首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
针对抽出-处理技术修复污染地下水过程中抽水井抽出效率随时间逐渐降低、抽出-处理技术运行终点(以下简称"抽出终点")难以确定的问题,提出通过评估抽水井抽出效率,以分段、多次优化抽水方案提高抽出效率、降低修复成本、减少修复时间为工作思路,利用层次分析法和专家打分法实现方案优化时间节点选择。以青海某铬盐厂为例,通过建立抽水方案优化时间节点评价指标体系,可定量分析方案优化时间节点,合理确定抽出终点。结果显示:第1次优化结果为抽水井抽出效率在20%~40%时应重新布设抽水方案(P3),即采用原抽水方案抽水100 d后需重新布设抽水井;第2次优化结果为抽水井抽出效率在20%~40%时应与其他修复技术联用(P7),即采用一次优化后抽水方案继续抽水300 d后需联合其他修复技术开展治理。经评估,2次优化可有效提高抽水井抽出效率,使修复时间缩短600 d,相同时间内含水层中六价铬去除率增加8.31%。  相似文献   

2.
海水入侵导致地下水变咸对青岛李哥庄地区经济发展产生了不利影响,急需开展治理该地区咸水体的工作。根据研究区已有的降雨、蒸发及水文地质等资料,结合现场调查和监测,利用地下水模拟软件Visual-MODFLOW中的SEAWAT模块建立了该地区的数值模型,并利用实测资料识别和验证了该模型参数,表明所建模型能反映李哥庄地区的实际水文地质条件。为了模拟研究区地下咸水体的恢复治理情况,提出了连续抽水、间歇式抽水和抽注水结合三种咸水恢复方案,并利用该模型对三种恢复方案进行了模拟优化。结果表明,抽取地下咸水只是咸水恢复的一个因素,周边淡水的驱替作用则是咸水恢复另一个的因素,抽注水结合恢复方案为三种方案中最优的方案。  相似文献   

3.
开封市垃圾场污染物运移模拟与控制   总被引:3,自引:0,他引:3  
张艳  何江涛  李鹏  王俊杰 《地下水》2010,32(3):15-18,27
在对开封市某典型垃圾场进行野外调查的基础上,应用Visual Modflow建立了该垃圾场污染场地的水流和溶质运移耦合模型并进行数值模拟预测,预测了20年后该污染场地垃圾渗滤液污染羽运移范围、途径及方式等特点。模拟了应用防渗墙和抽水井两种方式控制地下水污染的措施和方案,并利用计算机模型对污染控制的效果进行了模拟分析。模拟结果表明,模拟初期污染羽覆盖了3个抽水井,污染羽前缘距离村庄688 m。模拟20年后污染羽已经覆盖了7个抽水井,其中浓度超标井有3口,污染羽前缘距离村庄605 m。建议在加强污染物监测的同时协助开展其他的污染控制措施,进一步控制污染羽的扩散。  相似文献   

4.
以某地下水源热泵系统工程为例,依据工程场地实际抽水-回灌试验数据,建立研究区地下水流数值模拟模型,分析该地区适宜的井群布置方案,并定量研究不同井群布置方案对地下水流场的影响范围与程度,为确定合理的井群布置方案提供技术支撑。研究表明:对于同一含水层回灌,随着抽水-回灌时间的延长,就有利于抽水-回灌能力及尽量减小对周边地下水开采的影响而言,抽水井、回灌井交叉布置,部分回灌井集中布置的方案较为合理。  相似文献   

5.
合理布局抽水井和回灌井是地下水源热泵系统长期有效运行的关键因素。以郑州市郑东新区为例,利用HST3D软件建立水热运移数值模型,优化设计地下水源热泵系统抽灌水井布局,预测地下水源热泵系统长期运行后对含水层的水热影响。结果表明:介质比热容及渗透率分别对含水层温度及水位影响显著,是较敏感的参数。方案3(3个回灌井垂直天然流向分布且位于抽水井下游)为最佳布井方式。抽灌量900,1 200,1 500及2 000m3/d所对应的合理布井间距分别为50,65,70及75m。相应布井方案的水源热泵系统运行20a,对含水层温度场的影响仅限于200m×200m的范围,抽水井温度变化小于1℃。  相似文献   

6.
针对云南保山盆地地下水污染情况,在查明研究区的水文地质条件基础上,仅考虑氨氮污染物在对流及弥散作用的情况下,利用GMS建立其溶质运移模型,模拟预测1 000 d、3 000 d及5 000 d氨氮的物理位置特征及迁移规律,结果显示,氨氮在地下水运移的过程中,不同浓度的污染晕是以高浓度为中心基本对称分布的,其浓度含量由中心向边缘逐渐变小,说明在对流及弥散作用下,氨氮是沿着水流方向随地下水缓慢运移,并且由迁移距离与时间关系图得出,在运移过程中,对流作用对氨氮的运移起决定性作用。  相似文献   

7.
为了获取裂隙含水层水文地质参数,以黑龙江省七台河市应急水源地为例,在抽水试验和示踪试验基础上,利用数值模拟软件GMS(Groundwater Modeling System)建立地下水流数值模型和溶质运移模型。通过研究溶质运移单域模型和两区模型,发现在裂隙含水层中两区模型能更好的描述穿透曲线的拖尾现象。实例研究表明利用数值模拟方法反演的含水层参数与解析法结果很接近,数值模拟的水均衡误差为0.024%,参数可靠性较高。研究发现该地区裂隙连通性较好,可作为应急水源地。  相似文献   

8.
由于地下水突涌风险,地下空间在施工作业中有必要通过抽水试验确定承压含水层的水文地质参数。依据勘察报告的初步评价,基坑开挖15.5m时,场地内第⑦1层承压含水层有可能产生突涌,为确保工程安全施工,需开挖前进行承压含水层抽水试验,取得场地承压含水层水文地质参数及降水引起的沉降特征,为地下空间设计和施工提供可靠依据。本次布设抽水井、观测井、分层沉降标组、孔隙水压力观测孔及地面沉降观测点,依据抽水试验技术要求获取渗透系数、抽水影响半径等相关水文地质参数。最后,针对工程场地内承压水情况及特点进行分析,提出基坑开挖时的承压水降压建议方案。  相似文献   

9.
地下水源热泵系统常会出现抽水井泵砂、抽水井和回灌井堵塞等问题,影响系统的正常运行或系统效率。以湖北省荆州市某地下水源热泵工程为例,分析了江汉平原广泛分布的卵砾石夹细砂含水层中成孔方法选择、滤料及过滤管设计中存在的问题;指出了目前在过滤管外包不锈钢丝网是防止在细砂层中水井泵砂的有效手段之一,但宜与泥浆密度轻、对地层污染小的反循环成孔工艺配合使用,且仍要根据含水层的颗粒级配曲线选择滤料,发挥滤料的过滤作用,避免过滤压力转移到包网过滤管,以减少抽水井堵塞。  相似文献   

10.
可渗透反应墙(PRB)是一种高效的地下水污染原位修复技术。不同水文地质条件下,污染场地墙体位置布设合理性影响其修复效果,而利用地下水数值模拟可实现墙体位置优化。文章以某Cr6+污染地下水场地为例,基于Visual Modflow建立了研究区平面二维稳定流数值模型,并通过模型检验。根据墙体的设计尺寸(长20 m×宽2 m×深12 m)及填充材料的渗透系数(80 m/d),利用所建模型分别计算了4种布设方案(墙体尺寸大小和填充材料渗透系数相同,布设位置不同)下墙体的捕获区宽度、粒子滞留时间和通过墙体的Cr6+通量。结果表明:4种布设方案模拟的滞留时间和捕获区宽度取值差异性不大,变异系数小于2%;Cr6+通量差别较大,变异系数高达76.32%,主要由地下水中Cr6+浓度空间分布不均引起。对比分析4种方案的各评价指标,方案2求得的捕获区宽度为21.9 m,粒子滞留时间为4.1 d,Cr6+去除量可达127.7 mg/d,可作为最佳布设方案。本研究建立的地下水流数值模型符合场地实际情况,可有效评估PRB截获污染羽的范围和去除目标污染物的能力,为铬渣类污染场地PRB原位修复工程设计与实施提供技术支撑和参考依据。  相似文献   

11.
A groundwater flow and contaminant transport model was used to simulate arrays of non-pumped wells with reactive media for remediating contaminated groundwater. Each array featured a minimum number of wells, with identical diameter, capable of removing a contaminant plume within a hypothetical site. Simulated well diameters ranged from 0.25 m (similar to typical remediation wells) to 1.25 m (similar to large-diameter, bucket-augered wells). Both arrays occupied a linear transect located approximately 5 m downgradient of the front of a polluted enclave and oriented 90° to the hydraulic gradient. The minimum smallest diameter array contained 23 wells, whereas the minimum largest diameter array contained only four wells. Results of this study suggest that bucket-augering technology, adapted to install non-pumped wells with reactive media, may be an effective alternative for remediating contaminated groundwater in some environments.  相似文献   

12.
 Simplified approaches are often used to model the removal of groundwater contamination. These approaches can yield poor remediation schemes because they incorrectly portray the effects of multiple pumping wells. In this study, a pumping configuration designed by graphically overlaying capture zones having an identical, quasi-elliptical shape was evaluated with a numerical mass transport model. After a 3-year period (within which the hypothetical aquifer was to be remediated) the contaminant mass had been reduced by 77%. Due to stagnation zones which developed between extraction wells, approximately 15 years of pumping was required to remediate the aquifer with the overlay configuration. An alternative design, consisting of an extraction well between two injection wells along the long axis of the plume, removed the contaminant within the 3-year design period. Received: 23 October 1995 · Accepted: 18 June 1996  相似文献   

13.
The results of integral pumping tests (IPTs) performed in the city of Fabriano, Italy, are presented. The IPT methodology was developed by the European Union project INCORE, as a tool for groundwater investigation and source localization in contaminated areas. This methodology consists of a multiple-well pumping test in which the wells are positioned along a control plane downstream of suspected contaminant source zones and perpendicular to the mean groundwater flow direction. During the pumping, concentration time series of target contaminants are measured. In Fabriano, two control planes were realized to identify a chlorinated aliphatic hydrocarbon plume, to estimate the mass fluxes and draw up a ranked list of the main contamination sources. A numerical flow model was implemented to support the IPT design and to interpret the results. This study revealed low-level trichloroethylene contamination (concentration below 8 μg/l), tetrachloroethylene contamination (mean concentration up to 500 μg/l) and a mass flow rate of about 300 g/day. Through the application of the IPT method, the mean contaminant concentrations, the spatial distribution of concentration values along the control planes, and the total contaminant mass flow rates were evaluated, and the investigation area was reduced for further and deeper investigation activities.  相似文献   

14.
The effectiveness of aquifer remediation is typically expressed in terms of a reduction in contaminant concentrations relative to a regulated maximum contaminant level (MCL), and is usually confirmed by sparse monitoring data and/or simple model calculations. Here, the effectiveness of remediation is re-examined from a more thorough risk-based perspective that goes beyond the traditional MCL concept. A methodology is employed to evaluate the health risk to individuals exposed to contaminated household water that is produced from groundwater. This approach explicitly accounts for differences in risk arising from variability in individual physiology and water use, the uncertainty in estimating chemical carcinogenesis for different individuals, and the uncertainties and variability in contaminant concentrations within groundwater as affected by transport through heterogeneous geologic media. A hypothetical contamination scenario is developed as a case study in a saturated, alluvial aquifer underlying an actual Superfund site. A baseline (unremediated) human exposure and health risk scenario, as induced by contaminated groundwater pumped from this site, is predicted and compared with a similar estimate based upon pump-and-treat exposure intervention. The predicted reduction in risk in the remediation scenario is not an equitable one—that is, it is not uniform to all individuals within a population and varies according to the level of uncertainty in prediction. The importance of understanding the detailed hydrogeologic connections that are established in the heterogeneous geologic regime between the contaminated source, municipal receptors, and remediation wells, and its relationship to this uncertainty is demonstrated. Using two alternative pumping rates, we develop cost-benefit curves based upon reduced exposure and risk to different individuals within the population, under the presence of uncertainty.  相似文献   

15.
The simulation of groundwater flow and solute transport at contaminated sites often neglects the important influence that aquifer heterogeneity can have on the sub-surface distribution of contaminants. In this paper, the method of transition probability for geological statistics (T-PROGS) included in the Groundwater Model System (GMS) was applied to a chlor-alkali-contaminated site that was sampled with 68 soil borings and 15 groundwater monitoring wells. A 3-D groundwater numerical model and solute transport model was developed that was constrained by soil and groundwater data from the site. The spatial distribution of chloroethylene concentrations was simulated for a number of times using the levels measured in the field as a baseline. The results of these simulations showed that shapes and distribution of contaminant plumes are irregular both vertically and horizontally. The solute-transport simulations indicated that much of the contamination will preferentially move in groundwater through silt and fine-sands whereas flow is largely blocked in clays. Consequently, fine sand and silts become the most seriously polluted zones at the site, whereas, areas underlain by clays are largely uncontaminated. Heterogeneous lithologies beneath a site increase the complexity of coupling simulations of soil and groundwater.  相似文献   

16.
Numerical groundwater flow and contaminant transport modeling incorporating three alternative conceptual models was conducted in 2005 to assess remedial actions and predict contaminant concentrations in an unconfined glacial aquifer located in Milford, Michigan, USA. Three alternative conceptual models were constructed and independently calibrated to evaluate uncertainty in the geometry of an aquitard underlying the aquifer and the extent to which infiltration from two manmade surface water bodies influenced the groundwater flow field. Contaminant transport for benzene, cis-DCE, and MTBE was modeled for a 5-year period that included a 2-year history match from July 2003 to May 2005 and predictions for a 3-year period ending in July 2008. A postaudit of model performance indicates that predictions for pumping wells, which integrated the transport signal across multiple model layers, were reliable but unable to differentiate between alternative conceptual model responses. In contrast, predictions for individual monitoring wells with limited screened intervals were less consistent, but held promise for evaluating alternative hydrogeologic models. Results of this study suggest that model conceptualization can have important practical implications for the delineation of contaminant transport pathways using monitoring wells, but may exert less influence on integrated predictions for pumping wells screened over multiple numerical model layers.  相似文献   

17.
About 40% of the water supply of Cairo, Egypt, is drawn from a groundwater reservoir located southeast of the Nile Delta. Several thousand shallow wells supply drinking water to the farmers from the same groundwater reservoir, which is recharged by seepage from Ismailia canal, the irrigation canal network, and other wastewater lagoons in the same areas. Sewage water lagoons were located at the high ground of the area, recharging contaminated water into the aquifer. Since the groundwater in this area is used for drinking purposes, it was decided to treat the sewage water recharging the aquifer for health reasons. In this paper a solution to the problem is presented using an injection well recharging good quality water into the aquifer. A pumping well located at a distance downstream is used to pump the contaminated water out of the aquifer. A three-dimensional solute transport model was developed to study the concentration distribution with remediation time in the contaminated zone.  相似文献   

18.
 Drilling of 15 boreholes at a disused liquid waste disposal site near Perth, Western Australia, has indicated that a contamination plume extends about 1000 m in a southerly direction from the site in the direction of groundwater flow. The plume is up to 600 m wide and 5–40 m thick. Chemical and microbiological analyses have indicated that contaminated groundwater contains high concentrations of ammonia, iron, and bacteria at levels that commonly exceed national drinking water guidelines. It is likely that a proposed water supply production well in the path of the contamination plume will have to be abandoned, and additional wells may have to be abandoned if the plume continues to extend in the direction of groundwater flow. There is currently insufficient information to indicate whether the plume is continuing to expand, but studies on similar plumes in the Perth metropolitan area have indicated that contaminated groundwater can move at rates up to 100 m yr–1. Several other liquid waste disposal sites are now located in residential areas of Perth where wells are used for garden irrigation. Further work is required to ensure that there is no potential impact of groundwater contamination on public health in these areas. Received: 31 July 1995 · Accepted: 18 September 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号