首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Among various factors that have influence on the meandering of an alluvial channel, the most significant are valley slope, discharge, bed material, and time. The necessary condition for the origin and development of meandering of an alluvial channel is the erosion of bed material and deposition of the eroded material downstream. The criterion for the development of the meandering is that the discharge must be equal to or greater than the critical discharge (i.e., discharge corresponding to critical shear velocity). The initial channel section has an effect on the development of meandering. The meandering in the V-shaped channels starts from the center (deepest point) of the channel and works inside the banks (inside meandering) before it windens the banks, While the meandering in the rectangular channels starts with the widening of the banks (outside meandering). Maender width increases with the increase in the increase discharge and slope, and decreases with the increase in size of bed material. The meander development continues with time the meander reaches the final stage and equilibrium condition.  相似文献   

2.
Short-term instability in the behaviour of a small, meandering alluvial channel is identified from the relation between sinuosity and either floodplain slope or channel slope within 17 reaches along an 81-kilometre section of the Belle Fourche River in western South Dakota. In reaches 1 to 4 and 11 to 17 the channel is relatively stable and sinuosity varies inversely with channel slope. In reaches 5 to 10, sinuosity is positively related to floodplain slope. Sinuosity increases markedly in reaches 5, 6, and 7 (which are immediately downstream from a discontinuity in the long profile of the floodplain) in association with an increase in floodplain slope. Immediately upstream from the discontinuity, bankfull channel depth and sinuosity decrease and the area of the floodplain reworked by meander migration between 1939 and 1981 increases, in association with a decrease in floodplain slope. Channel behaviour in reaches 5 to 10 is best explained as a consequence of neotectonic activity, as indicated by changes in elevation recorded along geodetic survey lines that cross lineaments that may delimit the eastern boundary of the Black Hills uplift. Sinuosity acts as a barometer of the effects of neotectonic activity on alluvial channels. Initial indications of channel and floodplain instability due to neotectonic activity may be derived from evidence of anomalously active channel migration, as documented from photographic or topographic sources.  相似文献   

3.
Shear stresses were evaluated at different sites on two rivers. The first (the Rulles) is characterized by a pebbly bedload and a meandering bed with riffles and pools. The second (the Rouge Eau) has mainly a sandy rippled bed where meandering is well developed but also flat gravelly sectors without meandering system. Shear stresses calculated from friction velocities (τ*) using a redefined y1 roughness height parameter were compared with total shear stresses calculated from the energy grade line and the hydraulic radius (τ), Divergence between these shear stresses seems to increase in the presence of bedforms and large-scale irregularities of the channel. The τ*/τ ratio is close to 0·5 in the gravelly sector of the Rouge Eau and reaches 0·65 in the riffles of the Rulles (generally located at the inflexion point of the meanders), while it is less than 0·3 in the pools of the same river (located in the loops) and only 0·2 in the sandy rippled sector of the Rouge Eau. Grain and bedform shear stresses were evaluated at these same sites by different methods. The grain shear stress (τ') represents on average 30 per cent of the total shear stress in the riffles of the Rulles and the gravelly sector of the Rouge Eau, but less than 15 per cent in the pools in the Rulles and the sandy sectors of the Rouge Eau. However, it emerges from experiments conducted with marked pebbles and in situ observations of erosion and transport of sandy and gravelly particles, that the grain shear stresses are underestimated and cannot explain the movements and modifications actually observed. Conversely, shear stresses calculated from friction velocities at the sites where erosion actually occurred (or failed to occur despite very high velocities) provide a better explanation of the observed movements.  相似文献   

4.
An extensive survey and topographic analysis of five watersheds draining the Luquillo Mountains in north‐eastern Puerto Rico was conducted to decouple the relative influences of lithologic and hydraulic forces in shaping the morphology of tropical montane stream channels. The Luquillo Mountains are a steep landscape composed of volcaniclastic and igneous rocks that exert a localized lithologic influence on the stream channels. However, the stream channels also experience strong hydraulic forcing due to high unit discharge in the humid rainforest environment. GIS‐based topographic analysis was used to examine channel profiles, and survey data were used to analyze downstream changes in channel geometry, grain sizes, stream power, and shear stresses. Results indicate that the longitudinal profiles are generally well graded but have concavities that reflect the influence of multiple rock types and colluvial‐alluvial transitions. Non‐fluvial processes, such as landslides, deliver coarse boulder‐sized sediment to the channels and may locally determine channel gradient and geometry. Median grain size is strongly related to drainage area and slope, and coarsens in the headwaters before fining in the downstream reaches; a pattern associated with a mid‐basin transition between colluvial and fluvial processes. Downstream hydraulic geometry relationships between discharge, width and velocity (although not depth) are well developed for all watersheds. Stream power displays a mid‐basin maximum in all basins, although the ratio of stream power to coarse grain size (indicative of hydraulic forcing) increases downstream. Excess dimensionless shear stress at bankfull flow wavers around the threshold for sediment mobility of the median grain size, and does not vary systematically with bankfull discharge; a common characteristic in self‐forming ‘threshold’ alluvial channels. The results suggest that although there is apparent bedrock and lithologic control on local reach‐scale channel morphology, strong fluvial forces acting over time have been sufficient to override boundary resistance and give rise to systematic basin‐scale patterns. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

5.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A comparison has been made between the hydraulic geometry of sand‐ and gravel‐bed rivers, based on data from alluvial rivers around the world. The results indicate a signi?cant difference in hydraulic geometry among sand‐ and gravel‐bed rivers with different channel patterns. On this basis, some diagrams for discrimination of meandering and braided channel patterns have been established. The relationships between channel width and water discharge, between channel depth and water discharge, between width–depth ratio and water discharge and between channel slope and water discharge can all be used for channel pattern discrimination. The relationship between channel width and channel depth can also be used for channel pattern discrimination. However, the accuracy of these relationships for channel pattern discrimination varies, and the depth–discharge relationship is a better discriminator of pattern type than the classic slope–discharge function. The cause for this difference has been explained qualitatively. To predict the development of channel patterns under different natural conditions, the pattern discriminator should be searched on the basis of independent or at least semi‐independent variables. The relationship between stream power and bed material grain size can be used to discriminate channel patterns, which shows a better result than the discriminator using the slope–discharge relationship. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The geomorphic evolution of the Jordan River in recent decades indicates that interaction between incision and high-magnitude floods controls sinuosity changes under increasing mouth gradients during base-level fall. The evolution of the river was analyzed based on digital elevation models, remotely sensed imagery, hydrometric data, and a hydraulic model. The response varies along the river. Near the river mouth, where incision rate is high and a deep channel forms, overbank flooding is less likely. There, large floods exert high shear stress within the confined channel, increasing sinuosity. Upstream, near the migrating knickzone channel gradients also increase, incision is more moderate and floods continue to overtop the banks, favoring meander chute cutoffs. The resulting channel has a downstream well-confined meandering segment and an upstream low-sinuosity segment. These new insights regarding spatial differences along an incising channel can improve interpretations of the evolution of ancient planforms and floodplains that responded to base-level decline. © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
This study investigates trends in bed surface and substrate grain sizes in relation to reach‐scale hydraulics using data from more than 100 gravel‐bed stream reaches in Colorado and Utah. Collocated measurements of surface and substrate sediment, bankfull channel geometry and channel slope are used to examine relations between reach‐average shear stress and bed sediment grain size. Slopes at the study sites range from 0·0003 to 0·07; bankfull depths range from 0·2 to 5 m and bankfull widths range from 2 to 200 m. The data show that there is much less variation in the median grain size of the substrate, D50s, than there is in the median grain size of the surface, D50; the ratio of D50 to D50s thus decreases from about four in headwater reaches with high shear stress to less than two in downstream reaches with low shear stress. Similar trends are observed in an independent data set obtained from measurements in gravel‐bed streams in Idaho. A conceptual quantitative model is developed on the basis of these observations to track differences in bed load transport through an idealized stream system. The results of the transport model suggest that downstream trends in total bed load flux may vary appreciably, depending on the assumed relation between surface and substrate grain sizes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
10.
1 INTRODUCTION River erosion is a complex phenomenon. The rate of bank retreat is determined by flow, bed topography, sediment transport, bank properties, and water quality. Prediction of future river planform changes and the knowledge of river erosion and river meandering are required for land use planning in alluvial river valleys and determining locations for bridges and hydraulic structures. The control of riverbank erosion requires prediction of flow and bed features in a meanderin…  相似文献   

11.
A number of methods and formulae has been proposed in the literature to estimate the discharge capacity of compound channels. When the main channel has a meandering pattern, a reduction in the conveyance capacity for a given stage is observed, which is due to the energy dissipations caused by the development of strong secondary currents and to the decrease of the main channel bed slope with respect to the valley bed slope. The discharges in meandering compound channels are usually assessed applying, with some adjustments, the same methods used in the straight compound channels. Specifically, the sinuosity of the main channel is frequently introduced to account for its meandering pattern, although some methods use different geometric parameters.In this paper the stage—discharge curves for several compound channels having identical cross-sectional area, roughness and bed slope but different planimetric patterns are numerically calculated and compared, in order to identify which geometric parameter should be efficaciously used in empirical formulae to account for meandering patterns. The simulations are carried out using a 3D finite-volume model that solves the RANS equations using a k-ε turbulence model. The numerical code is validated against experimental data collected in both straight and meandering compound channels.The numerical results show that the sinuosity is the main parameter to be accounted for in empirical formulae to assess the conveyance capacity of meandering compound channels. Comparison of the stage—discharge curves in the meandering compound channels with that obtained in a straight channel having identical cross-sectional area clearly shows the reduction of discharge due to the presence of bends in the main channel. The effect of other geometric parameters, such as the meander-belt width and the mean curvature radius, results very weak.  相似文献   

12.
The effects of check dams on the bed stability of torrential channels have been analysed in several tributary basins of the Segura and Guadalentín rivers (South‐East Spain). In order to illustrate the large variability in channel bed‐forms and bed sediment sizes along the stream, 52 reaches of 150 m in length were surveyed. This variability is due to the behaviour of check dams, which depends on bedrock control, bed slope, channel roughness, lateral sediment input and a highly variable sediment transport capacity. Though the purpose of check dams is to diminish the boundary shear stress, reducing the longitudinal slope, and to stabilize the channel bed, downstream they reduce the volume of channel‐stored material, favouring local scour processes, and upstream they can destabilize the sidewalls. The results enable us to evaluate the impact of every check dam on the bed morphology, distinguishing the structures installed in limy marl areas (e.g. catchment of the Cárcavo rambla, Cieza) and in schist and slate terrains (e.g. catchment of the Torrecilla rambla, close to Lorca). In the first type, bedrock and moderately thick granular beds predominate downstream from the check dams, so that the length of bedrock reaches and increase of roughness due to scour processes are the best indicators to verify its geomorphological effectiveness. On the other hand, the metamorphic areas drained by ramblas and gullies produce great quantities of gravel that are retained by check dams, creating more uniform and permeable beds, where the balance between sedimentation and scouring, and the ratio τc84/τ0 (RBS), appear to be the parameters most frequently adopted to estimate the bed stability. Analysis of slope adjustments and the application of other indices to estimate the bed substrate stability (LRBS, SRI) and the structural influence of the dams (SIBS) corroborate the differences in bed stability found in the corrected reaches in each catchment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
An updated linear computer model for meandering rivers with incision has been developed. The model simulates the bed topography, flow field, and bank erosion rate in an incised meandering channel. In a scenario where the upstream sediment load decreases (e.g., after dam closure or soil conservation), alluvial river experiences cross section deepening and slope flattening. The channel migration rate might be affected in two ways: decreased channel slope and steeped bank height. The proposed numerical model combines the traditional one-dimensional (1D) sediment transport model in simulating the channel erosion and the linear model for channel meandering. A non-equilibrium sediment transport model is used to update the channel bed elevation and gradations. A linear meandering model was used to calculate the channel alignment and bank erosion/accretion, which in turn was used by the 1D sediment transport model. In the 1D sediment transport model, the channel bed elevation and gradations are represented in each channel cross section. In the meandering model, the bed elevation and gradations are stored in two dimensional (2D) cells to represent the channel and terrain properties (elevation and gradation). A new method is proposed to exchange information regarding bed elevations and bed material fractions between 1D river geometry and 2D channel and terrain. The ability of the model is demonstrated using the simulation of the laboratory channel migration of Friedkin in which channel incision occurs at the upstream end.  相似文献   

14.
The riffle-pool sequence has not been subjected to the same level of intensive research as the meandering planform, although riffles and pools may be a fundamental prerequisite for meandering. The pseudo-cyclic oscillation of the bed in a riffle-pool stream suggests the application of a variety of techniques of spatial series analysis, which provide objective measures of riffle wavelength, and suggest processes capable of explaining riffles and pools and their relationship with meanders. The second-order autoregressive process is suggested as a stochastic process which models the bed-profile oscillation. Velocity pulsations associated with large scale turbulent eddies are probably responsible for accretions and erosions which interact with the flow to maintain these perturbations, so that sections lagged by distances of 2πw are positively correlated. The effect of the riffle-pool sequence on flow geometry is far more significant than the effects of plan geometry or of downstream variations, which supports the view that this feature is a fundamental aspect of channel morphometry. There is a tendency, however, for curved reaches to exhibit reduced variance of roughness, velocity, and water surface slope, which reinforces the minimization hypothesis. The extreme temporal variation between riffle and pool flow characteristics demands that any classificatory scheme uses scale-free and stable measures, and a discriminant analysis using hydraulic exponents represents a convenient summary of the field data.  相似文献   

15.
The in?uence of pool length on the strength of turbulence generated by vortex shedding was investigated in a 6 m long recirculating ?ume. The experiment utilized a 38% constriction of ?ow and an average channel‐bed slope of 0·007. The base geometry for the intermediate‐length pool experiment originated from a highly simpli?ed, 0·10 scale model of a forced pool from North Saint Vrain Creek, Colorado. Discharge in the ?ume was 31·6 l/s, which corresponds to a discharge in the prototype channel of 10 m3/s. Three shorter and four longer pool lengths also were created with a ?xed bed to determine changes in turbulence intensities and energy slope with pool elongation. Three‐dimensional velocities were measured with an acoustic Doppler velocimeter at 31–40 different 0·6‐depth and near‐bed locations downstream of the rectangular constriction. The average velocity and root mean square (RMS) of the absolute magnitude of velocity at both depths are signi?cantly related to the distance from the constriction in most pool locations downstream of the constriction. In many locations, pool elongation results in a non‐linear change in turbulence intensities and average velocity. Based on the overall ?ow pattern, the strongest turbulence occurs in the center of the pool along the shear zone between the jet and recirculating eddy. The lateral location of this shear zone is sensitive to changes in pool length. Energy slope also was sensitive to pool length due to a combination of greater length of the pool and greater head loss with shorter pools. The results indicate some form of hydraulic optimization is possible with pools adjusting their length to adjust the location and strength of turbulent intensities in the center of pools, and lower their rate of energy dissipation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Channel adjustments in the North Fork Toutle River and the Toutle River main stem were initiated by deposition of a 2.5 km3 debris avalanche and associated lahars that accompanied the catastrophic eruption of Mount St. Helens, Washington on 18 May 1980. Channel widening was the dominant process. In combination, adjustments caused average boundary shear stress to decrease non-linearly with time and critical shear stress to increase non-linearly with time. At the discharge that is equalled or exceeded 1 per cent of the time, these trends converged by 1991–1992 so that excess shear stress approached minimum values. Extremal hypotheses, such as minimization of unit stream power and minimization of the rate of energy dissipation (minimum stream power), are shown to be applicable to dynamic adjustments of the Toutle River system. Maximization of the Darcy–Weisbach friction factor did not occur, but increases in relative bed roughness, caused by the concomitant reduction in hydraulic depths and bed-material coarsening, were documented. Predictions of stable channel geometries using the minimum stream power approach were unsuccessful when compared to the 1991–1992 geometries and bed-material characteristics measured in the field. It is concluded that the predictions are not applicable because the study reaches are not truly stable and cannot become so until a new floodplain has been formed by renewed channel incision, retreat of stream-side hummocks, and establishment of riparian vegetation to limit the destabilizing effects of large floods. Further, prediction of energy slope (and consequently stream power) by the sediment transport equations is inaccurate because of the inability of the equations to account for significant contributions of finer grained (sand and gravel) bank materials (relative to the coarsened channel bed) from bank retreat and from upstream terrace erosion.  相似文献   

17.
Numerous morphological changes can occur where two channels of distinct sediment and flow regimes meet, including abrupt shifts in channel slope, cross‐sectional area, planform style, and bed sediment size along the receiving channel. Along the Rio Chama between El Vado and Abiquiu Dams, northern New Mexico, arroyo tributaries intermittently deliver sediment from erodible sandstone and shale canyon walls to the mainstem channel. Much of the tributary activity occurs in flash floods and debris flows during summer thunderstorms, which often load the channel with sand and deposit coarser material at the mainstem confluence. In contrast, mainstem channel flow is dominated by snowmelt runoff. To examine tributary controls, we systematically collected cross‐section elevation and bed sediment data upstream and downstream of 26 tributary confluences along a 17 km reach. Data from 203 cross‐sections were used to build a one‐dimensional hydraulic model for comparing estimated channel parameters at bankfull and low‐flow conditions at these sites As compared to intermediate reaches, confluences primarily impact gradient and bed sediment size, reducing both parameters upstream of confluences and increasing them downstream. Cross‐section area is also slightly elevated above tributary confluences and reduced below. Major shifts in slope and bed sediment size at confluences appear to drive variations in sediment entrainment and transport capacity and the relative storage of sand along the channel bed. The data were analyzed and compared to models of channel organization based on lateral inputs, such as the Network Variance Model and the Sediment Link Concept. At a larger scale, hillslope ? channel coupling increases in the downstream third of the study reach, where the canyon narrows, resulting in steeper slopes and more continuous coarse bed material along the mainstem, and thus, limiting the contrast with tributary confluences. However, channel form and sediment characteristics are highly variable along the study reach, reflecting variations in the size and volume of sediment inputs related to the surface geology in tributary watersheds, morphology of the Rio Chama at the junction (i.e. bends, confinement), and the relative magnitude and location of past depositional events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Bed topography and grain size are predicted for steady, uniform flow in circular bends by consideration of the balance of fluid, gravity and frictional forces acting on bed load particles. Uniform flow pattern is adequately described by conventional hydraulic equations, with bed shear defined as that effectively acting on bed load grains. This analysis is used as a basis to predict bed topography and grain size for steady, non-uniform flow in non-circular bends (represented by a ‘sine-generated’ curve). The non-uniform flow pattern is calculated using the method of Engelund (1974a). Equilibrium bed form, hence sedimentary structure, is found by comparison of existing flow conditions with one of the schemes describing the hydraulic stability limits of the various bed forms. The model was compared with bankfull flow observations from a channel bend on the River South Esk, Scotland. Theoretical bed topography and velocity distribution were very close to the observed data. However, bed shear stress showed only a broad agreement, probably because of the use a constant friction coefficient value. Mean grain size distribution showed good agreement, but theory did not account adequately for gravel sizes in the talweg region and on the upstream, inner part of the bar, possibly due to theoretical underestimation of effective bed shear. Bed form and sedimentary structure are predicted well using the familiar stream power-grain size scheme. The behaviour of the model under unsteady uniform flow conditions in circular bends was analyzed, and suggests that any variation of grain size and bed topography with stage is likely to be limited to deeper parts of the channel.  相似文献   

19.
A simple analytic model is presented relating local sediment transport capacity to variance in the transverse shear stress distribution in a stream channel. The model is used to develop a physically based conceptual model for the initiation of meandering in straight, bedload‐dominated streams as a result of a feedback mechanism. The feedback maximizes the cross‐sectional shear stress variance and – in order to achieve stability – ultimately minimizes the energy slope at repeated locations along the channel, subject to steady‐state mass flux and the stability of the channel boundary. These locations develop into pools in a fully developed meandering channel; they represent attractor states wherein sediment continuity is satisfied using the least possible energy expenditure per unit length of channel. However, since the cross‐sectional geometry of a pool (and the adjacent bar) is asymmetric, these attractor states are only conditionally stable, requiring strong, curvature‐induced secondary circulation to maintain their asymmetry. Between two successive pools, a stream occupies a metastable, higher energy state (corresponding to a riffle) that requires greater energy expenditure per unit length of channel to transport the same volume of sediment. The model we present links processes at the scale of a channel width to adjustments of the channel sinuosity and slope at the scale of a channel reach. We argue that the reach‐scale extremal hypotheses employed by rational regime models are mathematical formalisms that permit a one‐dimensional theory to describe the three‐dimensional dynamics producing stream morphology. Our model is consistent with the results from stream table experiments, with respect to both the rate of development of meandering and the characteristics of the equilibrium channel morphology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Bank strength due to vegetation dominates the geometry of small stream channels, but has virtually no effect on the geometry of larger ones. The dependence of bank strength on channel scale affects the form of downstream hydraulic geometry relations and the meandering‐braiding threshold. It is also associated with a lateral migration threshold discharge, below which channels do not migrate appreciably across their floodplains. A rational regime model is used to explore these scale effects: it parameterizes vegetation‐related bank strength using a dimensionless effective cohesion, Cr*. The scale effects are explored primarily using an alluvial state space defined by the dimensionless formative discharge, Q*, and channel slope, S, which is analogous to the Q–S diagrams originally used to explore meandering‐braiding thresholds. The analyses show that the effect of vegetation on both downstream hydraulic geometry and the meandering‐braiding threshold is strongest for the smallest streams in a watershed, but that the effect disappears for Q* > 106. The analysis of the migration threshold suggests that the critical discharge ranges from about 5 m3/s to 50 m3/s, depending on the characteristic rooting depth for the vegetation. The analysis also suggests that, where fires frequently affect riparian forests, channels may alternate between laterally stable gravel plane‐bed channels and laterally active riffle‐pool channels. These channels likely do not exhibit the classic dynamic equilibrium associated with alluvial streams, but instead exhibit a cyclical morphologic evolution, oscillating between laterally stable and laterally unstable end‐members with a frequency determined by the forest fire recurrence interval. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号