical lake site research, the lakes from the middle and lower reaches of Yangtze River have a higher baseline of nutrition in the history. Normally the trophic status of these lakes can be categorized into medium-trophic or eutrophic Human activities have been enhanced during the last decades, which speed up the lake eutrophic process. Lake eutrophication control needs to reduce not only the external nutrient inputs from watershed but also the internal loading from the sediments. Investigations revealed that the lake sediments in this area are considerablly high in nutrition in which at most about 30% of phosphorus exists in the form of bio-available in the sediment. The surface sediment will exert great effects on the nutrient exchange between water-sediment interface via adsorption and release of nutrient. The nutrient release from the sediment in these shallow lakes is mainly in two ways, i.e. in the undisturbed condition the nutrient is released through diffusion created by the nutrient gradient from sediment to overlying water; whereas in disturbed condition, the nutrient release is determined by the hydrodynamic forcing intensity and the sediment resuspension. Metallic elements such as the iron, manganese and aluminium and the aerobic-anaerobic ambience will affect the release of nutrients. The disturbed release will increase the total nutrients in the water column significantly in the short period. At the beginning of sediment resuspension, the dissolved nutrient concentration will increase. This increase will be damped if the ferric oxide and aluminium are rich in sediment because of the adsorption and flocculation. This means that the lakes have capability of eliminating the nutrient loadings. Investigations for the lakes from middle and down stream of Yangtze River have suggested that most lakes have the self-cleaning capability. Dredging the control of the internal loading, therefore, is only applicable to the small lakes or undisturbed bays which normally are situated nearby the city or town and rich in organic materials in the sediment. In addition, the strong reduction condition and weak aeration of these lakes and bays make these small lakes and bays release much more bio-available nutrient and without much self-eliminating capability. Moreover, eutrophication induced algal bloom in these lakes will change the pH of water, which further induces the increase in the nutrient release. In turn, the increase in nutrient release promotes the growth of phytoplankton and results in severe algal bloom. For the heavily polluted water, research suggests that the biomass of bacteria and alkaline phosphatase activity will be higher corresponding to the higher concentration of nutrients, which accelerates the nutrient recycling between water, sediment and biota. Quick recycling of nutrient, in turn, promotes the production and biomass growth of microorganism and leads to more severe eutrophication. Further research work should focus on the nutrient transformation mechanism and the effects of microbial loop on the eutrophication.

  相似文献   

2.
长江中下游浅水湖泊富营养化发生机制与控制途径初探   总被引:191,自引:22,他引:169  
秦伯强 《湖泊科学》2002,14(3):193-202
长江中下游地区是我国淡水湖泊比较集中的地区。该地区绝大多数湖泊为浅水湖泊,所有的城郊湖泊都已经富营养化,其他湖泊的营养状况均为中营养-富营养,处于富营养化的发展中,这些湖泊富营养化的原因同流域上的人类活动有很大的关系。一方面,工业,农业和城市生活污水正源源不断地向湖泊中排放。另一方面,人类通过湖泊围垦、湖岸忖砌,水产养殖等破坏自然生态环境,减少营养盐输出途径。国际上对于浅水湖泊富营养化治理的经验表明,即使流域上的外源污染排放降到历史最低点,湖泊富营养化问题依然突出,其原因与浅水湖泊底泥所造成的内源污染有关。动力作用导致底泥悬浮,,影响底泥中营养盐的释放,也影响水下光照和初级生产力。控制浅水湖泊富营养化,除了进行外源性营养盐控制之外,还必须进行湖内内源营养盐的治理。治理内源营养盐的有效途径是恢复水生植被,控制底泥动力悬浮与营养盐释放。而要进行水生植被恢复,必须进行湖泊生态系统退化机制及生态修复的实验研究。  相似文献   

3.
三十年来长江中下游湖泊富营养化状况变迁及其影响因素   总被引:9,自引:5,他引:4  
为弄清长江中下游通江/历史通江湖泊富营养化现状、成因及修复策略,对该区域27个大型湖泊和水库开展了4个季度的水质调查,并结合部分湖泊1988-1992年及2008年两个时段富营养化调查成果,分析近30年来长江中下游地区大型湖泊富营养化关键指标变化的特征及其驱动因素.结果表明,目前该区域绝大多数湖泊处于富营养水平,较1980s有明显加重,浮游植物叶绿素a及总磷是最主要的营养状态指数贡献因子;湖泊的富营养化状况与湖泊的江湖连通状况、换水周期等流动性状况、渔业养殖及管理、流域纳污、治理强度等人类活动方式和强度密切相关;与历史调查结果相比,氮、磷的增幅相对较小,而有机质污染程度明显加重、浮游植物叶绿素a浓度大幅增高,表明营养盐之外的其他因素,如水文节律的变化、江湖阻隔、不合理的渔业养殖活动等,对该区域湖泊的富营养化问题加剧、浮游植物生产力增高起到更为重要的作用.因此,从治理途径和策略上来看,增加湖泊的流通性、恢复部分湖泊的自然水文波动节律、优化湖泊渔业管理、提升湖泊流域营养盐的有效截留能力、实施湖泊生态修复工程是控制长江中下游湖泊富营养化、提升区域湖泊生态质量的关键.  相似文献   

4.
The evolutions of diatom floras and the total phosphorous (TP) concentrations in the historical period were reconstructed for two lakes, Longgan and Taibai in the middle Yangtze River,based on high resolutional fossil diatom study from two sediment cores and an established regional diatom-TP transfer function. The TP concentration in Longgan Lake changed slightly in the range of 36-62 μg/L and kept its middle trophic level in the past 200 years. The changes of diatom assemblages reflect a macrophyte-dominated history of the lake. During the nineteenth century, the lake TP concentration increased comparatively, corresponding to the increase in abundance of benthic diatoms. The progressive increase of epiphytic diatoms since the onset of the twentieth century indicates the development of aquatic plants, coinciding with the twice drops of water TP level. The TP concentration in Taibai Lake kept a stable status about 50 μg/L before 1953 AD, while diatoms dominated by facultative planktonic Aulacoseira granulata shifted quickly to epiphytic diatom species, indicating a rapid expansion of aquatic vegetation. During 1953-1970 AD, the coverage of aquatic plants decreased greatly inferred by the low abundance of epiphytic diatoms as well as declined planktonic types, and the reconstructed TP concentration shows an obvious rising trend firstly, suggesting the beginning of the lake eutrophication. The lake was in the eutrophic condition after 1970, coinciding with the successive increase of planktonic diatoms. The comparison of the two lakes suggests the internal adjustment and purification function of aquatic plants for nutrients in water. The discrepancy of TP trends in the two lakes after 1960 reflects two different patterns of lake environmental response to human disturbance. Sediments in Taibai Lake clearly recorded the process of lake ecological transformation from the macrophyte-dominated stage to the algae-dominated stage. The limits of TP concentration (68-118 μg/L) in the transitional state can be considered as the critical value between the two stable ecosystems. Further work will be necessary to provide more evidence from the sediments in more eutrophic lakes for the primary inference. The reconstructive TP level and the inference of aquatic plants from fossil diatoms in different lakes, as well as their comparison provide a scientific basis for ecological restoration of eutrophic lakes in research regions.  相似文献   

5.
The evolutions of diatom floras and the total phosphorous (TP) concentrations in the historical period were reconstructed for two lakes, Longgan and Taibai in the middle Yangtze River, based on high resolutional fossil diatom study from two sediment cores and an established regional diatom-TP transfer function. The TP concentration in Longgan Lake changed slightly in the range of 36–62 μg/L and kept its middle trophic level in the past 200 years. The changes of diatom assemblages reflect a macrophyte-dominated history of the lake. During the nineteenth century, the lake TP concentration increased comparatively, corresponding to the increase in abundance of benthic diatoms. The progressive increase of epiphytic diatoms since the onset of the twentieth century indicates the development of aquatic plants, coinciding with the twice drops of water TP level. The TP concentration in Taibai Lake kept a stable status about 50 μg/L before 1953 AD, while diatoms dominated by facultative planktonic Aulacoseira granulata shifted quickly to epiphytic diatom species, indicating a rapid expansion of aquatic vegetation. During 1953–1970 AD, the coverage of aquatic plants decreased greatly inferred by the low abundance of epiphytic diatoms as well as declined planktonic types, and the reconstructed TP concentration shows an obvious rising trend firstly, suggesting the beginning of the lake eutrophication. The lake was in the eutrophic condition after 1970, coinciding with the successive increase of planktonic diatoms. The comparison of the two lakes suggests the internal adjustment and purification function of aquatic plants for nutrients in water. The discrepancy of TP trends in the two lakes after 1960 reflects two different patterns of lake environmental response to human disturbance. Sediments in Taibai Lake clearly recorded the process of lake ecological transformation from the macrophyte-dominated stage to the algae-dominated stage. The limits of TP concentration (68–118 μg/L) in the transitional state can be considered as the critical value between the two stable ecosystems. Further work will be necessary to provide more evidence from the sediments in more eutrophic lakes for the primary inference. The reconstructive TP level and the inference of aquatic plants from fossil diatoms in different lakes, as well as their comparison provide a scientific basis for ecological restoration of eutrophic lakes in research regions.  相似文献   

6.
“十三五”时期,长江流域水环境质量改善明显,但湖泊水质和富营养化状况改善滞后. 长江中游作为我国淡水湖泊集中分布区域之一,部分湖泊存在水环境质量恶化和富营养化加重问题. 本文以长江中游区域国家开展监测的洪湖、斧头湖、梁子湖、大通湖、洞庭湖和鄱阳湖这6个典型湖泊为研究对象,科学评价其2016—2020年水质和富营养化时空变化特征及关键驱动因素,探讨其成因及治理对策. 结果表明,“十三五”时期长江中游湖泊水质和富营养化程度存在较大差异,与2016年相比,2020年大通湖水质改善最为明显,梁子湖水质变差,总磷是影响长江中游湖泊水质类别的主要因子; 洪湖富营养程度恶化最为严重,斧头湖次之,TLI(SD)对长江中游湖泊富营养化评价贡献最大. 目前长江中游湖泊呈有机污染加重和叶绿素a浓度升高现象,洪湖、斧头湖和梁子湖主要与氮、磷营养盐浓度升高有关,而大通湖、洞庭湖和鄱阳湖受水文过程、流域纳污量和湖泊管理等非营养盐因素影响较大. 总氮和总磷仍然是影响“十三五”时期长江中游湖泊水质和富营养化的最主要驱动力,且各湖泊总氮和总磷浓度变化均具有较强正相关性,建议开展河湖氮、磷标准衔接工作,提出河湖氮、磷标准限值或考核目标,以完善河湖水环境质量标准和生态健康影响评价技术规范. 同时,建议长江中游湖泊在开展截污控源、内源控制和生态修复的同时,进一步深化流域管理,特别是对洞庭湖、鄱阳湖、梁子湖和斧头湖等跨行政区湖泊,以提高湖泊治理与修复的系统性和整体性.  相似文献   

7.
浅水湖泊中的初级生产者主要由分布在底栖生境中的底栖植物和生活在敞水生境中的浮游植物组成.底栖植物主要包括维管束沉水植物和底栖藻类等,浮游植物则主要为浮游藻类.贫营养浅水湖泊湖水营养盐浓度低,透明度高,底栖植物因能直接从沉积物中获取营养盐,往往是浅水湖泊的优势初级生产者.随着外源营养盐负荷的增加,湖水中的营养盐浓度不断升高,浮游植物受到的营养盐限制作用减小,加上其在光照方面的竞争优势,逐步发展成为湖泊的优势初级生产者,湖泊逐步从底栖植物为优势的清水态转变为浮游植物为主的浑水态,即稳态转换.在稳态转换过程中,浅水湖泊生态系统结构与功能发生了一系列变化,本文综述了浅水湖泊沉积物性质和生物(浮游植物、底栖植物、底栖动物和鱼类等)群落结构的变化,分析了这些变化对底栖植物、浮游植物之间竞争优势和底栖敞水生境间磷交换的影响,探讨了富营养化驱动的底栖敞水生境耦合过程变化和稳态转换机理.了解浅水湖泊底栖敞水生境耦合过程与稳态转换机理对富营养化浅水湖泊修复有重要意义.富营养化浅水湖泊修复实际就是重建其清水态,在制定修复目标时应该关注评价清水态的指标,如透明度、浮游植物生物量、底栖植物的覆盖度或优势度等.在开展湖泊修复技术研发与工程应用时,应该重点关注对底栖敞水生境耦合有重要影响的关键技术,如沉积物磷释放和底栖生物食性鱼类控制以及底栖植物(尤其是沉水植物)恢复等有关技术.  相似文献   

8.
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.  相似文献   

9.
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.  相似文献   

10.
福建闽江水口库区飘浮植物覆盖对水体环境的影响   总被引:18,自引:0,他引:18  
蔡雷鸣 《湖泊科学》2006,18(3):250-254
为了探索城市富营养化湖泊生态修复技术,2000年9月在南京市莫愁湖物理生态工程试验区内,开展了隔离外源污染、覆盖底泥和种植水生植物对湖泊水质平均水平和水体脉动强度影响的比较研究.试验结果表明,通过围隔隔离外源污染可在较短时间内迅速改善湖泊TN的平均水平,但难以提高湖泊生态系统的稳定性;通过覆盖底泥控制内源污染难以改善湖泊水质的平均水平,并且难以提高湖泊生态系统的稳定程度;种植水生植物不仅能够全面改善湖泊水质的平均水平,而且可以提高湖泊生态系统的稳定性.此外,富营养化湖泊中,藻类生长与湖水营养盐浓度并不存在正相关的关系.因此,对城市湖泊富营养化的防治,在控制外源污染降低营养盐浓度的同时,应恢复湖泊原有的以水生高等植物为主的生态系统.  相似文献   

11.
In deep stratified coastal lagoons, hypoxic waters that result from phytoplankton decomposition in the stratified bottom waters are often associated with eutrophication. Decomposing biomass reaches the bottom sediments and enriches them with nutrients and organic matter. Nutrients trapped in sediments are released with time and promote excessive phytoplankton growth in the surface water. Because eutrophication in lentic ecosystems progresses in a self-fuelling cycle, outflow is the only available process for exporting excess nutrients to recover from eutrophication. Thus, rehabilitation of eutrophic coastal lagoons that have limited seawater interactions is a long term process. The importance of nutrient release from sediments on eutrophication and the delay effect of internal nutrient loading on the rehabilitation of a eutrophic coastal lagoon with limited seawater exchange were analysed in this study.An ecological model that couples the water column and the sediment diagenesis processes, was developed for water quality management purposes. Our findings indicate that the recovery of the Lagoon from eutrophication will be taken decades even in the absence of external nutrient loading. Therefore, we suggest applying rehabilitation strategies that control the nutrient fluxes from sediments for a faster recovery from heavily eutrophic conditions. Land-based nutrient sources must also be controlled because they feed water column and the bottom sediments with nutrients.  相似文献   

12.
底泥疏浚效果及环境效应研究进展   总被引:40,自引:5,他引:35  
底泥疏浚的效果至今仍存在很大争议,其中之一是疏浚后所产生的环境效果有可能偏离人们的期望.疏浚能够有效的削减沉积物中营养物、重金属和持久性有机物等污染物含量,但疏浚过程中会引起污染物向水体释放,疏浚后的界面过程有可能对疏浚效果产生较大影响.底泥疏浚对水体富营养化的控制有成功的经验也有失败的教训,不同的湖泊疏浚后对营养盐释放的控制效果不同.底泥疏浚往往对底栖生物产生危害,具体表现为种类、丰富度与生物量的减少,群落结构发生变化,多样性降低;疏浚后微生物胞外酶活性降低,底泥疏浚对沉积物代谢功能存在显著影响,底栖生物和酶活性的恢复需要长期的过程.底泥疏浚对湖泊水污染控制具有时效性,疏浚方式、疏浚深度与疏浚时令是疏浚工程应关注的问题.  相似文献   

13.
底泥疏浚能控制湖泊富营养化吗?   总被引:135,自引:20,他引:115  
世界上许多湖泊面临着严峻的富营养化问题,富营养化湖泊底泥中的营养盐比水体中要丰富得多,因此,人们常把疏浚底泥作为治理富营养化湖泊的一种重要措施,它需要巨大的资金投入,但尚未见在中等以上湖泊中通过疏浚底控制湖泊富营养化的明显实例,分析 浚底泥作为水利工程和航道工程措施有重要效用,其改善水质效果与疏浚方法有关,适当的疏浚可在短期内改善水质,但从月和季以上长期段持,疏浚底泥不是控制湖泊富营营养化的充要条  相似文献   

14.
Between 1989 and 1998 the small eutrophic stratified Lake Belau was investigated intensively and multidisciplinarily. This article is a short, comprehensive summary and re‐evaluation of the hydrochemistry of the lake, with focus on nitrogen and phosphorus. In several aspects the lake can be regarded as a typical example of the glacial north German lakes. The 1960's and 1970's are characterised by heavy nutrient inputs and fast eutrophication. During the last two decades the external nutrient load, especially the phosphorus load into Lake Belau was significantly reduced. But phosphorus‐rich sediments and large areas with summerly anoxic sediment surface conditions cause intensive release of phosphorus from older deeper sediment layers. Annual budgets reveal that despite an average sediment accumulation of 3 mm a?1 the lake has lost its function as net phosphorus sink and it is very likely that internal eutrophication by the sediments will keep the lake in its eutrophic state during the next decades. Despite that, monthly budgets of five vertical layers show that the main phosphorus supplier for the phosphorus depleted epilimnion during summer is the creek Alte Schwentine. The annual nitrogen budget indicates groundwater and interflow water as well as atmospheric input as additional important nitrogen sources. 36% (98 μmol m ?2 h?1 N) of all nitrogen input is lost to atmosphere mainly due to denitrification. The example of a heavy storm shows that about 10% of the annual nitrogen loss to the atmosphere can take place during a single day and in form of ammonia. The storm further made obvious that these unpredictable events can have strong impact on nutrient cycling and ecology in Lake Belau and the lake can become an unexpected nutrient source for downstream systems.  相似文献   

15.
江湖联通状况对湖泊生态系统有着重要影响,但是由于缺乏长期的生态水文监测数据,湖泊系统对其响应的过程与机理仍缺乏认识.本研究选择长江中下游地区典型湖泊——涨渡湖,结合该湖一沉积短柱的210Pb、137Cs年代测试,通过高分辨率的多指标分析(硅藻、元素地球化学和粒度),揭示近200年来湖泊生态系统对该湖与长江之间联通关系改变的响应过程.与历史文献记载一致,古湖沼学记录揭示出该湖与长江的联通状况经历了3个阶段.1)江湖联通期(1954年以前):该湖与长江自然相通,江湖水体交换频繁,丰富的贫营养浮游种Cyclotella bodanica表明该湖长期处于低营养及湖泊水位相对较高的状态.2)江湖隔绝期(1954 2005年):随着湖坝的兴建,江湖联通关系被隔绝,湖泊换水周期变长,透明度降低,喜好扰动环境的Aulacoseria granulata大量生长.相应地,富营养硅藻的增加、高TOC含量以及较高的沉积物TP、TN浓度表明,该湖营养水平逐渐升高.特别是近20年来,较高含量的富营养硅藻种——C.meneghinena、A.alpigena、Nitzschia palea、Surirella minuta和地球化学记录,包括TOC含量和沉积物TP、TN浓度,表明该湖富营养化程度加剧.3)江湖季节性联通期(2005年后):硅藻以附生种、底栖种为主,但仍有一定含量的富营养化属种,且TOC含量以及沉积物TP、TN浓度仍然保持较高水平,表明富营养程度有所缓解.古湖沼学和历史记录都揭示了自该湖与长江无连通后其生态状况的快速退化、重新联通后生态状况有所好转.因此,在长江中下游洪泛平原区,江湖关系的重新联通将是减轻湖泊生态压力的有效手段.  相似文献   

16.
太湖水体氮素污染状况研究进展   总被引:33,自引:15,他引:18  
氮是引起湖泊富营养化的关键要素之一.传统观点认为氮缺乏时,湖泊生态系统可以通过生物固氮作用从大气中获取氮来满足自身的需求,因此认为淡水湖泊水体的生产力主要受磷限制.但随着进一步的研究,发现氮限制与氮和磷共同限制更为普遍,且氮的限制常常伴随着水体的富营养化,因此了解富营养化湖泊水体的氮素污染状况具有重要意义.本文介绍了太湖水体氮素的污染状况及其发展趋势,从外源、内源两大方面介绍了太湖水体中氮素的来源,着重分析和比较了河道输入、大气输入以及沉积物释放不同污染源的输入比例.太湖水体氮素污染存在很大的空间差异,其中西部和北部污染较重而东南部相对较轻,入湖河道输入的外源污染是造成太湖水质空间分布差异的主要原因,其中农业面源污染及生活污染在太湖外源污染中占据了相当的比重;湖泊底泥所造成的内源释放也是氮素污染的一个重要原因,但目前对释放量的估算主要是基于底泥悬浮引起的总量估算,关于这些释放量能有多少比例可以被浮游植物利用还不清楚,尤其是有机颗粒物在水体中停留期间的矿化再生值得进一步研究;在氮素的生物转化过程中,生物固氮目前对太湖氮素输入的贡献很小,反硝化作用是太湖水体氮素自净的主要途径.  相似文献   

17.
太湖底泥悬浮中营养盐释放的波浪水槽试验   总被引:46,自引:9,他引:37  
波浪水槽中研究了小波掀沙(波高8.77cm,波周期0.8s)和大波掀沙(波高12.31cm和13.29cm,波周期1.0s)对太湖沉积物悬浮及N、P营养盐释放的作用规律.结果显示:小波掀沙时,底泥并未发生大量悬浮,SS浓度最高时仅13.6mg/L;大波掀沙时,底泥大规模悬浮,SS浓度最高达达245.2mg/L水体悬浮物、营养盐浓度变化滞后波高变化1h以上.当波高改变1h后,水体悬浮物、N、P营养盐浓度才改变到相应的平衡浓度.除总磷浓度显著提高外,小波掀沙对水体N、P浓度的影响很小,大波掀沙则显著提高了水体总氮、总溶解氮、总磷、总溶解磷、氨氮(NH4 -N)、溶解性活性磷(SRP),其中NH4 -N、SRP最大增幅达30%和20%.小波和大波掀沙过程中,水体溶解氧浓度均持续增加,掀沙2h后增高2mg/L,溶解性有机碳持续下降,2h后下降33%-51%.试验结果表明,掀沙过程中水体充氧及颗粒物的絮凝、吸附作用可能是限制NH4 -N、SRP浓度增高的重要因素之一.  相似文献   

18.
综合营养状态指数(TLI)在中国湖库富营养化评价中应用非常广泛.对于该指数的各分项指标,基于叶绿素a的评估结果是富营养化风险的直接体现,是最终指示;而基于理化指标(总氮、总磷、透明度和高锰酸盐指数)的评估结果是间接指示.如果两者TLI评估结果存在显著差异,则说明基于理化参数的TLI评估结果低估或者高估了实际富营养化水平和相关风险.本文针对长江中下游湖库的基于水质理化指标和基于叶绿素a的TLI结果是否匹配的问题开展了调查分析.结果表明,对于非通江浅水湖泊而言,基于总氮、总磷、高锰酸盐指数的TLI评估结果均低估了富营养化水平和相关风险;对于通江浅水湖泊而言,基于总氮、总磷和透明度的TLI评估结果高估了富营养化水平和相关风险,而基于高锰酸盐指数的结果低估了富营养化水平;对于深水水库,基于总氮的TLI指数评估结果高估了富营养化水平,而基于总磷、透明度和高锰酸盐指数的结果低估了富营养化水平.上述水质理化指标和叶绿素a评估结果不匹配的原因为以下两点:第一,部分物理化学指标失去了对富营养化风险(叶绿素a)的指示意义,如通江浅水湖泊的总氮、总磷、透明度和高锰酸盐指数以及深水湖泊的总氮;第二,部分富营养化理化指标和叶绿素a原有关系发生错位,比如对于深水湖泊总磷对叶绿素a的响应比TLI指数构建所采用的关系更加敏感.针对TLI理化指标评估在长江中下游湖库应用中存在的问题提出如下改进建议:1)结合长时间序列历史数据,基于分位数回归等方法构建特定湖泊的叶绿素a和理化参数的响应关系,开发“一湖一策”的评估公式;2)根据换水周期和湖泊面积水深比对进行湖泊分类,建立特定湖泊类型的叶绿素a和理化参数的响应关系,构建“一类一策”的评估公式;3)在富营养化评估结果中应分别量化富营养化状态参数(营养盐水平)和富营养化风险参数(叶绿素a)以及两者比值,但生物指标是富营养化评估的最终指示.现阶段我国富营养化评价和管理多为“全国一策”,可能很难满足经济高效的管理需求.因此,本研究所建议和综述的“一类一策”和“一湖一策”的湖泊富营养化评估方法对未来的湖泊生态管理可能具有重要意义.  相似文献   

19.
洞庭湖冲淤变化分析(1956-1995年)   总被引:23,自引:1,他引:22  
施修端  夏薇  杨彬 《湖泊科学》1999,11(3):199-205
根据1956-1995年洞庭湖水文泥沙原型观测和地形测绘等翔实资料,运用输沙量法和地形法对洞庭湖冲瘀变化进行了认真的统计分析,分析结果表明,洞庭湖来水量以四水为主,占57.8%,来沙量以四口为主,多年平均沉积率为74.0%,出湖仅占26.0%;淤积量及湖水沙量随着四分流分沙比的减少而减少。  相似文献   

20.
长江中下游典型湖泊营养盐历史变化模拟   总被引:2,自引:1,他引:1  
郭娅  于革 《湖泊科学》2016,28(4):875-886
湖泊营养盐变化在自然条件下受到气候水文因素控制,同时受到湖泊生态系统生物群落作用和反馈.作为动力机制探讨,本文试图基于水文和生态动力学方法,分别构建气候-流域水文作用于湖泊营养盐的外源模式和湖泊生物群落作用于湖泊营养盐的內源模式.针对长江中下游典型湖泊,经过控制实验和率定,发现营养盐模拟与观测数据在时间序列上达到90%百分位的正相关,因此用来模拟1640 1840 A.D.期间的营养盐演变历史.研究表明:(1)模拟的湖泊营养盐变化与沉积钻孔揭示的历史营养盐变化基本一致,沉积记录与模式模拟的7个湖泊的营养盐变化均显著相关;(2)气候因素是湖泊营养盐历史演变的主控因子,来自于湖泊生物群落的反馈作用贡献约占40%;(3)在温度和降水因子的驱动下,湖泊营养盐历史变化主要受降水控制,在极端干旱时期,60%的营养盐变化同步响应于降水变化.同时,面积在400 km2以下的湖泊营养盐对气候变化的响应比2000 km2以上的大湖更为敏感.研究结果对长江中下游湖泊营养状态的长期变化机理认识和趋势控制提供科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号