首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
An unusual association of authigenic pyrite and authigenic gypsum has been found in silty clays recovered from the South West African continental slope. Nannofossil content suggests that the sediments are Upper Miocene-Lower Pliocene in age. Pyrite occurs as (1) granular masses, (2) ‘worm’tubes, (3) foraminiferal infillings, and (4) framboids. Gypsum occurs as euhedral single or twinned crystals of selenite. ‘Worm’tubes and foraminiferal infillings of pyrite are partially or completely enclosed in some gypsum crystals. Electron microprobe analyses show a relatively high concentration of manganese in both the granular masses and tubes. Present-day waters off this coast are dominated by the upwelling of cold, nutrient-enriched waters (the Benguela Current). These rich waters support an enormous population of plankton. Death and decomposition of these plankton consume oxygen, thereby creating a belt of anaerobic sediments close to shore. An Upper Miocene-Lower Pliocene regression (Dingle & Scrutton, 1974) lowered sea level and shifted an older analogue of this upwelling zone seaward, eventually establishing an anaerobic environment in places on the present continental slope. Anaerobic bacteria thrived in these conditions. They reduced SO4 dissolved in sea water, initiating the formation of H2S. The H2S reacted with iron minerals present in the sediment to form FeS. Addition of elemental sulphur produced pyrite. This strongly reducing, low pH, environment became saturated with calcium obtained by the dissolution of planktonic calcareous organisms. Gypsum was precipitated once the product of the concentrations of dissolved calcium and SO4 exceeded the gypsum solubility product.  相似文献   

2.
《Applied Geochemistry》2005,20(11):2116-2137
Samples of mine water from Butte, Montana were collected for paired geochemical and stable isotopic analysis. The samples included two sets of depth profiles from the acidic Berkeley pit lake, deep groundwater from several mine shafts in the adjacent flooded underground mine workings, and the acidic Horseshoe Bend Spring. Beginning in July-2000, the spring was a major surface water input into the Berkeley pit lake. Vertical trends in major ions and heavy metals in the pit lake show major changes across a chemocline at 10–20 m depth. The chemocline most likely represents the boundary between pre-2000 and post-2000 lake water, with lower salinity, modified Horseshoe Bend Spring water on top of higher salinity lake water below. Based on stable isotope results, the deep pit lake has lost approximately 12% of its initial water to evaporation, while the shallow lake is up to 25% evaporated. The stable isotopic composition of SO4 in the pit lake is similar to that of Horseshoe Bend Spring, but differs markedly from SO4 in the surrounding flooded mine shafts. The latter is heavier in both δ34S and δ18O, which may be due to dissolution of hypogene SO4 minerals (anhydrite, gypsum, barite) in the ore deposit. The isotopic and geochemical evidence suggests that much of the SO4 and dissolved heavy metals in the deep Berkeley pit lake were generated in situ, either by leaching of soluble salts from the weathered pit walls as the lake waters rose, or by subaqueous oxidation of pyrite on the submerged mine walls by dissolved Fe(III). Laboratory experiments were performed to contrast the isotopic composition of SO4 formed by aerobic leaching of weathered wallrock vs. SO4 from anaerobic pyrite oxidation. The results suggest that both processes were likely important in the evolution of the Berkeley pit lake.  相似文献   

3.
4.
Experiments were conducted to investigate (i) the rate of O-isotope exchange between SO4 and water molecules at low pH and surface temperatures typical for conditions of acid mine drainage (AMD) and (ii) the O- and S-isotope composition of sulfates produced by pyrite oxidation under closed and open conditions (limited and free access of atmospheric O2) to identify the O source/s in sulfide oxidation (water or atmospheric molecular O2) and to better understand the pyrite oxidation pathway. An O-isotope exchange between SO4 and water was observed over a pH range of 0–2 only at 50 °C, whereas no exchange occurred at lower temperatures over a period of 8 a. The calculated half-time of the exchange rate for 50 °C (pH = 0 and 1) is in good agreement with former experimental data for higher and lower temperatures and excludes the possibility of isotope exchange for typical AMD conditions (T  25 °C, pH  3) for decades.Pyrite oxidation experiments revealed two dependencies of the O-isotope composition of dissolved sulfates: O-isotope values decreased with longer duration of experiments and increasing grain size of pyrite. Both changes are interpreted as evidence for chemisorption of molecular O2 to pyrite surface sites. The sorption of molecular O2 is important at initial oxidation stages and more abundant in finer grained pyrite fractions and leads to its incorporation in the produced SO4. The calculated bulk contribution of atmospheric O2 in the dissolved SO4 reached up to 50% during initial oxidation stages (first 5 days, pH 2, fine-grained pyrite fraction) and decreased to less than 20% after about 100 days. Based on the direct incorporation of molecular O2 in the early-formed sulfates, chemisorption and electron transfer of molecular O2 on S sites of the pyrite surface are proposed, in addition to chemisorption on Fe sites. After about 10 days, the O of all newly-formed sulfates originates only from water, indicating direct interaction of hydroxyls from water with S at the anodic S pyrite surface site. Then, the role of molecular O2 is as proposed in previous studies: acting as electron acceptor only at the cathodic Fe pyrite surface site for oxidation of Fe(II) to Fe(III).  相似文献   

5.
《Applied Geochemistry》1998,13(2):185-195
The occurrence and significance of aqueous flow through fractures in unsaturated tuff was investigated at the Apache Leap Research Site near Superior, Arizona. Water samples for geochemical and isotopic analysis were collected from water seeping from fractures in a mine haulage tunnel, from the saturated zone in a vertical borehole (USW UZP-4), and from both the unsaturated and saturated zones in an angled borehole (DSB). The geochemistry and14C activity of water samples from the DSB suggest that most of the recharge to the saturated zone has occurred through fractures, especially beneath the ephemeral streams. Evidence of substantial recent recharge through fractures was found in saturated-zone samples from the mine haulage tunnel using 3H, δ34S and SO42−/Cl analyses. Evidence of partial imbibition of fracture flow into the rock matrix was found at multiple depths throughout the 147 m unsaturated zone at the DSB using geophysical measurements from the borehole, water-content analyses from core samples, and 14C and 3H analyses from pore water extracted from preserved core samples. Post-bomb 14C activity was measured in pore water near fractures just above the saturated zone.  相似文献   

6.
Sulfate and water from experiments in which pyrite was oxidized at a pH of 2.0 were analyzed for sulfur and oxygen stable isotopes. Experiments were conducted under both aerobic and anaerobic sterile conditions, as well as under aerobic conditions in the presence of Thiobacillus ferrooxidans, to elucidate the pathways of oxidation. Oxygen isotope fractionation between SO2?4 and H2O varied from +4.0 %. (anaerobic, sterile) to + 18.0 %. (aerobic, with T. ferrooxidans.). The oxygen isotope composition of dissolved oxygen utilized in both chemical and microbially-mediated oxidation was also determined (+11.4 %., by T. ferrooxidans; +18.4 %., chemical). Contributions of water-derived oxygen and dissolved oxygen to the sulfate produced in the oxidation of pyrite could thus be estimated. Water-derived oxygen constituted from 23 to ~ 100 percent of the oxygen in the sulfate produced in the experiments, and this closely approximates the range of contribution in natural acid mine drainage. Oxidation of sulfides in anaerobic, water-saturated environments occurs primarily by chemical oxidation pathways, whereas oxidation of sulfides in well-aerated, unsaturated zone environments occurs dominantly by microbially mediated pathways.  相似文献   

7.
This paper reports detailed O2 measurements of pyrite bearing sediments in a column study and their interpretation based on a hydrogeochemical modelling approach. The research focuses on the quantitative effects of effective diffusion and microbiologic activity on pyrite weathering and acidification. A column experiment was set up and O2 saturation and moisture contents were monitored over 100 days. The anoxic material used for the column experiment was taken from a sediment core of a mining waste dump in the southern periphery of the Lohsa storage system in the Lusatia region of Germany. The measured O2 breakthrough curves were modelled using the simulator SAPY, a one-dimensional reactive transport code which considers the kinetics of chemical reactions and the delivery of O2 into the sediment. The simulation yielded a strong dependence of pyrite oxidation on the moisture content which was quantified by an empirical equation. It was shown that the oxidation rate was catalysed by microbial activity exceeding the rate of diffusive O2 delivery. In order to develop a management tool for predictive issues the results have already been applied to natural environments in another study using the adapted model.  相似文献   

8.
Acid mine drainage predictive testwork associated with the Australian Mineral Industries Research Association (AMIRA) P387A Project: Prediction and Kinetic Control of Acid Mine Drainage (AMD) has critically examined static acid assessment and kinetic information from acid–base accounting techniques, including net acid production potential (NAPP), net acid generation (NAG) and column leach tests. This paper compares results on two waste rock samples that were obtained from the Kaltim Prima Coal mine (KPC) containing significant quantities of fine-grained framboidal pyrite. In agreement with other research, the authors' results indicated that framboidal pyrite is more reactive than euhedral forms due to the greater specific surface area of framboidal pyrite. This is evidenced by optical microscopy of reacted samples. Importantly, the results showed that NAPP testing is biased by the rapid acid generating oxidation of framboidal pyrite prior to, and during the acid neutralisation capacity (ANC) test. This can result in negative ANC values for samples containing significant framboidal pyrite (often “corrected” to zero kg H2SO4/t) when significant ANC is actually present in the sample. NAG testing using H2O2 indicated that samples containing a significant quantity of framboidal pyrite can result in the catalytic decomposition of the H2O2 prior to complete oxidation of the sulfide minerals present, requiring sequential addition of H2O2 for completion. A benefit of the NAG test, however, is that it assesses the net acid generation capacity of the sample without bias towards acid generation as is observed using NAPP methods. The kinetic NAG test also gives information on the reaction sequence of framboidal and euhedral pyrite. Periodic (kinetic) analysis of sub-samples from column leach tests indicated rapid oxidation of the framboidal pyrite compared to the euhedral pyrite, which was correlated with the greater framboidal pyrite surface area.Calculations to determine the sulfide/sulfate acidity derived from the oxidation of framboidal pyrite prior to; and during the ANC test have been developed to provide a better indication of the actual ANC (ANCActual) of the sample. Paste pH values of <pH 4–5 may be one suitable trigger mechanism for the implementation of this new method. This has led to an improved NAPP estimation of total acid production. Together with NAG and column leach testing this improved methodology has resulted in accurate AMD characterisation of samples containing acidic oxidation products and framboidal pyrite.  相似文献   

9.
To better understand reaction pathways of pyrite oxidation and biogeochemical controls on δ18O and δ34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying δ18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ∼2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ∼2.7. The δ34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (∼−0.7‰) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (ε18OSO4-H2O) of ∼3.5‰ was determined for the anaerobic (biological and abiotic) experiments. This measured value was then used to estimate the oxygen isotope fractionation effects between sulfate and dissolved oxygen in the aerobic experiments which were −10.0‰, −10.8‰, and −9.8‰ for the short-term biological, long-term biological and abiotic control experiments, respectively. Based on the similarity between δ18OSO4 values in the biological and abiotic experiments, it is suggested that δ18OSO4 values cannot be used to distinguish biological and abiotic mechanisms of pyrite oxidation. The results presented here suggest that Fe(III)aq is the primary oxidant for pyrite at pH < 3, even in the presence of dissolved oxygen, and that the main oxygen source of sulfate is water-oxygen under both aerobic and anaerobic conditions.  相似文献   

10.
The acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, plays a part in the pyrite oxidation process and has been widely studied in order to determine the kinetics of the reactions and the isotopic composition of dissolved product sulphates, but the details of the oxidation processes at the surface of pyrite are still poorly known. In this study, oxygen and sulphur isotopic compositions (δ18O and δ34S) were analyzed for dissolved sulphates and water from experimental aerobic acidic (pH < 2) pyrite oxidation by A. ferrooxidans. The oxidation products attached to the pyrite surfaces were studied for their morphology (SEM), their chemistry (Raman spectroscopy) and for their δ18O (ion microprobe). They were compared to abiotically (Fe3+, H2O2, O2) oxidized pyrite surface compounds in order to constrain the oxidation pathways and to look for the existence of potential biosignatures for this system.The pyrite dissolution evolved from non-stoichiometric (during the first days) to stoichiometric (with increasing time) resulting in dissolved sulphates having distinct δ18O (e.g. +11.0‰ and −2.0‰, respectively) and δ34S (+4.5‰ and +2.8‰, respectively) values. The “oxidation layer” at the surface of pyrite is complex and made of iron oxides, sulphate, polysulphide, elemental sulphur and polythionates. Bio- and Fe3+-oxidation favour the development of monophased micrometric bumps made of hematite or sulphate while other abiotic oxidation processes result in more variable oxidation products. The δ18O of these oxidation products at the surface of oxidized pyrites are strongly variable (from ≈−40‰ to ≈+30‰) for all experiments.Isotopic fractionation between sulphates and pyrite, Δ34SSO4-pyrite, is equal to −1.3‰ and +0.4‰ for sulphates formed by stoichiometric and non-stoichiometric processes, respectively. These two values likely reflect either a S-S or a Fe-S bond breaking process. The Δ18OSO4-H2O and Δ18OSO4-O2 are estimated to be ≈+16‰ and ≈−25‰, respectively. These values are higher than previously published data and may reflect biological effects. The large δ18O heterogeneity measured at the surfaces of oxidized pyrites, whatever the oxidant, may be related (i) to the existence of local surface environments isolated from the solution in which the oxidation processes are different and (ii) to the stabilization at the pyrite surface of reaction intermediates that are not in isotopic equilibrium with the solution. Though the oxygen isotopic composition of surface oxidation products cannot be taken as a direct biosignature, the combined morphological, chemical and isotopic characterization of the surfaces of oxidized pyrites may furnish clues about a biological activity on a mineral surface.  相似文献   

11.
钝化处理被广泛应用于含重金属尾矿的处理,可以从源头上防止酸矿废水(AMD)的产生,寻找一种价廉易得且对环境危害小的钝化剂十分必要。本文主要研究在骨炭作用下,用pH值为4的双氧水对黄铁矿进行氧化,探讨骨炭对黄铁矿氧化释放重金属的钝化作用。实验结果表明,添加不同含量的骨炭(分别为0.5、2.5和5 g)能将溶液的pH值分别提高到8.93、10.01和10.42,表明骨炭具有较强的中和能力,同时黄铁矿氧化释放的Pb、Zn和Cd等重金属离子浓度明显地降低。但当骨炭含量超过2.5 g时,对As有促进释放的趋势。红外光谱分析显示钝化后黄铁矿样品位于420、563、603、1 044、1 091 cm~(-1)处的特征峰主要来自PO_4~(3-)的振动,XRD进一步揭示了黄铁矿表面主要含磷次生矿物是磷铁矿和羟磷铁铅石,这些次生矿物对重金属钝化起着重要作用。因此,骨炭有望作为钝化含多重金属尾矿的钝化剂。  相似文献   

12.
《Applied Geochemistry》2001,16(9-10):1215-1230
Oxidation rates of low sulphide (<0.5 wt.%) gneissic waste rock from the Cluff lake U mine, northern Saskatchewan, Canada were determined using 3 independent methods: O2 consumption rates in kinetic cells, SO4 measurements of kinetic cell effluent and humidity cell SO4 release rates. The O2 consumption measurements demonstrated that the oxidation of pyrite was strongly dependent on grain size and moderately dependent on water content, temperature and microbiology. Oxygen consumption rates were highest at water contents of 5–10 wt.% (12–25% saturation). Measured SO4 release rates (3.1–91 mg SO4 kg−1 wk−1) for the kinetic cells were comparable to rates calculated from the O2 consumption values (6.9–70 mg SO4 kg−1 wk−1). Sulphate release rates determined from humidity cells were generally higher than those obtained from the kinetic cells, ranging from 6 to 64 mg SO4 kg−1 wk−1 for the coarsest and finest fraction, respectively. These differences were attributed to sample heterogeneity.  相似文献   

13.
为了及时有效地应对各种突发性环境污染事故,有必要开发一种简单实用、适于各类型污染物的场地污染数学模型。通过污染事故发生后污染物在包气带、饱和带迁移转化的概化,建立了污染物运移的自由入渗模型以及降雨入渗模型并给出各自相应的解析解。无降雨时,考虑污染物在重力作用下随包气带向下渗透的作用,建立一维垂直入渗模型。有降雨时,考虑污染场地(包气带)中污染物迁移和转化的对流作用、扩散作用及挥发、生物降解、吸附、根系吸收等作用,建立包气带剖面二维溶质运移模型和饱和带平面二维溶质运移数学模型。建模过程中,假定降雨量的平均分布及土壤质地、水力参数以及有机物成分、种类均相同,同时假定污染物与多孔介质间的作用为线性吸附,植物根系对污染物的吸附遵循一级动力学。基于模型的解析解,实现案例的模拟计算。模拟结果表明:该模型具有适用范围广、模拟高效快捷等优点,能够较准确预测污染发生后污染物在土壤中的动向、到达饱和带的时间以及饱和带中污染物的迁移情况。  相似文献   

14.
《Applied Geochemistry》1998,13(2):257-268
We report the hydrogeochemical modeling of a complicated suite of reactions that take place during the oxidation of pyrite in a marine sediment. The sediment was equilibrated in a column with MgCl2 solution and subsequently oxidized with H2O2. The oxidation of pyrite triggers dissolution of calcite, cation and proton exchange, and CO2 sorption. The composition of the column effluent was modeled with PHREEQC, a hydrogeochemical transport model. The model was extended with a formal ID transport module which includes dispersion and diffusion. The algorithm solves the advection-reaction-dispersion equation with explicit finite differences in a split-operator scheme. Also, kinetic reactions for pyrite oxidation, calcite dissolution and precipitation, and organic C oxidation were included. Kinetic relations for pyrite oxidation and calcite dissolution were taken from the literature, and a coefficient equivalent to the ratio A/V (surface over volume), was adjusted to fit the experimental data. The comparison of model and experiment shows that ion exchange and sorption are dominant chemical processes in regulating and buffering water quality changes upon the oxidation of pyrite. Cation exchange was assigned to the colloidal fraction ( < 2 μm) and deprotonated organic matter, proton buffering to organic matter, and CO2 sorption to amorphous Fe-oxyhydroxide. These processes have been neglected in earlier modeling studies of pyrite oxidation in natural sediments.  相似文献   

15.
《Applied Geochemistry》2000,15(8):1219-1244
Arsenian pyrite, formed during Cretaceous gold mineralization, is the primary source of As along the Melones fault zone in the southern Mother Lode Gold District of California. Mine tailings and associated weathering products from partially submerged inactive gold mines at Don Pedro Reservoir, on the Tuolumne River, contain ∼20–1300 ppm As. The highest concentrations are in weathering crusts from the Clio mine and nearby outcrops which contain goethite or jarosite. As is concentrated up to 2150 ppm in the fine-grained (<63 μm) fraction of these Fe-rich weathering products.Individual pyrite grains in albite-chlorite schists of the Clio mine tailings contain an average of 1.2 wt.% As. Pyrite grains are coarsely zoned, with local As concentrations ranging from ∼0 to 5 wt.%. Electron microprobe, transmission electron microscope, and extended X-ray absorption fine-structure spectroscopy (EXAFS) analyses indicate that As substitutes for S in pyrite and is not present as inclusions of arsenopyrite or other As-bearing phases. Comparison with simulated EXAFS spectra demonstrates that As atoms are locally clustered in the pyrite lattice and that the unit cell of arsenian pyrite is expanded by ∼2.6% relative to pure pyrite. During weathering, clustered substitution of As into pyrite may be responsible for accelerating oxidation, hydrolysis, and dissolution of arsenian pyrite relative to pure pyrite in weathered tailings. Arsenic K-edge EXAFS analysis of the fine-grained Fe-rich weathering products are consistent with corner-sharing between As(V) tetrahedra and Fe(III)-octahedra. Determinations of nearest-neighbor distances and atomic identities, generated from least-squares fitting algorithms to spectral data, indicate that arsenate tetrahedra are sorbed on goethite mineral surfaces but substitute for SO4 in jarosite. Erosional transport of As-bearing goethite and jarosite to Don Pedro Reservoir increases the potential for As mobility and bioavailability by desorption or dissolution. Both the substrate minerals and dissolved As species are expected to respond to seasonal changes in lake chemistry caused by thermal stratification and turnover within the monomictic Don Pedro Reservoir. Arsenic is predicted to be most bioavailable and toxic in the reservoir’s summer hypolimnion.  相似文献   

16.
The sulfate pollution in an agriculturally used watershed has been investigated with respect to the transport in the saturated zone and the development of sulfate in the unsaturated zone. Besides of other sources such as acid wet and dry deposition or sulfate input by agricultural activities, most of the sulfate originates from oxidation of pyrite by either NO3 or O2. High sulfate concentrations coincided with high nitrate leaching caused by plowing of former grassland or by vegetable crop residues and with former wet lands that have become dry. By using soil water concentration data and maps showing the extension of former wetlands and grassland as well as agricultural land use, it was possible to delineate regions of high sulfate input. The transport of sulfate in the aquifer was analyzed with a modified version of the USGS MOC model, which takes into account the nonlinearity of the underlying equation describing unconfined groundwater flow. The calibration of the transport model showed good agreement between the estimated and modeled sulfate input rates. A prediction of future sulfate concentrations in the aquifer was feasible by using worst-case parameters.  相似文献   

17.
Sulfur and O isotope analyses of dissolved SO4 were used to constrain a hydrogeological model for the area overlying the Gorleben–Rambow Salt Structure, Northern Germany. Samples were collected from 80 wells screened at different depth-intervals. The study area consists of a set of two vertically stacked aquifer systems. Generally, the isotope data show a good spatial correlation, outlining well-defined groundwater zones containing SO4 of characteristic isotopic composition. Highly saline waters from deeper parts of the lower aquifer system are characterized by rather constant SO4 isotopic compositions, which are typical of Permian Zechstein evaporites (δ34S=9.6–11.9‰; δ18O=9.5–12.1‰). Above this is a transition zone containing ground waters of intermediate salinity and slightly higher isotopic values (average δ34S=16.6‰; δ18O=15.3‰). The confined groundwater horizon on the top of the lower aquifer system below the low permeable Hamburg Clays is low in total dissolved solids and is characterized by an extreme 34S enrichment (average δ34S=39.1‰; δ18O=18.4‰), suggesting that bacterially mediated SO4 reduction is a dominant geochemical process in this zone. Two areas of distinct isotopic composition can be identified in the shallow ground water horizons of the upper hydrogeological system. Sulfate in groundwaters adjacent to the river Elbe and Löcknitz has a typical meteoric isotopic signature (δ34S=5.2‰; δ18O=8.2‰), whereas the central part of the area is characterized by more elevated isotopic ratios (δ34S=12.7‰; δ18O=15.6‰). The two major SO4 pools in the area are represented by Permian seawater SO4 and a SO4 of meteoric origin that has been mixed with SO4 resulting from the oxidation of pyrite. It is suggested that the S-isotope compositions observed reflect the nature of the SO4 source that have been modified to various extent by bacterial SO4 reduction. Groundwaters with transitional salinity have resulted from mixing between brines and low-mineralized waters affected by bacterial SO4 reduction.  相似文献   

18.
《Applied Geochemistry》2002,17(7):903-921
Farm waste stores such as cattle slurry lagoons are widespread in the UK and many overly important aquifers. Stores can be serious risks to water quality because they are important sources of N species, organic C and pathogenic microbes. At two sites on the Chalk aquifer of southern England, inclined boreholes were drilled and cored to obtain aquifer material from directly beneath unlined slurry stores. Vertical boreholes were also drilled adjacent to the slurry stores to determine any lateral movement of contaminants. Interstitial porewaters were analysed for major and minor ions and S isotopes. At the second site, unsaturated zone gases were sampled from the inclined hole. Infiltration of slurry into the unsaturated zone caused significantly elevated concentrations of metals such as Cu and Ni at both sites. Sulphate reduction was occurring at Site 1, as evidenced by SO4 concentrations decreasing from 150 to 50 mg/l and enhanced ratios of δ34S–SO4 and δ18O–SO4. Ammonium-N also leaches along with dissolved organic C which were found 17 m below ground surface at concentrations up to 400 and 260 mg/l, respectively. Contaminant concentrations were similar in the porewaters from both the inclined and vertical boreholes. At Site 2, higher contaminant concentrations were found in the inclined borehole compared with the vertical borehole. Organic C concentrations were considerably lower than at Site 1, ranging from 10 to 70 mg/l. Ammonium–N concentrations reached a maximum concentration of 25 mg/l, however NO3-N concentrations were up to 500 mg/l and SO4 concentrations were generally higher than Site 1. Data for N2/Ar and δ15N–N2 from the gas samplers show a peak of 102 and 2.2‰, respectively, at 14 m below ground level indicating denitrification was taking place. Evidence from δ34S–SO4 and δ18O–SO4 suggest that some SO4 reduction was taking place simultaneously. From CH4 and NH3 detected at depth it is suggested that slurry contamination, emanating from early use of the store, has passed through the top 18 m of the unsaturated zone at Site 2. The presence of high concentrations of NO3 and lower concentrations of organic C suggests that this lagoon has formed a relatively impermeable seal at its base within the first few years of its lifetime. The anoxic conditions at both sites may have mobilised U from N–P–K fertilisers. Both sites are continuing to impact on the porewater chemistry and pose a risk of groundwater contamination.  相似文献   

19.
The abundant iron sulfide mineral pyrite has been shown to catalytically produce hydrogen peroxide (H2O2) and hydroxyl radical ( . OH) in slurries of oxygenated water. Understanding the formation and fate of these reactive oxygen species is important to biological and ecological systems as exposure can lead to deleterious health effects, but also environmental engineering during the optimization of remediation approaches for possible treatment of contaminated waste streams. This study presents the use of the amino acid phenylalanine (Phe) to monitor the kinetics of pyrite-induced . OH formation through rates of hydroxylation forming three isomers of tyrosine (Tyr) - ortho-, meta-, and para-Tyr. Results indicate that about 50% of the Phe loss results in Tyr formation, and that these products further react with . OH at rates comparable to Phe. The overall loss of Phe appeared to be pseudo first-order in [Phe] as a function of time, but for the first time it is shown that initial rates were much less than first-order as a function of initial substrate concentration, [Phe]o. These results can be rationalized by considering that the effective concentration of . OH in solution is lower at a higher level of reactant and that an increasing fraction of . OH is consumed by Phe-degradation products as a function of time. A simplified first-order model was created to describe Phe loss in pyrite slurries which incorporates the [Phe]o, a first-order dependence on pyrite surface area, the assumption that all Phe degradation products compete equally for the limited supply of highly reactive . OH, and a flux that is related to the release of H2O2 from the pyrite surface (a result of the incomplete reduction of oxygen at the pyrite surface). An empirically derived rate constant, K pyr , was introduced to describe a variable . OH-reactivity for different batches of pyrite. Both the simplified first-order kinetic model, and a more detailed numerical simulation, yielded results that compare well to the observed kinetic data describing the effects of variations in concentrations of both initial Phe and pyrite. This work supports the use of Phe as a useful probe to assess the formation of . OH in the presence of pyrite, and its possible utility for similar applications with other minerals.  相似文献   

20.
猫场式黄铁矿矿床地质特征及成因探讨   总被引:2,自引:0,他引:2  
甘朝勋 《矿床地质》1985,4(2):51-57
在川滇黔交界地区二叠系峨眉山玄武岩被边缘地带,广泛分布着猫场式黄铁矿矿床(图1)。这一类型矿床具有典型特征,其成矿与峨眉山期火山岩密切相关,展布稳定,厚度大,品位较高,为我国西南硫矿带中佼佼者,颇具经济意义和地质找矿意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号