首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
1IntroductionTheDuolanasayigolddeposit,6 0kmNWofHabaheCountyinXinjiang ,issituatedonthenorth westernmarginoftheVariscianErtixorogenicbelt.Itisamedium largescalegolddepositcontrolledbythecoupledore formingprocessesinvolvingbrittle ductileshearing ,albititeve…  相似文献   

2.
Botanical results of the “Sino-German Joint Expedition to K2, 1986” are presented with remarks on vegetation of SW Kashgaria, the W Kunlun Shan and the N declivity of the central Karakoram mountains. The vertical and horizontal zonation of the vegetation and flora of a cross-section of the Karakoram/Kunlun N declivity from the edge of the Tarim basin to the summit-pyramid of K2 is outlined. The transect covers altitudes between c. 1300 and 5200 m. Altitudinal vegetation belts distinguished along the transect, their extension, and characteristic species are: An annotated list of 301 species collected (1 Charophyta, 2 Pteridophyta, 6 Gymnospermae, 292 Angiospermae) is given. Floristical and vegetation features of the Karakoram/Kunlun N declivity are discussed in connection with environmental factors and their variation, and in relation to pleistocene glaciation.  相似文献   

3.
The carbon and hydrogen isotopic composition of biogenic gas is of great importance for the study of its generation pathway and reservoiring characteristics. In this paper, the formation pathways and reservoiring characteristics of biogenic gas reservoirs in China are described in terms of the carbon and hydrogen isotopic compositions of 31 gas samples from 10 biogenic gas reservoirs. The study shows that the hydrogen isotopic compositions of these biogenic gas reservoirs can be divided into three intervals: δ>−200‰, −250‰<δ<-−200‰ and δ<−250‰. The forerunners believed that the main generation pathway of biogenic gas under the condition of continental fresh water is acetic fermentation. Our research results showed that the generation pathway of biogenic gas under the condition of marine facies is typical CO2- reduction, the biogenic gas has heavy hydrogen isotopic composition: its δ values are higher than −200‰; that the biogenic gas under the condition of continental facies also was generated by the same way, but its hydrogen isotopic composition is lighter than that of biogenetic gas generated under typical marine facies condition: −250‰<δ<−200‰, the δ values may be related to the salinity of the water medium in ancient lakes. From the relevant data of the Qaidam Basin, it can be seen that the hydrogen isotopic composition of biogenic methane has the same variation trend with increasing salinity of water medium. There are biogenic gas reservoirs formed in transitional regions under the condition of continental facies. These gas reservoirs resulted from both CO2-reduction and acetic fermentation, the formation of which may be related to the non-variant salinity of ancient water medium and the relatively high geothermal gradient, as is the case encountered in the Baoshan Basin. The biogenic gas generating in these regions has light hydrogen isotopic composition: δ<−250‰, and relatively heavy carbon isotopic composition. There is a fairly strong negative correlation between the carbon isotopic composition and the hydrogen isotopic composition. The generation mechanism and pathway of carbon, and the hydrogen isotopic composition of biogenic gas may be used to ascertain whether biogenic gas samples from the natural world are of industrial utilization value. In general, the biogenic gas formed by way of acetic fermentation is not propitious to the formation of gas reservoirs.  相似文献   

4.
On the basis of ore-forming periods and stages of the Dachang ore field, the pH and conditions and the S isotopic systematics during ore formation have been thcrmodynamically treated in this paper. Calculations show a progressively decreased pH, an increased oxidation regime and an intensified activity of sulfur from the early to the late stage. Owing to the unreliability of inferring the S source from δ34Smin, has been calculated using the Ohmoto’s model. Results indicate that the δ34 min frequency distribution is more concentrated than that of δ34Smin and the peak value shifts to negative region by 2.5%. The sulfur in the whole ore field seems to be of multiple source, i.e., different deposits have their own S sources. But the S isotopic composition pertaining to each stage is nearly constant, suggesting that the ore-forming system be open to sulfur and the supply of sulfur be sufficient. The conclusions deduced from calculations are supported by many lines of geological evidence.  相似文献   

5.
Most altered clay minerals in uranium ore deposits in granites in the selected provinces of South China haveδ 18O m values ranging from 6.22 to 7.24,δDm from −60 to −70,δ 18O from +3.05 to −3.07, and from −20.2 to −37.5‰. Relative enrichment of32S in the uranium ore deposits and greater variations in Pb isotopic composition of galenas from them show that uranium ores in the granites were formed in such a way that uranium in shallow-source granites had been mobilized by heated meteoric waters and then migrated to local favourable locations along great faults to form uranium ore deposits. Zhang Shaoli, Yang Wenjin, Tang Chunjing and Xu Wenxin did part of this work.  相似文献   

6.
In the crystalline area of the “Borborema” in NE Brazil the final geologic event was a strong static recrystallization, which is manifest in regional granitization, hybride granite, or pegmatite veins. The manifestation varies within the mapped area, it depends on lithology, thickness and structure of the Precambrian metasediments. The age of this phase is between 550 and 450 M. years. Recrystallization is accompanied by weak folding of pre-existing anticlines as indicated by the structural control of the Borborema pegmatites. The principal phase of deformation and the accompanying regional metamorphism are considered to be older, approximately 850 M. years or more. This older regional metamorphism produced rocks of the almandine-staurolite subfacies of the amphibolite facies; locally higher (cordierite and sillimanite subfacies) or lower (greenschist facies) degree of metamorphism occurs. The pyroxene-hornfels facies, which is found in the contact aureoles of hybride granites, occurs exclusively in the tactites (metamorphic dolomitic marls). In clastic metasediments, high grade metamorphic facies is restricted to the contact aureole of a small hypersthene diorite stock. The structure is simple, and consists of synclines and anticlines the axial planes of which are vertical or, rarely, inclined. Faults are rare. The degree of lateral compression varies: low in the NW part of the area mapped, intermediate in die NE, and high in the southern part. The southern part belongs to the “Paraíba Transversal Zone”, an E-W striking fault zone along which the northern parts have been dislocated horizontally to the East. Stratigraphically the sequence is subdivided into three major groups by unconformities, which, however, are masked intensely by the principal tectonic events. These groups are: The oldest member occurs but locally in the cores of some anticlines; the youngest constitutes the cores of most synclines. The Caicó can be subdivided, in the most part, as follows: Florânia and Parelhas are essentially composed by unsorted clastic sediments (graywackes and arcoses). The Equador is a local lithofacies of the latter restricted to one anticline and a small part of another, and composed of well sorted clastics (muscovite quartzite). Another quartzite, locally developed at the top of the Florânia in the western part of the area, has been named “Member S. José do Seridó”. The Quixaba contains essentially carbonate rocks, but with intercalations of clastic sediments. The scheelite province of the area is generally connected with the Quixaba-Formation, the marbles of which served as transportation channels, whereas tactites were the receptors of the ore-bringing solutions, derived from some palingenetic granites and thus, indirectly, from the metasediments of the Parelhas. The deposition does not belong to the principal phase of contact metamorphism, but to a later-phase with hydrothermal paragenesis. Scheelite occurs also in common quartz-albite-veins. The famous pegmatite-province (Ta, Nb, Li, Be) cannot be considered as a product of magmatic differentiation, either. It must be the product of the statical recrystallization of the muscovite-rich Equador quartzite, by addition of thermal energy and K-rich solutions from the depth. Thus this province is only a special case of the general “granitization” with K-metasomatism: $$Quartz + Muscovite + K^ + \to Microclin + H^ + + Water.$$ The resulting fluids formed pegmatites in the rocks overlying the quartzite, i. e., generally in the micaschists of the Seridó-Group. Productive dykes always fill longitudinal or transversal tension cracks. The Borborema province of zoned pegmatites is thus an excellent example for the recent genetic hypothesis ofGresens, all requirements of it being fulfilled.  相似文献   

7.
The following equation is proposed in this paper to estimate the crustal growth rate of the North China Platform on the basis of mass equilibrium between the crust and the mantle:
  相似文献   

8.

Background  

A proposed strategy for immobilizing trace metals in the subsurface is to stimulate calcium carbonate precipitation and incorporate contaminants by co-precipitation. Such an approach will require injecting chemical amendments into the subsurface to generate supersaturated conditions that promote mineral precipitation. However, the formation of reactant mixing zones will create gradients in both the saturation state and ion activity ratios (i.e., ). To better understand the effect of ion activity ratios on CaCO3 precipitation kinetics and Sr2+ co-precipitation, experiments were conducted under constant composition conditions where the supersaturation state (Ω) for calcite was held constant at 9.4, but the ion activity ratio was varied between 0.0032 and 4.15.  相似文献   

9.
To understand the aqueous species important for transport of rhenium under supercritical conditions, we conducted a series of solubility experiments on the Re–ReO2 buffer assemblage and ReS2. In these experiments, pH was buffered by the K–feldspar–muscovite–quartz assemblage; in sulfur-free systems was buffered by the Re–ReO2 assemblage; and and in sulfur-containing systems were buffered by the magnetite–pyrite–pyrrhotite assemblage. Our experimental studies indicate that the species ReCl4 0 is dominant at 400°C in slightly acidic to near-neutral, and chloride-rich (total chloride concentrations ranging from 0.5 to 1.0 M) environments, and ReCl3 + may predominate at 500°C in a solution with total chloride concentrations ranging from 0.5 to 1.5 M. The results also demonstrate that the solubility of ReS2 is about two orders of magnitude less than that of ReO2. This finding not only suggests that ReS2 (or a ReS2 component in molybdenite) is the solubility-controlling phase in sulfur-containing, reducing environments but also implies that a mixing process involving an oxidized, rhenium-containing solution and a solution with reduced sulfur is one of the most effective mechanisms for deposition of rhenium. In analogy with Re, TcS2 may be the stable Tc-bearing phase in deep geological repositories of radioactive wastes.  相似文献   

10.
This paper reports an integrated petrological, geochronological, and isotopic geochemical study of the Pliocene Dzhimara granitoid massif (Greater Caucasus) located in the immediate vicinity of Quaternary Kazbek Volcano. Based on the obtained results, it was suggested that the massif has a multiphase origin, and temporal variations in the chemical composition of its granitoids and their possible sources were determined. Two petrographic types of granitoids, biotite-amphibole and amphibole, were distinguished among the studied rocks of the Dzhimara Massif belonging to the calc-alkaline and K-Na subalkaline petrochemical series. The latter are granodiorites, and the biotite-amphibole granitoids are represented by calc-alkaline granodiorites and quartz diorites and subalkaline quartz diorites. Geochemically, the granitoids of the Dzhimara Massif are of a “mixed” type, showing signatures of S-, I-, A-, and even M-type rocks. Their chemical characteristics suggest a mantle-crustal origin, which is explained by the formation of their parental magmas in a complex geodynamic environment of continental collision associated with a mantle “hot field” regime.
The granitoids of the Dzhimara Massif show wide variations in Sr and Nd isotopic compositions. In the Sr-Nd isotope diagram, their compositions are approximated by a line approaching the mixing curve between the “Common” depleted mantle, which is considered as a potential source of intra-plate basalts, and crustal reservoirs. It was suggested that the mantle source (referred here as “Caucasus”) that contributed to the petrogenesis of the granitoids of the Dzhimara Massif and most other youngest magmatic complexes of the region showed the following isotopic characteristics: 87Sr/86Sr ? 0.7041 ± 0.0001 and
+ 4.1 ± 0.1 at 147Sm/144Nd = 0.105–0.114.
The Middle-Late Pliocene K-Ar ages (3.3–1.9 Ma) obtained for the Dzhimara Massif are close to the ages of granitoids from other Pliocene “neointrusions” of the Greater Caucasus. Based on the geochronological and petrological data, the Dzhimara Massif is formed during four intrusive phases: (1) amphibole granodiorites (3.75–3.65 Ma), (2) Middle Pliocene amphibole-biotite granodiorites and quartz diorites (~3.35 Ma), (3) Late Pliocene amphibole-biotite granodiorites and quartz diorites (~2.5 Ma), and (4) K-Na subalkaline biotite-amphibole quartz diorites (~2.0 Ma).The close spatial association of the Pliocene multiphase Dzhimara Massif and the Quaternary Kazbek volcanic center suggests the existence of a long-lived magmatic system developing in two stages: intrusive and volcanic. Approximately 1.5 Ma after the formation of the Dzhimara Massif (at ca. 400–500 ka), the activity of a deep magma chamber in this area of the Greater Caucasus resumed (possibly with some shift to the east).  相似文献   

11.
In the surroundings of the Gaoqing-Pingnan fault zone are developed quite a number of gas reservoirs. Based on gas compositions, they can be divided into two groups, i.e., CO2 and CH4. Their composition and isotope geochemistry were dealt with in this study. The CO2 contents range from 60.72%–99.99%, the δ13CCO2 values from -3.41‰– -9.8‰, and the 3He/4He ratios from 4.35×10-6–6.35×10-6 (i.e. R/Ra=4.45–4.35). Based on the data on composition and isotope geochemistry, deep geological background, deep faults and volcanic rocks, it is shown that CO2 ,distributed in the Gaoqing area, mostly originated from mantle-source inorganic matter which is associated with magmatic rocks. The favorable tectonic environment for the formation of CO2 reservoirs is the rift, which is related to great fault-magmatic activity, the formation of CO2 gas pools and their space-time correlation to the most recent magmatic activities. Hydrocarbon gas pools occur in the Huagou area. The CH4 contents are within the range of 88.83%–99.12%, and the δ13CCH4 values, -44.7‰– -54.39‰. This indicates that the hydrocarbon gas resulted from the decomposition of oil-type gas at high temperatures. Volcanic rocks in the CO2 gas pool-and CH4 gas pool-distributed areas show significant differences in Fe2O3 and FeO contents. This has proven that the hydrocarbon gas may have resulted from various chemical reactions. Magmatic activities are the primary reason for the distribution of CO2 and CH4 gas pools in the Gaoqing-Pingnan fault zone.  相似文献   

12.
Precipitation samples were collected across the Himalayas from Kashmir (western Himalaya) to Assam (eastern Himalaya) to understand the variation of the stable isotopic content (\(\updelta ^{18}\)O and \(\updelta \)D) in precipitation associated with two dominant weather systems of the region: western disturbances (WDs) and Indian summer monsoon (ISM). Large spatial and temporal variations in isotopic values were noted with \(\updelta ^{18}\)O and \(\updelta \)D values ranging from \(-30.3\) to Open image in new window and \(-228\) to Open image in new window , respectively. The d-excess values also exhibit a large range of variation from \(-30\) to Open image in new window . In general, heavier isotopic values are observed in most of the samples in Jammu, whereas lighter values are observed in majority of the samples in Uttarakhand. Precipitation at Jammu seems to have undergone intense evaporation while that from Uttarakhand suggest normal Rayleigh fractionation/distillation of the air mass as it moves from the source region to the precipitation site and/or orographic lifting. The d-excess of rainfall in Kashmir has a distinctly higher median value of Open image in new window compared to other precipitation sites with a median of Open image in new window . Using distinct isotopic signatures, the regions receiving precipitation from two different weather systems have been identified.  相似文献   

13.
The effect of Rayleigh distillation by outgassing of SO2 and H2S on the isotopic composition of sulfur remaining in silicate melts is quantitatively modelled.A threshold mole fraction of sulfur in sulfide component of the melts is reckoned to be of critical importance in shifting the δ^34S of the melts mith respect to the original magmas.The partial equilibrium fractionation in a magmatic system is evaluated by assuming that a non-equilibrium flux of sulfur occurs between magmatic volatiles and the melts,while an equilibrium fractionation is approached between sulfate and sulfide within the melts.The results show that under high fo2 conditions,the sulfate/sulfide ratio in a melt entds to increase,and the δ^34S value of sulfur in a solidified rock might then be shifted in the positive direction.This may either be due to Rayleigh outgassing in case the mole fraction of sulfide is less than the threshold,or due to a unidirectional increase in δ^34S value of the sulfate with decreaing temperature,Conversely,at low fo2,the sulfate/sulfide ratio tends to decrease and the δ^34S value of total sulfur could be driven in the negative direction,either because of the Rayleigh outgassing in case the mole fraction of sulfide is greater than the threshold,or because of a unidirectional decrease inδ^34S value of the sulfide.To establish isotopic equilibrium between sulfate and sulfide,the HM,QFM or WM buffers in the magmatic system are suggested to provide the redox couple that could simultaneously reduce the sulfate and oxidize the sulfide.CaO present in the silicatte Melts is also called upon to participate in the chemical equilibrium between sulfate and sulfide,Consequently,the δ^34S value of an igneous rock could considerably deviate from that of its original magma due to the influence of oxygen fugacity and temperature at the time of magma solidification.  相似文献   

14.
Ice-core samples from Upper Fremont Glacier (UFG), Wyoming, were used as proxy records for the chemical composition of atmospheric deposition. Results of analysis of the ice-core samples for stable isotopes of nitrogen (δ15N, ) and sulfur (δ34S, ), as well as and deposition rates from the late-1940s thru the early-1990s, were used to enhance and extend existing National Atmospheric Deposition Program/National Trends Network (NADP/NTN) data in western Wyoming. The most enriched δ34S value in the UFG ice-core samples coincided with snow deposited during the 1980 eruption of Mt. St. Helens, Washington. The remaining δ34S values were similar to the isotopic composition of coal from southern Wyoming. The δ15N values in ice-core samples representing a similar period of snow deposition were negative, ranging from -5.9 to -3.2 ‰ and all fall within the δ15N values expected from vehicle emissions. Ice-core nitrate and sulfate deposition data reflect the sharply increasing U.S. emissions data from 1950 to the mid-1970s.  相似文献   

15.
Based on the oxygen isotopic compositions of 133 wolframite samples and 110 quartz samples collected from 30 tungsten ore deposits in south China, in conjunction withδD values and other data, these deposits can be divided into four types.
(1)  Reequilibrated magmatic water-hydrothermal tungsten ore deposits. Theδ 18O values of wolframite and quartz samples from this type of tungsten ore deposits are about +5–+12‰, respectively. The calculatedδ 18O values of ore fluids in equilibrium with quartz are about +6.5‰, and theδ values of fluid inclusions in quartz range from −40 to −70‰
(2)  Meteoric water-hydrothermal tungsten ore deposits. Theδ 18O values of wolframite in this type of tungsten deposits are around −1‰
(3)  Stratiform tungsten ore deposits. In these deposits, theδ 18O values of quartz and wolframite are about +17 and +3‰, respectively. It is considered that these stratiform tungsten ore deposits are genetically related to submarine hot-spring activities.
(4)  Complex mixed-hydrothermal tungsten ore deposits. These tungsten ore deposits are characterized by multi-staged mineralization. Theδ 18O values of early wolframite are around +5‰, but of later wolframite are lower than +4‰, indicating that the early wolframite was precipitated from reequilibrated magmatic water-hydrothermal solutions and the late one from the mixture of hydrothermal solutions with meteoric waters or mainly from meteoric waters.
Based on theδ 18O values of the coexisting quartz and wolframite and temperature data, two calibration equilibrium curves have been constructed, and the corresponding equations have been obtained:
  相似文献   

16.
The Rushan gold deposit, explored in recent years in the Jiaodong area, Shandong Province, is a quartz vein-type gold deposit hosted in granite. The temperature of its major mineralization episode is between 220°C and 280°C. The salinity of the ore-forming fluid is 5 % to 9% NaCl equivalent, with H2O and CO2 as the dominant gas constituents. The fluid is rich in Na+, Ca2+ and Cl, but relatively impoverished in K+ and F, characterized by either Ca2+ > Na+ > K+ (in three samples) or Na+ > Ca2+ > K+ (in six samples). Hydrogen and oxygen isotopes in the ore-forming fluid are highly variable with δ18 ranging between − 7.70‰ and 5. 97‰ and between − 128‰ and − 71‰. The possibility of lamprophyre serving as the source of gold can be excluded in view of its low gold content on the order of 2.5 × 10−9. Rb-Sr isochron ages of the deposit and the host Kunyushan granite are ( 104.8 ± 1.5) Ma and 134.6 Ma respectively with the respective initial Sr ratios of 0. 71307 and 0.7096. It is considered that the emplacement of the lamprophyre under a tensile environment had provided sufficient heat energy to facilitate deep circulation of meteoric water by which ore metals were extracted from the Kunyushan granite through long-term water-rock reaction. This project was financially supported by the National Natural Science Foundation of China.  相似文献   

17.
18.
Trace metals (e.g. Ni, Zn) leached from industrial and agricultural processes are often simultaneously present in contaminated soils and sediments. Their mobility, bioavailability, and ecotoxicity are affected by sorption and cosorption at mineral/solution interfaces. Cosorption of trace metals has been investigated at the macroscopic level, but there is not a clear understanding of the molecular-scale cosorption processes due to lack of spectroscopic information. In this study, Ni and Zn cosorption to aluminum oxides (γ-Al2O3) in binary-sorbate systems were compared to their sorption in single-sorbate systems as a function of pH using both macroscopic batch experiments and synchrotron-based X-ray absorption fine structure spectroscopy. At pH 6.0, Ni and Zn were sorbed as inner-sphere surface complexes and competed for the limited number of reactive sites on γ-Al2O3. In binary-sorbate systems, Ni had no effect on Zn sorption, owning to its lower affinity for the metal oxide surface. In contrast, Zn had a higher affinity for the metal oxide surface and reduced Ni sorption. At pH 7.5, Ni and Zn were sorbed as mixed-metal surface precipitates, including Ni–Al layered double hydroxides (LDHs), Zn–Al LDHs, and likely Ni–Zn–Al layered triple/ternary hydroxides. Additionally, at pH 7.5, Ni and Zn do not exhibit competitive sorption effects in the binary system. Taken together, these results indicated that pH critically influenced the reaction products, and provides a crucial scientific basis to understand the potential mobility, bioavailability, and ecotoxicity of Ni and Zn in natural and contaminated geochemical environments.
  相似文献   

19.
The study of metagabbro-norites of the Belomorian Group metamorphosed under the amphibolite-lower granulite facies conditions (Gorelyi Island, Kandalaksha Bay) showed that at contact with Bt-Hbl-Kfs-Pl-Qtz gneiss-granites they were affected by silicic-alkaline H2O-Cl-CO2 brines, which caused the enrichment in alkalis, silica, Rb, Ba, Pb, Zr, LREE and redistribution of Cu, Zn, Cr, Co, V, and Ni along the filtration pathway. The granitization of metagabbro-norite proceeded simultaneously with increase in fluid oxygen fugacity from one log unit below to four log units above QFM. The microprobe determinations of Cl content in biotites and apatites made it possible to calculate variations in the $ f_{H_2 O} The study of metagabbro-norites of the Belomorian Group metamorphosed under the amphibolite-lower granulite facies conditions (Gorelyi Island, Kandalaksha Bay) showed that at contact with Bt-Hbl-Kfs-Pl-Qtz gneiss-granites they were affected by silicic-alkaline H2O-Cl-CO2 brines, which caused the enrichment in alkalis, silica, Rb, Ba, Pb, Zr, LREE and redistribution of Cu, Zn, Cr, Co, V, and Ni along the filtration pathway. The granitization of metagabbro-norite proceeded simultaneously with increase in fluid oxygen fugacity from one log unit below to four log units above QFM. The microprobe determinations of Cl content in biotites and apatites made it possible to calculate variations in the -f HCl relations in fluid during its percolation through the rock. It was shown that biotite was formed at metamorphic peak in the presence of highly aggressive high-f HCl fluids (log /f HCl ≈ 0.8–1.2). Apatite was formed in the presence of less acid and more aqueous residual solutions (log /f HCl ≈ 2.98−3.91), which presumably lost their salt components at metamorphic peak. The calculations showed that the flux of fluid that percolated through the rock during granitization accounted for q ≈ 4 × 102 to 2 × 103 cm3/cm2. Due to insignificant volume of the fluid, the transformations spanned only marginal part of the metagabbro-norites on Gorelyi Island. Original Russian Text ? L.I. Khodorevskaya, 2009, published in Petrologiya, 2009, Vol. 17, No. 4, pp. 397–414.  相似文献   

20.
Humic substances (HS) are redox-active compounds that are ubiquitous in the environment and can serve as electron shuttles during microbial Fe(III) reduction thus reducing a variety of Fe(III) minerals. However, not much is known about redox reactions between HS and the mixed-valent mineral magnetite (Fe3O4) that can potentially lead to changes in Fe(II)/Fe(III) stoichiometry and even dissolve the magnetite. To address this knowledge gap, we incubated non-reduced (native) and reduced HS with four types of magnetite that varied in particle size and solid-phase Fe(II)/Fe(III) stoichiometry. We followed dissolved and solid-phase Fe(II) and Fe(III) concentrations over time to quantify redox reactions between HS and magnetite. Magnetite redox reactions and dissolution processes with HS varied depending on the initial magnetite and HS properties. The interaction between biogenic magnetite and reduced HS resulted in dissolution of the solid magnetite mineral, as well as an overall reduction of the magnetite. In contrast, a slight oxidation and no dissolution was observed when native and reduced HS interacted with 500 nm magnetite. This variability in the solubility and electron accepting and donating capacity of the different types of magnetite is likely an effect of differences in their reduction potential that is correlated to the magnetite Fe(II)/Fe(III) stoichiometry, particle size, and crystallinity. Our study suggests that redox-active HS play an important role for Fe redox speciation within minerals such as magnetite and thereby influence the reactivity of these Fe minerals and their role in biogeochemical Fe cycling. Furthermore, such processes are also likely to have an effect on the fate of other elements bound to the surface of Fe minerals.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号