首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen analysis of 1.5m deep sediment core from Sapna Lake, Betul District (M.P.) has demonstrated that between 3,800 and 2,700 yr BP, open Acacia-dominant scrub forests interspersed with stretches of herbaceous vegetation comprising grasses, sedges, Asteraceae, Cheno/Am, etc., occurred in the region under a regime of dry climate. A few trees of Madhuca indica, Holoptelea, Shorea robusta, Lagerstroemia parviflora, etc. were also sparingly distributed therein. The vicinity of the lake was under cereal-based agricultural practice as portrayed by the presence of Cerealia and other culture pollen taxa viz., Cheno/Am, Caryophyllaceae, Artemisia and Cannabis sativa. Around 2,700 to 1,260 yr BP the Acacia-dominant scrub forests were succeeded by the open mixed deciduous forests as evidenced from the improvement in frequencies of Madhuca indica, Sapotaceae, Holoptelea, Shorea robusta as well as sporadic invasion of Terminalia, Mitragyna, Flacourtia, Grewia, Lannea coromandelica, etc. This enhancement in the forest floristic reflects the initiation of a warm and humid climate possibly in response to increasing monsoon precipitation. Owing to the prevailing favourable climatic condition there was acceleration in the agricultural practice as indicated by the rising trend of Cerealia and other culture pollen taxa. Since 1,260 yr BP onwards the depletion in the prominent forest constituents such as Madhuca indica, Sapotaceae, Shorea robusta, Holoptelea and other associated trees implies that the forests turned more sparse and less diversified due to the inception of a warm and less humid climate, attributable to reduced monsoon precipitation. However, the agricultural practice continued with almost same intensity as before, because the Cerealia and other culture pollen taxa remain unchanged.  相似文献   

2.
One 2.5 m lacustrine sedimentary profile dated back to 6340 years BP from Deosila swamp under Rangjuli Reserve forest of Assam, Northeast India has been pollen analyzed for tracing past vegetation vis à vis climate variability since mid-Holocene. The pollen diagram has deciphered that during 6340 to 2970 years BP, tropical tree savannah type of vegetation grew in the region chiefly constituted of grasses interspersed with scattered trees of Salmalia, Dillenia, Emblica, Meliaceae along with sporadic presence of Artocarpus chaplasha, Symplocos, Ilex, Schima and Shorea robusta under relatively less cool and dry climatic condition with a little ameliorating trend at the upper column. The vegetation scenario implies poor growth of arboreals due to harsh abiotic dynamics causing changes in drainage system. Subsequently during 2970 to 1510 years BP, tropical mixed deciduous forest succeeded tree savannah with invasion of Shorea robusta, Lagerstroemia, Lannea, Semecarpus and Acacia under warm and humid climate. The gradual enrichment of organic soil might have been conducive for better growth of both deciduous and semi evergreen arboreals as found today. However, during 1510 to 540 years BP, the forest groves became more strengthened resulting establishment of tropical deciduous Sal forest. Steady increment of Shorea robusta along with Lannea, Lagerstroemia, Terminalia, Sapotaceae, Albizia and Adina was observed probably due to influence of active SW monsoon under increased warm and humid climatic regime. This is well substantiated by the consistent occurrence of marshy and aquatic taxa along with ferns and fungal remains. Finally during 540 years BP onward the reduced forest floristics have obviously been envisaged the change in climate which turned to warm and relatively dry probably attributable to the weak monsoon rainfall. The acceleration in human settlement during this phase is evidenced by Cerealia and by the increase of Melastoma, Ziziphus and Areca catechu implying forest clearance.  相似文献   

3.
Pollen analysis of 2 m deep sediment core from Kiktiha swamp, Shahdol district has revealed that between 1600 and 700 yr BP, tropical deciduous Sal forests comprising Shorea robusta (Sal), Madhuca indica, Terminalia, Lagerstroemia, Aegle marmelos flourished in the region under a warm and moist climate. Between 700 and 300 yr BP the deciduous Sal forests were succeeded by mixed deciduous forests, which turned sparse and less diversified, reflecting a relatively less moist climate attributed to the weak SW monsoon. The unfavourable climate also adversely affected the agricultural practice as evidenced from the diminution of Cerealia and other culture taxa. Since 300 yr BP onwards the modern deciduous Sal forests were re-established with the timely arrival of active SW monsoon. The increase in Cerealia and culture taxa indicates agricultural prosperity.  相似文献   

4.
Tropical mountain regions are prone to landslide hazards. Given the current land pressure with increasing occupation of steep uplands, landslide hazards are expected to increase in the near future. Understanding the factors that control landslide hazards is therefore essential. Rare event logistic regression allows us to perform a robust detection of landslide controlling factors. This technique is here applied to the tropical Andes to evaluate the impact of dynamic land cover changes on landslide occurrences. Land cover change trajectories (i.e. dynamic evolution of land cover through time) were specifically included in the probabilistic landslide analysis. While natural physical processes such as slope undercutting by rivers and failure of oversteepened slopes are important in this tropical mountainous site, landslides are increasingly associated with human activities. The data show that land cover trajectories are associated with landslide patterns. In this humid mountainous site, forest degradation does not lead to a measurable increase in landslide occurrence. However, few years after forests are converted to pastures, a rapid decline of slope stability is observed. Land cover conversion from forest to pasture permanently reduces slope stability. It is assumed that major changes in soil properties and hydrology induced by the vegetation conversion play a role in accelerating landslide hazards.  相似文献   

5.
Human activities in many parts of the world have greatly changed the natural land cover. This study has been conducted on Pichavaram forest, south east coast of India, famous for its unique mangrove bio-diversity. The main objectives of this study were focused on monitoring land cover changes particularly for the mangrove forest in the Pichavaram area using multi-temporal Landsat images captured in the 1991, 2000, and 2009. The land use/land cover (LULC) estimation was done by a unique hybrid classification approach consisting of unsupervised and support vector machine (SVM)-based supervised classification. Once the vegetation and non-vegetation classes were separated, training site-based classification technology i.e., SVM-based supervised classification technique was used. The agricultural area, forest/plantation, degraded mangrove and mangrove forest layers were separated from the vegetation layer. Mud flat, sand/beach, swamp, sea water/sea, aquaculture pond, and fallow land were separated from non-vegetation layer. Water logged areas were delineated from the area initially considered under swamp and sea water-drowned areas. In this study, the object-based post-classification comparison method was employed for detecting changes. In order to evaluate the performance, an accuracy assessment was carried out using the randomly stratified sampling method, assuring distribution in a rational pattern so that a specific number of observations were assigned to each category on the classified image. The Kappa accuracy of SVM classified image was highest (94.53 %) for the 2000 image and about 94.14 and 89.45 % for the 2009 and 1991 images, respectively. The results indicated that the increased anthropogenic activities in Pichavaram have caused an irreversible loss of forest vegetation. These findings can be used both as a strategic planning tool to address the broad-scale mangrove ecosystem conservation projects and also as a tactical guide to help managers in designing effective restoration measures.  相似文献   

6.
Considerable land cover changes have occurred in the Luvuvhu catchment in northeastern South Africa in the past two decades. These changes are associated with human population growth and may be contributing to observed reductions in winter river baseflows and increased episodes of river drying within Kruger National Park. Six-class land cover maps of the catchment were created from 1978 (MSS) and 2005 (TM) Landsat imagery using an iterative technique. Results indicate a 1,000 km2 (12%) increase in Bare Ground between 1978 and 2005, with a concomitant decrease in shrubland and indigenous forest cover. Overall classification accuracy in the 2005 image was 80%. Classification was most accurate for Water and Pine classes (100 and 92%) and least accurate for Indigenous Forest (46%), primarily due to misclassification as Shrubland. These maps are suitable for land cover change and landscape modeling analyses, and can serve as baseline data for further research.  相似文献   

7.
The prehistoric and preindustrial deforestation of Europe   总被引:1,自引:0,他引:1  
Humans have transformed Europe's landscapes since the establishment of the first agricultural societies in the mid-Holocene. The most important anthropogenic alteration of the natural environment was the clearing of forests to establish cropland and pasture, and the exploitation of forests for fuel wood and construction materials. While the archaeological and paleoecological record documents the time history of anthropogenic deforestation at numerous individual sites, to study the effect that prehistoric and preindustrial deforestation had on continental-scale carbon and water cycles we require spatially explicit maps of changing forest cover through time. Previous attempts to map preindustrial anthropogenic land use and land cover change addressed only the recent past, or relied on simplistic extrapolations of present day land use patterns to past conditions. In this study we created a very high resolution, annually resolved time series of anthropogenic deforestation in Europe over the past three millennia by 1) digitizing and synthesizing a database of population history for Europe and surrounding areas, 2) developing a model to simulate anthropogenic deforestation based on population density that handles technological progress, and 3) applying the database and model to a gridded dataset of land suitability for agriculture and pasture to simulate spatial and temporal trends in anthropogenic deforestation. Our model results provide reasonable estimations of deforestation in Europe when compared to historical accounts. We simulate extensive European deforestation at 1000 BC, implying that past attempts to quantify anthropogenic perturbation of the Holocene carbon cycle may have greatly underestimated early human impact on the climate system.  相似文献   

8.
The Mau Forest Complex is Kenya's largest fragment of Afromontane forest, providing critical ecosystem services, and has been subject to intense land use changes since colonial times. It forms the upper catchment of rivers that drain into major drainage networks, thus supporting the livelihoods of millions of Kenyans and providing important wildlife areas. We present the results of a sedimentological and palynological analysis of a Late Pleistocene–Holocene sediment record of Afromontane forest change from Nyabuiyabui wetland in the Eastern Mau Forest, a highland region that has received limited geological characterization and palaeoecological study. Sedimentology, pollen, charcoal, X-ray fluorescence and radiocarbon data record environmental and ecosystem change over the last ~16 000 cal a bp. The pollen record suggests Afromontane forests characterized the end of the Late Pleistocene to the Holocene with dominant taxa changing from Apodytes, Celtis, Dracaena, Hagenia and Podocarpus to Cordia, Croton, Ficus, Juniperus and Olea. The Late Holocene is characterized by a more open Afromontane forest with increased grass and herbaceous cover. Continuous Poaceae, Cyperaceae and Juncaceae vegetation currently cover the wetland and the water level has been decreasing over the recent past. Intensive agroforestry since the 1920s has reduced Afromontane forest cover as introduced taxa have increased (Pinus, Cupressus and Eucalyptus).  相似文献   

9.
Tropical forests play a crucial role in the function of our planet and in the maintenance of life. Tropical forest vegetation maps are very important for managing tropical forests. Mapping tropical forest vegetation only by spectral-based remote sensing techniques has proven to be problematic. The objective of the study is to develop a rule-based model to identify different forest types using Landsat TM images and GIS. In this paper, we developed the rule-based model to identify different forest types in Xishuangbanna, P.R. of China, using two temporal Landsat TM images and geo-data such as DEM, rainfall and temperature. The results show that the method put forward is useful and effective in tropical forest vegetation mapping, which can effectively integrate multi-knowledge and multi-resource data to identify the tropical forest vegetation types with higher accuracy.  相似文献   

10.
We investigated whether within wetland environmental conditions or surrounding land cover measured at multiple scales were more influential in structuring regional vegetation patterns in estuarine tidal wetlands in the Pacific Northwest, USA. Surrounding land cover was characterized at the 100, 250, and 1,000 m, and watershed buffer scales. Vegetation communities were characterized by high species richness, lack of monotypic zonation, and paucity of invasive species. The number of species per site ranged between 4 and 20 (mean?±?standard deviation?=?10.2?±?3.1). Sites supported a high richness (mean richness of native species 8.7?±?2.8) and abundance of native macrophytes (mean relative abundance 85 %?±?19 %). Vegetation assemblages were dominated by a mix of grasses, sedges, and herbs with Sarcocornia pacifica and Distichlis spicata being common at sites in the oceanic zone of the estuary and Carex lyngbyei and Agrostis stolonifera being common at the fresher sites throughout the study area. The vegetation community was most strongly correlated with salinity and land cover within close proximity to the study site and less so with land cover variables at the watershed scale. Total species richness and richness of native species were negatively correlated with the amount of wetland in the buffer at all scales, while abundance of invasive species was significantly correlated to within wetland factors, including salinity and dissolved phosphorus concentrations. Landscape factors related to anthropogenic disturbances were only important at the 100-m buffer scale, with anthropogenic disturbances further from the wetland not being influential in shaping the vegetation assemblage. Our research suggests that the traditional paradigms of tidal wetland vegetation structure and environmental determinants developed in east coast US tidal wetlands might not hold true for Pacific Northwest wetlands due to their unique chemical and physical factors, necessitating further detailed study of these systems.  相似文献   

11.
A new fossil fruit wing of Shorea Roxb. belonging to the family Dipterocarpaceae is described from the Early Miocene sediments of Kachchh, Gujarat. It resembles best the extant species Shorea macroptera Dyer, which is a prominent member of the tropical evergreen forests of the Malayan Peninsula. The present finding, along with the other megafossil records described from the same area, indicates a typical tropical vegetation with a warm and humid climate at the time of deposition in contrast to the present day xeric vegetation in the area. As the family Dipterocarpaceae no longer exists in western India, it is essential to discuss the time of its extinction and possible causes, which may include drastic changes in the climate of the region. The present finding also supports the theory of a Malaysian origin for the family in contrast to the hypothesis of a Gondwanan origin.  相似文献   

12.
Pollen analysis of a 3.2-m deep sedimentary profile cored from the Dabaka Swamp, Nagaon District, Lower Brahmaputra flood plain, Assam has revealed persistent fluvial activity during 14,120–12,700 cal years BP which may be attributed to the paucity of pollen and spores with encounterance of fluvial marker taxa like Ludwigia octavalvis and Botryococcus. Later, fluvial activity was succeeded by the tropical tree savanna under cool and dry climate between 12,700 and 11,600 cal years BP corresponding to that of global Younger Dryas. Between 11,600 and 8310 cal years BP, relatively less cool and dry climate prevailed with inception of tropical mixed deciduous taxa like Shorea robusta and Lagerstroemia parviflora. This phase is further followed by a fluvial activity between 8310 and 7100 cal years BP as evidenced by trace values of pollen and spores. Fluvial activity was further succeeded by enrichment of tropical mixed deciduous forest under warm and humid climatic regime between 7100 and 1550 cal years BP which is well-matched with the peak period of the Holocene climatic optimum. However, during 1550–768 cal years BP, final settlement of tropical mixed deciduous forest occurred under increased warm and humid climate followed by deterioration in tropical mixed deciduous forest under warm and relatively dry climatic regime since 768 cal years BP onwards due to acceleration in human settlement as evidenced by Cerealia. Increase in Melastoma, Ziziphus and Areca catechu imply forest clearance at this phase. The occurrence of degraded pollen-spore along with adequate fungal elements especially, Xylaria, Nigrospora and Microthyriaceous fruiting body is suggestive of aerobic microbial digenesis of rich organic debris during sedimentation.  相似文献   

13.
Tropical forests act as a major sink of atmospheric carbon dioxide, and store large amounts of carbon in biomass. India is a tropical country with regions of dense vegetation and high biodiversity. However due to the paucity of observations, the carbon sequestration potential of these forests could not be assessed in detail so far. To address this gap, several flux towers were erected over different ecosystems in India by Indian Institute of Tropical Meteorology as part of the MetFlux India project funded by MoES (Ministry of Earth Sciences, Government of India). A 50 m tall tower was set up over a semi-evergreen moist deciduous forest named Kaziranga National Park in north-eastern part of India which houses a significant stretch of local forest cover. Climatically this region is identified to be humid sub-tropical. Here we report first generation of the in situ meteorological observations and leaf area index (LAI) measurements from this site. LAI obtained from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) is compared with the in situ measured LAI. We use these in situ measurements to calculate the total gross photosynthesis (or gross primary productivity, GPP) of the forest using a calibrated model. LAI and GPP show prominent seasonal variation. LAI ranges between 0.75 in winter to 3.25 in summer. Annual GPP is estimated to be \(2.11\,\hbox {kg C m}^{-2} \, \hbox {year}^{-1}\).  相似文献   

14.
The Lesser Antilles have very high chemical weathering rates, with values that can reach 1290 t/km2/a. The tropical environment induces high precipitation rates, high temperature, dense vegetation, with sharp relief and thick soils. Because of volcanic activity, frequent pyroclastic flows produce very erodible and porous materials. In addition, agriculture induces important land use changes which replace existing native forest cover with banana and sugar cane plantations. Their surface can cover as much as 40% of the total area of a river basin. The aim of this study is to identify key parameters, either natural or anthropogenic, that control chemical weathering rates. Among the combined impact of all parameters (climate, runoff, slopes, vegetation etc.), basin age seems to be the control parameter: the younger the basin, the higher the weathering rate. A correlation between the chemical weathering rate and the basin age suggests that young volcanic rocks are more easily weathered than old ones: young fresh material is easily mobilized by erosion, while for older rocks with thick soil covers, chemical rates are much lower. A combined effect between the higher erodibility and a higher climate erosivity of the younger relief could be observed. Moreover, a correlation between banana plantations and the chemical weathering rates that can be explained by an increase of infiltration, due to stem flow processes is shown here. Banana plantations also have a correlation with the basin age, older basins being more favorable terrains for cultivation.  相似文献   

15.
The peteromineralogical characterization of the soil was carried out for the 12 soil profiles exposed in the Shorea robusta dominated forests of the Siwalik forest division, Dehradun. The quartz was observed as the dominating light mineral fraction (64–80%) in all the profiles studied. Biotite, hornblende, zircon, tourmaline, rutile and opaques comprising of iron minerals constituted the heavy mineral fraction (20%). The mineralogy of both the sand and clay fractions revealed a mixed mineralogy. The clay minerals in the order of their dominance were vermiculite, illite, kaolinite and mixed layer minerals. The presence of vermiculite and illite in appreciable quantities indicates that these were synthesized from the K-rich soil solution, as orthoclase and micas were present in significant quantities in the sand minerals. The mineral suites identified in the study shows that the geological, climatological and topographical factors of the region collectively played a dominant role in their formation and transformation. After critical appraisal of the results, it may be deduced that the mineralogical composition, physicochemical properties and total elemental analysis of the soils do not show any deficiency of the bases and other plant nutrients in general. The inherent fertility of the soil is good as indicated by the sand and clay mineralogy of the soil and the biotite and feldspar together with the mica is an important source of nutrients for the vegetation in the soils of the Doon valley.  相似文献   

16.
Palynology, texture, mineralogy, geochemistry, and magnetic susceptibility analysis of a 2 m deep sediment core from Padauna Swamp, southeastern Madhya Pradesh infers that between 8600 and 7500 cal yr BP a warm and relatively less-humid climate prevailed with open tree-savannahs dominated by grasses followed by sedges, Artemisia and members of Chenopodiaceae/Amaranthaceae with scanty trees viz., Schrebera, Aegle marmelos and Sterculia urens. This is well supported by lower organic to carbonate carbon ratio, coarser texture having relatively low CIA and magnetic susceptibility values and presence of some primary minerals. Between 7500 and 6250 cal yr BP the tree-savannahs were succeeded by open mixed deciduous forests with the invasion of a few more trees viz., Madhuca indica, Holoptelea, Emblica officinalis, Mitragyna parvifolia and members of Anacardiaceae in response to onset of a warm and humid climate. A considerable rise in organic carbon generated from the degradation of plentiful biomass along with increase in clay content with signs of kaolinite and increase in immobile over mobile elements with slightly higher CIA and magnetic susceptibility values also suggest climatic amelioration. The presence of ruderal plants such as Artemisia, Cannabis sativa and Cheno/Am further infers initiation of human activities in the region. Between 6250 and 2800 cal yr BP, the mixed deciduous forests became more diverse and dense, subduing grasses and other herbaceous elements. Sporadic incursion of Shorea robusta (Sal) in forest floristic was recorded around 5000 cal yr BP. The overall change in the vegetation mosaic reflects that a warm and more-humid climate prevailed in the region, probably on account of invigoration of southwest monsoon. This observation is further corroborated by other proxy data showing a spurt in organic/inorganic carbon ratio, increase in clay content with matured mineralogy, significantly higher CIA and magnetic susceptibility values. Since 2800 cal yr BP onwards, the modern Sal dominated deciduous forests were established indicating continuation of warm and more-humid climate including timely arrival of SW monsoon coinciding with the shedding of Sal seeds as they are viable for a very short period.  相似文献   

17.
Palynological studies document forest disappearance during the late Holocene in the tropical Maya lowlands of northern Guatemala. The question remains as to whether this vegetation change was driven exclusively by anthropogenic deforestation, as previously suggested, or whether it was partly attributable to climate changes. We report multiple palaeoclimate and palaeoenvironment proxies (pollen, geochemical, sedimentological) from sediment cores collected in Lake Petén Itzá, northern Guatemala. Our data indicate that the earliest phase of late Holocene tropical forest reduction in this area started at ∼ 4500 cal yr BP, simultaneous with the onset of a circum-Caribbean drying trend that lasted for ∼ 1500 yr. This forest decline preceded the appearance of anthropogenically associated Zea mays pollen. We conclude that vegetation changes in Petén during the period from ∼ 4500 to ∼ 3000 cal yr BP were largely a consequence of dry climate conditions. Furthermore, palaeoclimate data from low latitudes in North Africa point to teleconnective linkages of this drying trend on both sides of the Atlantic Ocean.  相似文献   

18.
Under natural growth/development with relatively less inhibiting factors, massive vegetation cover of the humid tropical rain forest could form litter accumulation with situation where the tree cover is subjected to intensive exploitation and other destructive environmental agents, sparse vegetation with insufficient litter becomes the existing state of the forest ecosystem.  相似文献   

19.
Effects of land use changes on soil erosion in a fast developing area   总被引:1,自引:0,他引:1  
Land use changes extensively affect soil erosion, which is a great environmental concern. To evaluate the effect of land use change on soil erosion in fast economic developing areas, we studied land use changes of Guangdong, China, from 2002 to 2009 using remote sensing and estimated soil erosion using the Universal Soil Loss Equation. We calculated the areas and percentage of each land use type under different erosion intensity and analyzed soil erosion changes caused by transitions of land use types. In addition, the impact of land use change on soil erosion in different river catchments was studied. Our results show that forest and wasteland land conversions induce substantial soil erosion, while transition from wasteland to forest retards soil loss. This suggests that vegetation cover changes significantly influence soil erosion. Any conversion to wasteland causes soil erosion, whereas expansion of forests and orchards mitigates it. The most significant increase in soil erosion from 2002 to 2009 was found in the Beijiang catchment corresponding to the transition from forest/orchard to built-up and wasteland. Soil erosion in the Xijiang catchment accelerated in this period due to the enormous reduction in orchard land. In Hanjiang catchment, erosion was alleviated and vegetation coverage greatly expanded owing to considerable transitions from wasteland and cropland to orchards. Field investigations validated our estimations and proved the applicability of this method. Measures including protecting vegetation, strict control of mining as well as reasonable urban planning should be taken to prevent successive soil erosion.  相似文献   

20.
Anthropogenic Pb affects the environment worldwide. To understand its effect on forest ecosystem, Pb isotope ratios were determined in precipitation, various components of vegetation, the forest floor, soil and parent material in a Japanese cedar (Cryptomeria japonica D. Don) forest stand. The average 206Pb/207Pb ratio in bulk precipitation was 1.14 ± 0.01 (mean ± SD), whereas that in the subsoil (20–130 cm) was 1.18 ± 0.01. Intermediate ratios ranging from 1.15 to 1.16 were observed in the vegetation, the forest floor, and the surface soil (0–10 cm). Using the 206Pb/207Pb ratios, the contribution of anthropogenic sources to Pb accumulated in the forest were estimated by the simple binary mixing model. Sixty-two percent of the Pb in the forest floor, 71% in the vegetation, and 55% in the surface soil (0–10 cm) originated from anthropogenic sources, but only 16% in the sub-surface soil (10–20 cm) was anthropogenic. These results suggest that internal Pb cycling occurs mainly between surface soil and vegetation in a Japanese cedar ecosystem, and that anthropogenic Pb strongly influences Pb cycling. Although the Japanese cedar ecosystem has a shallow forest floor, very little atmospherically derived Pb migrated downward over 10 cm in depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号