首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
With a thickness of 3900 m, the Tazareh section is one of the thickest developments of the Shemshak Formation in the Alborz range. It overlies with sharp and disconformable contact the limestones and dolomites of the Lower–Middle Triassic Elikah Formation and is topped, again with a disconformable contact, by the marls and limestones of the Middle Jurassic Dalichai Formation. The nearly exclusively siliciclastic succession represents a range of environments, from fluvial channels, flood plains, swamps and lake systems to storm-dominated shelf, and a comparatively deep marine and partly dysoxic basin. The segment of the section between 2300 and 3500 m is exclusively marine and contains a moderately diverse ammonite fauna, ranging from the Middle Toarcian to the Upper Aalenian. The ammonite fauna comprises 21 taxa, among them the new genus Shahrudites with two new species, Shahrudites asseretoi and S. stoecklini from the Middle Aalenian Bradfordensis Zone. The other ammonites from the Shemshak Formation at Tazareh (as elsewhere in North and Central Iran) are exclusively Tethyan in character and closely related to faunas from western and central Europe. An ammonite-based correlation of Toarcian–Aalenian successions of the eastern Alborz with time-equivalent strata of the Lut Block, part of the Central-East Iranian Microcontinent (ca. 500 km to the south), suggests a strong influence of synsedimentary tectonics during the deposition of the upper Shemshak Formation.  相似文献   

2.
3.
Ammonites of the family Lytoceratidae from the Middle Jurassic Inferior Oolite Formation, Aalenian to lowermost Bathonian, of Dorset are rarely described, perhaps because the macroconchs are often very large and difficult to collect intact and the microconchs are very small and easily overlooked. Detailed stratigraphical collecting over several years has shown them to be a minor part of the ammonite fauna but more common at certain horizons. Four genera, Lytoceras, Megalytoceras Nannolytoceras and Pleurolytoceras have been shown to have different stratigraphical ranges and abundances in the Aalenian and Bajocian but they have not been found in the Lower Bathonian of Dorset. The taxonomic basis of several of the well-known species is poorly described in the literature and is remedied here.  相似文献   

4.
A late Albian ammonite assemblage from the Provincial Formation of Villa Clara Province, Cuba is described. The Provincial Formation is a lithostratigraphic unit of Albian-Cenomanian age extensively exposed in central Cuba and formed within a part of the Caribbean Tethys that was volcanic during the Cretaceous. The formation is mainly composed of calcareous, terrigenous marine, and volcano-sedimentary deposits characterized by a series of micritic limestones intercalated with marls, sandstones, calcareous conglomerates, ash, and tuffaceous material. A rich assemblage of ammonites recovered from the calcareous biomicrites and marls is of late Albian (Stoliczkaia dispar Zone, Mortoniceras rostratum Subzone) age. The ammonite fauna shows a strong Tethyan affinity, and only a single hoplitid ammonite species was recorded. Although scarce, the first Cuban report of this and other boreal ammonite species now allows precise correlations to be made between Cuba and Albian sediments elsewhere in the world.  相似文献   

5.
6.
The paleontological investigations of the Jurassic of Western Thailand, districts of Mae Sot (Tak–Mae Sot highway, Padaeng Tak and Ban Mae Kut Luang Zinc mines) and Umphang (Klo Tho), provide age constraints for the Late Indosinian orogeny, the Paleotethys closure and the timing of the marine Jurassic inundation of Sundaland. The basal conglomerate of the Jurassic is derived from the pelagic Triassic Mae Sariang substratum. Stratigraphy, microfacies and paleontology of the Jurassic marine strata focus especially on ammonites, bivalves, large benthic foraminifera and algae. Among ammonites, the Tethyan Catulloceras perisphinctoides Gemmellaro marks the Upper Toarcian (Aalensis Zone) along the Tak–Mae Sot highway and Riccardiceras longalvum (Vacek), Malladaites pertinax (Vacek), Abbasites sp. and Vacekia sp. indicate Middle Aalenian to lowermost Bajocian in the Padaeng Mine (SE of Mae Sot) and Klo–Tho (Umphang). Vacekia sp., Spinammatoceras schindewolfi Linares and Sandoval and Malladaites vaceki Linares and Sandoval indicate Middle Aalenian to lowermost Upper Aalenian at Ban Mae Kut Luang (NE of Mae Sot). Among foraminifers, the large benthic foraminifer Timidonella sarda Bassoullet, Chabrier and Fourcade in the Western Tethys is indicative for Aalenian–Bajocian times, as characterized in the section at the Tak–Padaeng Zinc mine and the Klo–Tho Formation near Umphang. The endemic foraminifer Gutnicella kaempferi characterizes the Pu Khloe Khi Formation near Umphang. Among bivalves, shallow marine, dominantly endemic fauna includes Parvamussium donaiense (Mansuy) and Bositra ornate (Quenstedt), from the Toarcian to the Early Bajocian. A consideration of the faunal affinity shows that the fauna is partly endemic with Northern Tethyan (Eurasian) affinity.  相似文献   

7.
The Dalichai Formation with an age of Late Bajocian-Late Callovian was sampled in Central Alborz Mountains of northern Iran and studied for palynological, palaeobiogeographical and palynocorrelation purposes. Palynological studies revealed diverse and well-preserved dinoflagellate cyst assemblages and lead to identification of three zones i.e., Cribroperidiniumcrispum (Late Bajocian), Dichadogonyaulaxsellwoodii (Bathonian to Early Callovian) and Ctenidodiniumcontinuum (Early to Middle Callovian) Zones. Subzone a of the D. sellwoodii Zone (Early to Middle Bathonian) was also differentiated. This biozonation corresponds to those recognised in Northwest Europe. Furthermore, the ammonoid families recorded including Phylloceratidae, Oppeliidae, Reineckeiidae, Perisphinctidae, Haploceratidae, Parkinsoniidae and Sphaeroceratidae, which confirm the Late Bajocian to Late Callovian age, are quite similar to those of Northwest Europe and the northwestern Tethys. The close similarities of the dinoflagellate cyst assemblages and ammonite fauna of northern Iran with those of Northwest Europe and the northwestern Tethys during the Middle Jurassic indicate direct but episodic marine connection and faunal exchange between the two areas.  相似文献   

8.
H.G. Owen   《Cretaceous Research》2007,28(6):921-938
The ammonite biostratigraphy of the 279.35 m of sediments of mid-Late Albian–Early Albian age traversed by the Kirchrode II (1/94) boring is described. The borehole was drilled in the Hermann-Löns Park, Kirchrode (Hannover), northwest Germany, in the central region of the Lower Saxony sedimentary basin. The core commenced within the Kirchrode Mergel Member of the Gault Formation in sediments of Callihoplites auritus Subzone age and showed a Late Albian ammonite zonal succession similar to that previously described by Wiedmann and Owen from the lower part of the nearby Kirchrode I (1/91) core, with which it is correlated. The thick underlying clay sediments of the Minimus Ton Member (Middle Albian–late Early Albian) provided a relatively sparse ammonite fauna. In the Middle Albian part of the sediment succession, several hiatuses are present and only sediments of the lower Euhoplites loricatus Zone (Anahoplites intermedius Subzone) and the Hoplites dentatus Zone (Hoplites spathi Subzone) have been identified. This is followed downward by a thick sedimentary succession through the upper part of the Early Albian Douvilleiceras mammillatum Superzone (Otohoplites auritiformis Zone). Earlier mammillatum and perhaps latest Leymeriella tardefurcata Zone portions of the core straddling the Minimus Ton/Schwicheldt Ton boundary, did not yield ammonites. The underlying sediments at the top of the Schwicheldt Ton Member, consist of dark clays and mudstones with a good representation of the Leymeriella (Neoleymeriella) regularis Subzone and the uppermost part of the Leymeriella acuticostata Subzone (Leymeriella tardefurcata Zone). Of particular importance is the succession through the sediments of the L. (N.) regularis Subzone, hitherto poorly known in north Germany. A brief comparison and correlation is made with other surface and borehole sections in northern Germany and elsewhere. The Boreal and more cosmopolitan Tethyan elements of the fauna are indicated and discussed. An appendix of ammonites obtained from the Mittellandkanal section at Misburg of latest Albian, Arraphoceras (Praeschloenbachia) briacensis Subzone age, completes the study.  相似文献   

9.
渤海湾盆地北部奥陶纪岩相古地理   总被引:8,自引:0,他引:8  
渤海湾盆地北部主要包括黄骅坳陷、沧县隆起、冀中坳陷和下辽河坳陷,区内奥陶系厚 6 0 0~ 80 0m,主要由石灰岩和白云岩组成。下奥陶统分为冶里组和亮甲山组,中奥陶统分为下马家沟组、上马家沟组和峰峰组,上统缺失。其中下马家沟组、上马家沟组和峰峰组又进一步划分为下段和上段。早奥陶世冶里期和亮甲山期,本区以局限海环境为主,其内散布着一些潮坪和滩。中奥陶世,本区岩相古地理面貌变化旋回极为明显,下马家沟期早期潮坪广布,晚期以局限海为主;上马家沟期早期又是潮坪广布,晚期以开阔海为主;峰峰期早期潮坪广布,晚期又以开阔海为主。在奥陶纪,本区经历了 4个大的海侵-海退旋回,其中上马家沟期晚期是本区乃至整个华北地台的最大海侵期。  相似文献   

10.
This work describes the ammonite and benthic foraminiferal assemblages recorded across the Aalenian–Bajocian boundary of the Serra da Boa Viagem II section, located about 6 km to the east of the Bajocian GSSP (Murtinheira, Portugal), and calibrated to the standard ammonite zonation previously established for the Lusitanian Basin. A total of 220 ammonite specimens referred to 30 fossiliferous levels were collected and identified throughout the section, enabling the recognition of the Concavum Zone (Concavum and Limitatum subzones) of the upper Aalenian, and the Discites Zone of the lower Bajocian. A total of 2356 foraminifers were obtained from the 16 samples collected along the section, corresponding to 4 suborders, 8 families, 16 genera and 44 species. The occurrence of Lenticulina quenstedti (Gümbel) has enabled the recognition of the Lenticulina quenstedti Zone, ranging from the Bradfordensis Zone (middle Aalenian) to the lower Discites Zone (lower Bajocian). The first record of Ramulina spandeli Paalzow, whose occurrence, up to now, was limited in the Lusitanian Basin to the Murtinheira section (the Bajocian GSSP), highlights the usefulness of the Ramulina spandeli Zone, with its lower boundary referred to the lower Discites Zone (lower Bajocian). Other bioevents displaying local, basinal or regional biostratigraphic interest have also been identified. The benthic foraminiferal record here presented, accurately calibrated with the ammonite record, aims at contributing to support the recognition of the Lenticulina quenstedti Zone and the Ramulina spandeli Zone as formal biostratigraphic units integrating the biostratigraphic scale based on benthic foraminifers for the Aalenian–Bajocian boundary in the Lusitanian Basin (Portugal). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
黄陵穹隆东、西两翼上三叠统的精细对比   总被引:3,自引:0,他引:3  
报道了采自于鄂西巴东县上三叠统沙镇溪组新层型剖面3种楔羽叶植物化石,即Sphenozamites marioni Counillon,Sph.fenshuilingensis Meng和Sph.cf.changi Sze。在分析秭归盆地上/中三叠系接触界面特征和化石组合带的基础上,指出盆地西缘上三叠统与下伏中三叠统为连续沉积,而东缘则呈假整合接触。依据黄陵穹隆东、西翼上三叠统的岩性特征、动植物化石和与下伏地层的接触关系,提出荆门—当阳盆地上三叠统王龙滩组和九里岗组可分别与秭归盆地沙镇溪组上部和中下部进行精细对比。  相似文献   

12.
13.
Because oxygen deficient conditions enhance the preservation of depositional organic matter, analysis on paleooxygenation conditions of depositional environments becomes a routine work in evaluations of potential hydrocarbon source rocks. The article focuses on depositional and ecological features relating to oxygen deficient shelfal environments at the Shangsi (上寺) Section, as a part of multidiscipline collaboration to reevaluate the hydrocarbon potential of the Middle and Upper Permian, Guangyuan (广元), Northeast Sichuan (四川) Province. Icbnofabric Zoophycos, sepioilte-bearing limestones (SBL) were interpreted as indicators of dysaerobic environments. Laminated calcareous and/or siliceous mudstones with pelagic ammonites and radiolarians were believed to be the deposits of anaerobic environments. When rhythmic succession was considered, average strategy was adopted for the oxygenation explanation of a given intervaL The anaerobic condition in this Permian section was observed in the upper part of the latest Permian Dalong (大隆) Formation, in which siliceous mudstones with ammonite, radiolarians develop in association with lower U/Mo ratio, lower biomarker ratio of Pr/Ph, and the highest TOC content. The topmost Maokou (茅口) Formation, featured by thin-bedded calcareous and siliceous mudstones with ammonite, thin-shelled bivalves, and laminations would be deposits of the quasianaerobic condition. The middle part of the Members and Ⅲ of the Chihsia Formation is proposed to be dysaerobic condition as indicated by occurrences of SBL and ichnofabric features, with the Member Ⅲ being the severe dysaerobic condition.  相似文献   

14.
This paper reports the occurrence of a Toarcian–Aalenian (Early–Middle Jurassic) radiolarian fauna in the Los Molles Formation, Neuquén Basin, Argentina, as well as comments on its paleobiogeographic affinities. The micropaleontologic analysis was carried out in fine-grained rocks from a turbiditic section of the Los Molles Formation. These samples were first chemically processed using only hydrogen peroxide (H2O2), and afterward treated with acetic (CH3COOH) and hydrofluoric (HF) acids. The first chemical procedure permitted the recovery of only few spongy spumellarians, while the second one enabled to recover more diversified radiolarian assemblages. In general, the studied fauna presents low diversity and abundance, with a strong dominance of spumellarians over nassellarians. The fauna is composed by the genera Paronaella, Homoeoparonaella, Praeconocaryomma, Archaeocenosphaera, Orbiculiformella, Praeparvicingula, and some unidentified spumellarians and nassellarians. According to paleobiogeographic models, the studied Toarcian–Aalenian fauna presents a mid to high latitude affinity. It is possible to infer from those data a bipolar distribution of some taxa, such as Praeparvicingula and probably Praeconocaryomma, between the Northern and Southern hemispheres since the Early Jurassic (Toarcian).  相似文献   

15.
藏北羌塘地区地层新资料   总被引:34,自引:0,他引:34  
新的牙形石化石资料证实在羌塘北部地区有泥盆纪查桑组地层,它是该盆地保存的最古老海相沉积地层,羌塘地区中西部广大地区上侏罗统索瓦组顶部产有丰富的以Virgatosphinctes和Aulacosphinctes两属为主的菊石化石,可初步建立5个菊石组合,其中Berriasella和Blanfordiceras菊石的出现使最高海相层位上延至提塘阶顶部或贝利阿斯阶,而圆笠虫(Orbitolina)、似异卷虫(Heterohelix)出现可能反映有海相白垩纪地层的存在,在晚三叠世肖茶卡组中发现有Epigondolella牙形石动物群,这是我国晚三叠世最高位牙形石带又一产地,首次在双湖比隆组油页岩剖面顶部发现产Harploceras sp.菊石化石的层位,时代属早上托阿尔斯(Toarcian)。解决了这一特殊沉积地层单位长期争论的时代归属问题,并指出它与早侏罗世海侵高峰期全球缺氧事件有关。  相似文献   

16.
An early Berriasian (Berriasella jacobi Zone) ammonite fauna is described for the first time from the Alborz Mountains in northwest Iran. It has been collected from a section located near the village of Shal (Talesh region); in addition to rare phylloceratids, lytoceratids and Neolissoceras, the majority of ammonites belong to the neocomitid subfamily Berriasellinae. With the exception of a new genus and species, Taleshites fuersichi, these taxa are common in European and North African Tethyan successions. Associated calpionellids confirm the early Berriasian age of the ammonite-bearing levels.  相似文献   

17.
Two new Permian‐aged formations ‘Kariz Now Formation’ and ‘Aliyak Formation’ are proposed for a 65–150 m‐thick succession in the Kariz Now area, with the type section for both (79.5 m thick) located 9 km northeast of Aliyak village ca. 100 km southeast of Mashhad city, northeastern Iran. The lower Kariz Now Formation is composed of siliciclastics. The age of this Formation is poorly constrained but its correlation with the Shah Zeid Formation in the Central Alborz suggests a possible Asselian‐Hermagorian age for the Kariz Now Formation, which implies a hiatus of Yakhtashian–mid Midian (Artinskian–mid Capitanian) age between the siliciclastics of the Kariz Now Formation and carbonates of the disconformably overlying Aliyak Formation. There is also the possibility of a potential correlation of this Formation with the Kungurian Faraghan Formation in the Zagros area. The succeeding Aliyak Formation is mostly composed of carbonate rocks capped by a thin basaltic lava flow. The Aliyak Formation is unconformably overlain by dolostones that are correlated with the Middle Triassic Shotori Formation. Samples were collected from the Kariz Now and Aliyak formations, but fossils were only recovered from the Aliyak Formation. These include calcareous algae, small foraminiferans, fusulinids, crinoid stems and brachiopods. The recovered fusulinid assemblage from the Aliyak Formation is consistent with that of the upper Capitanian Monodiexodina kattaensis–Codonofusiella erki and Afghanella schencki–Sumatrina brevis zones of the Zagros Mountains and with the upper part of the Ruteh Fm in the Alborz Mountains. Although not radiometrically dated, the basaltic lava flow most probably corresponds to similar basaltic lava flows occurring in the uppermost part of the Ruteh Formation in Central Alborz. Thus, the Permian in the studied region developed in a basin that extended westward as far as the Central Alborz. A late Capitanian age for the Aliyak Formation implies it correlates with the Capitanian KS5 in Al Jabal Al‐Akhdar in Oman, with Aliyak Unit 5 potentially representing the Permian maximum flooding surface MFS P25. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
古生代末形成的联合古陆于中生代早期在其东部沿印度河—雅鲁藏布江一线再次分裂,形成了古陆东端新的特提斯洋;而在古陆西端的中部,大约是在中侏罗世的阿连期或早巴柔期,介于南美和北美大陆之间的中央大西洋扩张脊变得活动起来,导致联合古陆南、北向的分裂,在其开裂初期的前裂谷阶段,始中央大西洋以陆表海形式出现,构成了连接东太平洋和西特提斯洋生物群相互交流的海路通道。其水体的深度以及生物群的交流明显受全球海平面变化的制约,这在中侏罗世东太平洋安第斯生物区特有的生物群沿这条海路向特提斯扩散的幅度和范围上得到体现。安第斯生物区特有的菊石属——内乌肯菊石(Neuqueniceras)在我国西藏南部的首次发现表明,在中卡洛期海平面上升达到高峰期时,安第斯生物群沿始大西洋走廊向东迁移和扩散远达特提斯东端的藏南聂拉木地区。  相似文献   

19.
Ion-microprobe U–Pb analyses of 589 detrital zircon grains from 14 sandstones of the Alborz mountains, Zagros mountains, and central Iranian plateau provide an initial framework for understanding the Neoproterozoic to Cenozoic provenance history of Iran. The results place improved chronological constraints on the age of earliest sediment accumulation during Neoproterozoic–Cambrian time, the timing of the Mesozoic Iran–Eurasia collision and Cenozoic Arabia–Eurasia collision, and the contribution of various sediment sources of Gondwanan and Eurasian affinity during opening and closure of the Paleotethys and Neotethys oceans. The zircon age populations suggest that deposition of the extensive ~ 1 km-thick clastic sequence at the base of the cover succession commenced in latest Neoproterozoic and terminated by Middle Cambrian time. Comparison of the geochronological data with detrital zircon ages for northern Gondwana reveals that sediment principally derived from the East African orogen covered a vast region encompassing northern Africa and the Middle East. Although most previous studies propose a simple passive-margin setting for Paleozoic Iran, detrital zircon age spectra indicate Late Devonian–Early Permian and Cambrian–Ordovician magmatism. These data suggest that Iran was affiliated with Eurasian magmatic arcs or that rift-related magmatic activity during opening of Paleotethys and Neotethys was more pronounced than thought along the northern Gondwanan passive-margin. For a Triassic–Jurassic clastic overlap assemblage (Shemshak Formation) in the Alborz mountains, U–Pb zircon ages provide chronostratigraphic age control requiring collision of Iran with Eurasia by late Carnian–early Norian time (220–210 Ma). Finally, Cenozoic strata yield abundant zircons of Eocene age, consistent with derivation from arc magmatic rocks related to late-stage subduction and/or breakoff of the Neotethys slab. Together with the timing of foreland basin sedimentation in the Zagros, these detrital zircon ages help bracket the onset of the Arabia–Eurasia collision in Iran between middle Eocene and late Oligocene time.  相似文献   

20.
From the Permian onwards, the Gondwana-derived Iran Plate drifted northward to collide with Eurasia in the Late Triassic, thereby closing the Palaeotethys. This Eo-Cimmerian Orogeny formed the Cimmeride fold-and-thrust belt. The Upper Triassic–Middle Jurassic Shemshak Group of northern Iran is commonly regarded as the Cimmerian foreland molasse. However, our tectono-stratigraphic analysis of the Shemshak Group resulted in a revised and precisely dated model for the Triassic–Jurassic geodynamic evolution of the Iran Plate: initial Cimmerian collision started in the Carnian with subsequent Late Triassic synorogenic peripheral foreland deposition (flysch, lower Shemshak Group). Subduction shifted south in the Norian (onset of Neotethys subduction below Iran) and slab break-off around the Triassic–Jurassic boundary caused rapid uplift of the Cimmerides followed by Liassic post-orogenic molasse (middle Shemshak Group). During the Toarcian–Aalenian (upper Shemshak Group), Neotethys back-arc rifting formed a deep-marine basin, which developed into the oceanic South Caspian Basin during the Late Bajocian–Late Jurassic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号