首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We outline the steps needed in order to incorporate the evolution of single and binary stars into a particular Monte Carlo code for the dynamical evolution of a star cluster. We calibrate the results against N -body simulations, and present models for the evolution of the old open cluster M67 (which has been studied thoroughly in the literature with N -body techniques). The calibration is done by choosing appropriate free code parameters. We describe, in particular, the evolution of the binary, white dwarf and blue straggler populations, though not all channels for blue straggler formation are represented yet in our simulations. Calibrated Monte Carlo runs show good agreement with results of N -body simulations not only for global cluster parameters, but also for, for example, binary fraction, luminosity function and surface brightness. Comparison of Monte Carlo simulations with observational data for M67 shows that it is possible to get reasonably good agreement between them. Unfortunately, because of the large statistical fluctuations of the numerical data and uncertainties in the observational data the inferred conclusions about the cluster initial conditions are not firm.  相似文献   

2.
N -body simulations are widely used to simulate the dynamical evolution of a variety of systems, among them star clusters. Much of our understanding of their evolution rests on the results of such direct N -body simulations. They provide insight in the structural evolution of star clusters, as well as into the occurrence of stellar exotica. Although the major pure N -body codes starlab/kira and nbody4 are widely used for a range of applications, there is no thorough comparison study yet.
Here, we thoroughly compare basic quantities as derived from simulations performed either with starlab/kira or nbody4 .
We construct a large number of star cluster models for various stellar mass function settings (but without stellar/binary evolution, primordial binaries, external tidal fields, etc.), evolve them in parallel with starlab/kira and nbody4 , analyse them in a consistent way and compare the averaged results quantitatively. For this quantitative comparison, we develop a bootstrap algorithm for functional dependencies.
We find an overall excellent agreement between the codes, both for the clusters' structural and energy parameters as well as for the properties of the dynamically created binaries. However, we identify small differences, like in the energy conservation before core collapse and the energies of escaping stars, which deserve further studies.
Our results reassure the comparability and the possibility to combine results from these two major N -body codes, at least for the purely dynamical models (i.e. without stellar/binary evolution) we performed. Further detailed comparison studies for more complex systems, e.g. including stellar/binary evolution, are required.  相似文献   

3.
Direct N -body calculations are presented of the formation of Galactic clusters using GasEx , which is a variant of the code Nbody6 . The calculations focus on the possible evolution of the Orion nebula cluster (ONC) by assuming that the embedded OB stars explosively drove out 2/3 of its mass in the form of gas about 0.4 Myr ago. A bound cluster forms readily and survives for 150 Myr despite additional mass loss from the large number of massive stars, and the Galactic tidal field. This is the very first time that cluster formation is obtained under such realistic conditions. The cluster contains about 1/3 of the initial 104 stars, and resembles the Pleiades cluster to a remarkable degree, implying that an ONC-like cluster may have been a precursor of the Pleiades. This scenario predicts the present expansion velocity of the ONC, which will be measurable by upcoming astrometric space missions. These missions should also detect the original Pleiades members as an associated expanding young Galactic-field subpopulation. The results arrived at here suggest that Galactic clusters form as the nuclei of expanding OB associations.
The results have wide implications, also for the formation of globular clusters and the Galactic-field and halo stellar populations. In view of this, the distribution of binary orbital periods and the mass function within and outside the model ONC and Pleiades is quantified, finding consistency with observational constraints. Advanced mass segregation is evident in one of the ONC models. The calculations show that the primordial binary population of both clusters could have been much the same as is observed in the Taurus–Auriga star-forming region. The computations also demonstrate that the binary proportion of brown dwarfs is depleted significantly for all periods, whereas massive stars attain a high binary fraction.  相似文献   

4.
The stars that populate the solar neighbourhood were formed in stellar clusters. Through N -body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet–planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood.  相似文献   

5.
A revision of Stodółkiewicz's Monte Carlo code is used to simulate evolution of large star clusters. The new method treats each superstar as a single star and follows the evolution and motion of all individual stellar objects. A survey of the evolution of N -body systems influenced by the tidal field of a parent galaxy and by stellar evolution is presented. The process of energy generation is realized by means of appropriately modified versions of Spitzer's and Mikkola's formulae for the interaction cross-section between binaries and field stars and binaries themselves. The results presented are in good agreement with theoretical expectations and the results of other methods (Fokker–Planck, Monte Carlo and N -body). The initial rapid mass loss, resulting from stellar evolution of the most massive stars, causes expansion of the whole cluster and eventually leads to the disruption of less bound systems ( W 0=3). Models with larger W 0 survive this phase of evolution and then undergo core collapse and subsequent post-collapse expansion, like isolated models. The expansion phase is eventually reversed when tidal limitation becomes important. The results presented are the first major step in the direction of simulating evolution of real globular clusters by means of the Monte Carlo method.  相似文献   

6.
We performed high-resolution simulations of two stellar collisions relevant for stars in globular clusters. We considered one head-on collision and one off-axis collision between two 0.6-M main-sequence stars. We show that a resolution of about 100 000 particles is sufficient for most studies of the structure and evolution of blue stragglers. We demonstrate conclusively that collision products between main-sequence stars in globular clusters do not have surface convection zones larger than 0.004 M after the collision, nor do they develop convection zones during the 'pre-main-sequence' thermal relaxation phase of their post-collision evolution. Therefore, any mechanism which requires a surface convection zone (i.e. chemical mixing or angular momentum loss via a magnetic wind) cannot operate in these stars. We show that no disc of material surrounding the collision product is produced in off-axis collisions. The lack of both a convection zone and a disc proves a continuing problem for the angular momentum evolution of blue stragglers in globular clusters.  相似文献   

7.
We study the evolution of binary stars in globular clusters using a new Monte Carlo approach combining a population synthesis code ( startrack ) and a simple treatment of dynamical interactions in the dense cluster core using a new tool for computing three- and four-body interactions ( fewbody ). We find that the combination of stellar evolution and dynamical interactions (binary–single and binary–binary) leads to a rapid depletion of the binary population in the cluster core. The maximum binary fraction today in the core of a typical dense cluster such as 47 Tuc, assuming an initial binary fraction of 100 per cent, is only ∼ 5–10 per cent. We show that this is in good agreement with recent Hubble Space Telescope observations of close binaries in the core of 47 Tuc, provided that a realistic distribution of binary periods is used to interpret the results. Our findings also have important consequences for the dynamical modelling of globular clusters, suggesting that 'realistic models' should incorporate much larger initial binary fractions than has usually been the case in the past.  相似文献   

8.
The effect of gas ejection on the structure and binding energy of newly formed stellar clusters is investigated. The star formation efficiency (SFE), necessary for forming a gravitationally bound stellar cluster, is determined.
Two sets of numerical N -body simulations are presented. As a first simplified approach we treat the residual gas as an external potential. The gas expulsion is approximated by reducing the gas mass to zero on a given time-scale, which is treated as a free parameter. In a second set of simulations we use smoothed particle hydrodynamics (SPH) to follow the dynamics of the outflowing residual gas self-consistently. We investigate cases where gas outflow is induced by an outwards propagating shock front and where the whole gas cloud is heated homogeneously, leading to ejection.
If the stars are in virial equilibrium with the gaseous environment initially, bound clusters only form in regions where the local SFE is larger than 50 per cent or where the gas expulsion time-scale is long compared with the dynamical time-scale. A small initial velocity dispersion of the stars leads to a compaction of the cluster during the expulsion phase and reduces the SFE needed to form bound clusters to less than 10 per cent.  相似文献   

9.
We study the circumstances under which first collisions occur in young and dense star clusters. The initial conditions for our direct N -body simulations are chosen such that the clusters experience core collapse within a few million years, before the most massive stars have left the main sequence. It turns out that the first collision is typically driven by the most massive stars in the cluster. Upon arrival in the cluster core, by dynamical friction, massive stars tend to form binaries. The enhanced cross-section of the binary compared to a single star causes other stars to engage the binary. A collision between one of the binary components and the incoming third star is then mediated by the encounters between the binary and other cluster members. Due to the geometry of the binary–single star engagement the relative velocity at the moment of impact is substantially different than in a two-body encounter. This may have profound consequences for the further evolution of the collision product.  相似文献   

10.
A revision of Stodółkiewicz's Monte Carlo code is used to simulate the evolution of million-body star clusters. The new method treats each superstar as a single star and follows the evolution and motion of all individual stellar objects. The evolution of N -body systems influenced by the tidal field of a parent galaxy and by stellar evolution is presented. All models consist of 1 000 000 stars. The process of energy generation is realized by means of appropriately modified versions of Spitzer's and Mikkola's formulae for the interaction cross-section between binaries and field stars and binaries themselves. The results presented are in good agreement with theoretical expectations and the results of other methods. During the evolution, the initial mass function (IMF) changes significantly. The local mass function around the half-mass radius closely resembles the actual global mass function. At the late stages of evolution, the mass of the evolved stars inside the core can be as high as 97 per cent of the total mass in this region. For the whole system, the evolved stars can compose up to 75 per cent of the total mass. The evolution of cluster anisotropy strongly depends on initial cluster concentration, IMF and the strength of the tidal field. The results presented are the first step in the direction of simulating the evolution of real globular clusters by means of the Monte Carlo method.  相似文献   

11.
In this talk, we will simply show the consequences of binary population synthesis for blue stragglers, such as the integrated spectral energy distribution (ISED), the color-magnitude diagram, the specific frequency, and the influences on colors. Blue stragglers have been found in all stellar populations and they are an important population component in both stellar evolution and star clusters. Much evidence shows that blue stragglers are relevant to primordial binaries. The binary population synthesis study shows that primordial binary evolution may produce blue stragglers at any given times. The specific frequency in this way decreases with time first, then increases when the age is larger than 10 Gyr, while that from angular momentum loss induced by magnetic braking in low-mass binaries increases with time and exceeds that of primordial binary evolution in a population older than 3 Gyr. Meanwhile, blue stragglers resulting from primordial binary evolution are dominant contributors to the ISEDs in ultraviolet and blue bands in a population between 0.3 and 2.0 Gyr. The mass fraction of the lost matter from the primary accreted by the secondary, β, significantly affects on the final results, e.g. the specific frequency of blue stragglers decreasing with β, blue stragglers produced from a high value of β being more massive, then contributing more to the ISEDs of the host clusters. For old open clusters, it is appropriate to adopt a higher value of β when the primary is in HG at the onset of mass transfer. Our study also shows that, for most Galactic open clusters, the specific frequency of blue stragglers obtained from our simulations is much lower than that of observations, which has been discussed in this talk.  相似文献   

12.
We consider the use of N -body simulations for studying the evolution of rich star clusters (i.e. globular clusters).The dynamical processes included in this study are restricted to gravitational (point-mass) interactions, the steady tidal field of a galaxy, and instantaneous mass loss resulting from stellar evolution. With evolution driven by these mechanisms, it is known that clusters fall roughly into two broad classes: those that dissipate promptly in the tidal field, as a result of mass loss; and those that survive long enough for their evolution to become dominated by two-body relaxation.
The time-scales of the processes we consider scale in different ways with the number of stars in the simulation, and the main aim of the paper is to suggest how the scaling of a simulation should be done so that the results are representative of the evolution of a 'real' cluster. We investigate three different ways of scaling time. One of these is appropriate to the first type of cluster, i.e. those that dissipate rapidly; similarly, a second scaling is appropriate only to the second (relaxation-dominated) type. We also develop a hybrid scaling, which is a satisfactory compromise for both types of cluster. Finally we present evidence that the widely used Fokker–Planck method produces models that are in good agreement with N -body models of those clusters that are relaxation-dominated, at least for N -body models with several thousand particles, but that the Fokker–Planck models evolve too fast for clusters that dissipate promptly.  相似文献   

13.
We present N -body simulations (including an initial mass function) of globular clusters in the Galaxy in order to study effects of the tidal field systematically on the properties of the outer parts of globular clusters. Using nbody6 , which correctly takes into account the two-body relaxation, we investigate the development of tidal tails of globular clusters in the Galactic tidal field. For simplicity, we have employed only the spherical components (bulge and halo) of the Galaxy, and ignored the effects of stellar evolution which could have been important in the very early phase of the cluster evolution. The total number of stars in our simulations is about 20 000, which is much smaller than the realistic number of stars. All simulations had been done for several orbital periods in order to understand the development of the tidal tails. In our scaled-down models, the relaxation time is sufficiently short to show the mass segregation effect, but we did not go far enough to see the core collapse, and the fraction of stars lost from the cluster at the end of the simulations is only ∼10 per cent. The radial distribution of extra-tidal stars can be described by a power law with a slope around −3 in surface density. The directions of tidal tails are determined by the orbits and locations of the clusters. We find that the length of tidal tails increases towards the apogalacticon and decreases towards the perigalacticon. This is an anti-correlation with the strength of the tidal field, caused by the fact that the time-scale for the stars to respond to the potential is similar to the orbital time-scale of the cluster. The escape of stars in the tidal tails towards the pericentre could be another reason for the decrease of the length of tidal tails. We find that the rotational angular velocity of tidally induced clusters shows quite different behaviour from that of initially rotating clusters.  相似文献   

14.
In this study we present the results from realistic N -body modelling of massive star clusters in the Magellanic Clouds. We have computed eight simulations with   N ∼ 105  particles; six of these were evolved for at least a Hubble time. The aim of this modelling is to examine in detail the possibility of large-scale core expansion in massive star clusters, and search for a viable dynamical origin for the radius–age trend observed for such objects in the Magellanic Clouds. We identify two physical processes which can lead to significant and prolonged cluster core expansion – mass-loss due to rapid stellar evolution in a primordially mass-segregated cluster, and heating due to a retained population of stellar mass black holes, formed in the supernova explosions of the most massive cluster stars. These two processes operate over different time-scales and during different periods of a cluster's life. The former occurs only at early times and cannot drive core expansion for longer than a few hundred Myr, while the latter typically does not begin until several hundred Myr have passed, but can result in core expansion lasting for many Gyr. We investigate the behaviour of each of these expansion mechanisms under different circumstances – in clusters with varying degrees of primordial mass segregation, and in clusters with varying black hole retention fractions. In combination, the two processes can lead to a wide variety of evolutionary paths on the radius–age plane, which fully cover the observed cluster distribution and hence define a dynamical origin for the radius–age trend in the Magellanic Clouds. We discuss in some detail the implications of core expansion for various aspects of globular cluster research, as well as the possibility of observationally inferring the presence of a significant population of stellar mass black holes in a cluster.  相似文献   

15.
不同恒星系统(银河系晕、疏散星团、球状星团、矮星系)中蓝离散星所表现出的观测特性各不相同,这与恒星系统动力学环境及相应的蓝离散星主导形成机制直接相关。因此,分析研究蓝离散星的不同观测特性,也就成为研究蓝离散星形成机制、恒星及双星系统演化以及恒星系统动力学演化的有效方法。  相似文献   

16.
I present a simplified analytical model that simulates the evolution of the binary population in a dynamically evolving globular cluster. A number of simulations have been run spanning a wide range in initial cluster and environmental conditions by taking into account the main mechanisms of formation and destruction of binary systems. Following this approach, I investigate the evolution of the fraction, the radial distribution, the distribution of mass ratios and periods of the binary population. According to these simulations, the fraction of surviving binaries appears to be dominated by the processes of binary ionization and evaporation. In particular, the frequency of binary systems changes by a factor of 1–5 depending on the initial conditions and on the assumed initial distribution of periods. The comparison with the existing estimates of binary fractions in Galactic globular clusters suggests that significant variations in the initial binary content could exist among the analysed globular cluster. This model has been also used to explain the observed discrepancy found between the most recent N -body and Monte Carlo simulations in the literature.  相似文献   

17.
There is currently much interest in the possible presence of intermediate-mass black holes (IMBHs) in the cores of globular clusters (GCs). Based on theoretical arguments and simulation results it has previously been suggested that a large core radius – or particularly a large ratio of the core radius to half-mass radius – is a promising indicator for finding such a black hole (BH) in a star cluster. In this study N -body models of 100 000 stars with and without primordial binaries are used to investigate the long-term structural evolution of star clusters. Importantly, the simulation data are analysed using the same processes by which structural parameters are extracted from observed star clusters. This gives a ratio of the core and half-mass (or half-light) radii that are directly comparable to the Galactic GC sample. As a result, it is shown that the ratios observed for the bulk of this sample can be explained without the need for an IMBH. Furthermore, it is possible that clusters with large core to half-light radius ratios harbour a BH binary (comprising stellar mass BHs) rather than a single massive BH. This work does not rule out the existence of IMBHs in the cores of at least some star clusters.  相似文献   

18.
We investigate the mean velocity dispersion and the velocity dispersion profile of stellar systems in modified Newtonian dynamics (MOND), using the N -body code n-mody , which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti, Londrillo & Nipoti. We have calculated mean velocity dispersions for stellar systems following Plummer density distributions with masses in the range of 104 to  109 M  and which are either isolated or immersed in an external field. Our integrations reproduce previous analytic estimates for stellar velocities in systems in the deep MOND regime  ( a i, a e≪ a 0)  , where the motion of stars is either dominated by internal accelerations  ( a i≫ a e)  or constant external accelerations  ( a e≫ a i)  . In addition, we derive for the first time analytic formulae for the line-of-sight velocity dispersion in the intermediate regime  ( a i∼ a e∼ a 0)  . This allows for a much-improved comparison of MOND with observed velocity dispersions of stellar systems. We finally derive the velocity dispersion of the globular cluster Pal 14 as one of the outer Milky Way halo globular clusters that have recently been proposed as a differentiator between Newtonian and MONDian dynamics.  相似文献   

19.
We compare our latest single and binary stellar model results from the Cambridge stars code to several sets of observations. We examine four stellar population ratios: the number of blue to red supergiants, the number of Wolf–Rayet stars to O supergiants, the number of red supergiants to Wolf–Rayet stars and the relative number of Wolf–Rayet subtypes, WC to WN stars. These four ratios provide a quantitative measure of nuclear burning lifetimes and the importance of mass loss during various stages of the stars' lifetimes. In addition, we compare our models to the relative rate of Type Ib/c to Type II supernovae to measure the amount of mass lost over the entire lives of all stars. We find reasonable agreement between the observationally inferred values and our predicted values by mixing single and binary star populations. However, there is evidence that extra mass loss is required to improve the agreement further, to reduce the number of red supergiants and increase the number of Wolf–Rayet stars.  相似文献   

20.
We report results of collisional N -body simulations aimed at studying the N dependence of the dynamical evolution of star clusters. Our clusters consist of equal-mass stars and are in virial equilibrium. Clusters moving in external tidal fields and clusters limited by a cut-off radius are simulated. Our main focus is to study the dependence of the lifetimes of the clusters on the number of cluster stars and the chosen escape condition.
We find that star clusters in external tidal fields exhibit a scaling problem in the sense that their lifetimes do not scale with the relaxation time. Isolated clusters show a similar problem if stars are removed only after their distance to the cluster centre exceeds a certain cut-off radius. If stars are removed immediately after their energy exceeds the energy necessary for escape, the scaling problem disappears.
We show that some stars that gain the energy necessary for escape are scattered to lower energies before they can leave the cluster. As the efficiency of this process decreases with increasing particle number, it causes the lifetimes not to scale with the relaxation time. Analytic formulae are derived for the scaling of the lifetimes in the different cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号