首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 557 毫秒
1.
Polarised light from astronomical targets can yield a wealth of information about their source radiation mechanisms, and about the geometry of the scattered light regions. Optical observations, of both the linear and circular polarisation components, have been impeded due to non-optimised instrumentation. The need for suitable observing conditions and the availability of luminous targets are also limiting factors. The science motivation of any instrument adds constraints to its operation such as high signal-to-noise (SNR) and detector readout speeds. These factors in particular lead to a wide range of sources that have yet to be observed. The Galway Astronomical Stokes Polarimeter (GASP) has been specifically designed to make observations of these sources. GASP uses division of amplitude polarimeter (DOAP) (Compain and Drevillon Appl. Opt. 37, 5938–5944, 1998) to measure the four components of the Stokes vector (I, Q, U and V) simultaneously, which eliminates the constraints placed upon the need for moving parts during observation, and offers a real-time complete measurement of polarisation. Results from the GASP calibration are presented in this work for both a 1D detector system, and a pixel-by-pixel analysis on a 2D detector system. Following Compain et al. (Appl. Opt. 38, 3490–3502 1999) we use the Eigenvalue Calibration Method (ECM) to measure the polarimetric limitations of the instrument for each of the two systems. Consequently, the ECM is able to compensate for systematic errors introduced by the calibration optics, and it also accounts for all optical elements of the polarimeter in the output. Initial laboratory results of the ECM are presented, using APD detectors, where errors of 0.2 % and 0.1° were measured for the degree of linear polarisation (DOLP) and polarisation angle (PA) respectively. Channel-to-channel image registration is an important aspect of 2-D polarimetry. We present our calibration results of the measured Mueller matrix of each sample, used by the ECM, when 2 Andor iXon Ultra 897 detectors were loaned to the project. A set of Zenith flat-field images were recorded during an observing campaign at the Palomar 200 inch telescope in November 2012. From these we show the polarimetric errors from the spatial polarimetry indicating both the stability and absolute accuracy of GASP.  相似文献   

2.
A linear analysis of the asymmetries in Stokes profiles of magnetic lines is performed. The asymmetries in the linear and circular polarization profiles are characterized by suitable quantities, \(\delta \tilde Q\) and \(\delta \tilde V\) , strictly related to observed profiles. The response functions of \(\delta \tilde Q\) and \(\delta \tilde V\) to velocity fields are introduced and computed for various configurations of the magnetic field vector in a Milne-Eddington atmosphere. Some conclusions are drawn as to the importance of the asymmetries in Stokes profiles for recovering the velocity gradients from observations.  相似文献   

3.
Absorption systems observed along the line of sights to distant quasars are observed at all redshifts and the full range of the electromagnetic spectrum is needed to recover the variety of transitions of different elements. However, some important elements are found within the Lyman forest and their absorption line profiles need to be analyzed against the presence of possible Ly-α contamination. Considering the cosmological evolution of the number density of hydrogen clouds, the probability to detect uncontaminated metal lines is higher in the UV-Optical region exploited by CUBES. The list of these elements includes some important ones such as D, H2, O?i, N?i, O?vi, Ar?i, P?ii, C?ii, S?ii and B?ii. The determination of some of them in the Damped Ly-α galaxies and their astronomical interest are briefly discussed.  相似文献   

4.
Long-slit grating spectrometers in scanning mode and Fabry–Perot interferometers as tunable filters are commonly used to perform integral wide-field spectroscopy on extended astrophysical objects as HII regions and nearby galaxies. The goal of this paper is to demonstrate, by comparison, through a thorough review of the imaging Fourier transform spectrometer (IFTS) properties, that this instrument represents another interesting solution. After a brief recall of the performances, regarding FOV and spectral resolution, of the grating spectrometer, without and with integral field units (IFU), and of the imaging Fabry–Perot, it is demonstrated that for an IFTS the product of the maximum resolution R by the entrance beam étendue U is equal to $2.6\,N\times S_I$ with $N\,\times \,N$ the number of pixels of the detector array and S $_I$ the area of the interferometer beamsplitter. As a consequence, the IFTS offers the most flexible choice of field size and spectral resolution, up to high values for both parameters. It also presents on a wide field an important multichannel advantage in comparison to integral field grating spectrometers, even with multiple IFUs. To complete, the few astronomical IFTSs, built behind ground-based telescopes and in space, for the visible range up to the sub-millimetric domain, are presented. Through two wide-field IFTS projects, one in the visible, the other one in the mid-infrared, the question is addressed of the practical FOV and resolution limits, set by the optical design of the instrument, which can be achieved. Within the 0.3 to $\sim $ 2.5 $\upmu$ m domain, a Michelson interferometer with wide-field diopric collimators provides the easiest solution. This design is illustrated by a $11^{\prime}\times 11^{\prime}$ -field IFTS in the 0.35–0.90 $\upmu$ m range around an off-axis interferometer, called SITELLE, proposed for the 3.6-m CFH Telescope. At longer wavelengths, an all-mirror optics is required, as studied for a spaceborne IFTS, H2EX, for the 8–29 $\upmu$ m range, a $20^{\prime} \times 20^{\prime}$ field, and a high resolution of $\simeq 3\times 10^4$ at 10 $\upmu$ m. To comply with these characteristics, the interferometer is designed with cat’s eye retroreflectors. In the same domain and up to the far infrared, if the instrument aims only at a low spectral resolution (few thousands) and a smaller field (few arcmins $^2$ ), roof-top or corner cube mirrors, as for the IFTS SPIRE on the Herschel space telescope, are usable. At last, perspectives are opened, behind an ELT in the visible and the near infrared with the SITELLE optical combination, in the 2–5 $\upmu$ m on the Antarctic plateau or in space up to longer wavelengths, with the H2EX design, to provide the missing capability of global high spectral resolution studies of extended sources, from comets to distant galaxy clusters.  相似文献   

5.
The size of a radio quiet zone (RQZ) is largely determined by transmission losses of interfering signals, which can be divided into free space loss and diffraction loss. The free space loss is dominant. The diffraction loss presented in this paper is described as unified smooth spherical and knife edge diffractions, which is a function of minimum path clearance. We present a complete method to calculate the minimum path clearance. The cumulative distribution of the lapse rate of refractivity (g n ), between the earth surface and 1 km above, is studied by using Chinese radio climate data. Because the size of an RQZ is proportional to g n , the cumulative distribution of g n can be used as an approximation for the size of the RQZ. When interference originates from mobile communication or television transmissions at a frequency of 408 MHz, and $\overline {g_n } $ is 40 N/km, where the refractivity $N=\left( {n-1} \right) \times 10^6$ , the size of the RQZ would be 180 km for a mobile source or 210 km for a television source, with a probability in the range of 15–100% in different months and for different stations. When speaking of the size of an RQZ, the radius in the case of a circular zone is implied. It results that a size of an RQZ is mainly influenced by transmission loss rather than effective radiated power. In the case where the distance between an interfering source and a radio astronomical observatory is about 100 km, at a frequency of 408 MHz, the allowable effective radiated power of the interfering source should be less than ?30 dBW with a probability of about 85% for $\overline {g_n } $ equals 40 N/km, or ?42 dBW with a probability less than 1 % for $\overline {g_n } $ equals 80 N/km.  相似文献   

6.
We examine the possibility that the observed cosmic-ray protons are of primary extragalactic origin. The present \(\bar p\) data are consistent with a primary extragalactic component having \(\bar p\) /p?3.2±0.7 x 10-4 independent of energy. Following the suggestion that most extragalactic cosmic rays are from active galaxies, we propose that most of the observed \(\bar p\) 's are alos from the same sites. This would imply the possibility of destroying the corresponding \(\bar \alpha \) 'sat the source, thus leading to a flux ratio \(\bar \alpha \) /α< \(\bar p\) /p. We further predict an estimate for \(\bar \alpha \) α~10-5, within the range of future cosmic-ray detectors. the cosmological implications of this proposal are discussed.  相似文献   

7.
We describe the design, optimization, electrical and optical tests of Microwave Kinetic Inductance Detectors (MKIDs) for the mm-wave range. Our detectors are based on a novel resonator design, and are suitable for ground-based astronomical observations in the 143 GHz atmospheric window. The measured optical Noise Equivalent Power (NEP) at 0.3 K is $\sim 10^{-16}~\text{W}/\sqrt{\rm Hz}$ under a 300 K background load. This is equivalent or better than the performance of the best current bolometric detectors for the 140 GHz atmospheric window, limited by atmospheric noise in the best available sites. We also describe which improvements can be introduced to reduce the NEP of our detector, for lower background applications (narrow band or space-based).  相似文献   

8.
We present a novel approach to quality control during the processing of astronomical data. Quality control in the Astro-WISE Information System is integral to all aspects of data handing and provides transparent access to quality estimators for all stages of data reduction from the raw image to the final catalog. The implementation of quality control mechanisms relies on the core features in this Astro-WISE Environment (AWE): an object-oriented framework, full data lineage, and both forward and backward chaining. Quality control information can be accessed via the command-line awe-prompt and the web-based Quality-WISE service. The quality control system is described and qualified using archive data from the 8-CCD Wide Field Imager (WFI) instrument (http://www.eso.org/lasilla/instruments/wfi/) on the 2.2-m MPG/ESO telescope at La Silla and (pre-)survey data from the 32-CCD OmegaCAM instrument (http://www.astro-wise.org/~omegacam/) on the VST telescope at Paranal.  相似文献   

9.
We present estimates of the size of the analytic domain of stability for co-orbital motions obtained by a high order normal form in the framework of the elliptic restricted three body problem. As a demonstration example, we consider the motion of a Trojan body in an extrasolar planetary system with a giant planet of mass parameter $\mu =0.005$ μ = 0.005 and eccentricity $e^{\prime }=0.1$ e ′ = 0.1 . The analysis contains three basic steps: (i) derivation of an accurate expansion of the Hamiltonian, (ii) computation of the normal form up to an optimal order (in the Nekhoroshev sense), and (iii) computation of the optimal size of the remainder at various values of the action integrals (proper elements) of motion. We explain our choice of variables as well as the method used to expand the Hamiltonian so as to ensure a precise model. We then compute the normal form up to the normalisation order $r=50$ r = 50 by use of a computer-algebraic program. We finally estimate the size $||R||$ | | R | | of the remainder as a function of the normalization order, and compute the optimal normalization order at which the remainder becomes minimum. It is found that the optimal value $\log (||R_{opt}||)$ log ( | | R o p t | | ) can serve in order to construct a stability map for the domain of co-orbital motion using only series. This is compared to the stability map found by a purely numerical approach based on chaotic indicators.  相似文献   

10.
We present grids of stellar models and their associated oscillation frequencies that have been used by the CoRoT Seismology Working Group during the scientific preparation of the CoRoT mission. The stellar models have been calculated with the CESAM stellar internal structure and evolution code while the oscillation frequencies have been obtained from the CESAM models by means of the ADIPLS adiabatic oscillation programme. The grids cover a range of masses, chemical compositions and evolutionary stages corresponding to those of the CoRoT primary targets. The stellar models and oscillation frequencies are available on line through the Evolution and Seismic Tools Activity (ESTA) web site.  相似文献   

11.
We investigate the long-time stability in the neighborhood of the Cassini state in the conservative spin-orbit problem. Starting with an expansion of the Hamiltonian in the canonical Andoyer-Delaunay variables, we construct a high-order Birkhoff normal form and give an estimate of the effective stability time in the Nekhoroshev sense. By extensively using algebraic manipulations on a computer, we explicitly apply our method to the rotation of Titan. We obtain physical bounds of Titan’s latitudinal and longitudinal librations, finding a stability time greatly exceeding the estimated age of the Universe. In addition, we study the dependence of the effective stability time on three relevant physical parameters: the orbital inclination, $i$ , the mean precession of the ascending node of Titan orbit, $\dot{\varOmega }$ , and the polar moment of inertia, $C$ .  相似文献   

12.
We present a detailed investigation of the dramatic changes that occur in the \(\mathcal {L}_1\) halo family when radiation pressure is introduced into the Sun–Earth circular restricted three-body problem (CRTBP). This photo-gravitational CRTBP can be used to model the motion of a solar sail orientated perpendicular to the Sun-line. The problem is then parameterized by the sail lightness number, the ratio of solar radiation pressure acceleration to solar gravitational acceleration. Using boundary-value problem numerical continuation methods and the AUTO software package (Doedel et al. in Int J Bifurc Chaos 1:493–520, 1991) the families can be fully mapped out as the parameter \(\beta \) is increased. Interestingly, the emergence of a branch point in the retrograde satellite family around the Earth at \(\beta \approx 0.0387\) acts to split the halo family into two new families. As radiation pressure is further increased one of these new families subsequently merges with another non-planar family at \(\beta \approx 0.289\) , resulting in a third new family. The linear stability of the families changes rapidly at low values of \(\beta \) , with several small regions of neutral stability appearing and disappearing. By using existing methods within AUTO to continue branch points and period-doubling bifurcations, and deriving a new boundary-value problem formulation to continue the folds and Krein collisions, we track bifurcations and changes in the linear stability of the families in the parameter \(\beta \) and provide a comprehensive overview of the halo family in the presence of radiation pressure. The results demonstrate that even at small values of \(\beta \) there is significant difference to the classical CRTBP, providing opportunity for novel solar sail trajectories. Further, we also find that the branch points between families in the solar sail CRTBP provide a simple means of generating certain families in the classical case.  相似文献   

13.
Published photoelectric measurements over a wide wavelength range (0.36–18 µm) are used to study the continuum spectrum of the star Θ1 Ori C. The model that assumes the following three radiation sources is consistent with observations: (1) a zero-age main-sequence O7 star (object 1) of mass M 1=20M , radius R 1=7.4R , effective temperature T 2=37 000 K, and absolute bolometric magnitude $M\mathop {bol}\limits^1 = - 7\mathop .\limits^m 7$ ; (2) object 2 with M 2=15M , R 2=16.2R , T 2=4000 K, and $M\mathop {bol}\limits^2 = - 5\mathop .\limits^m 1$ ; and (3) object 3 with R 310 700 R , T 3=190 K, and $M\mathop {bol}\limits^3 = - 0\mathop .\limits^m 6$ . The visual absorption toward the system is $A_V = 0\mathop .\limits^m 95$ and obeys a normal law. The nature of objects 2 and 3 has not been elucidated. It can only be assumed that object 2 is a companion of the primary star, its spectral type is K7, and it is in the stage of gravitational contraction. Object 3 can be a cocoon star and a member of the system, but can also be a dust envelope surrounding the system as a whole.  相似文献   

14.
The radio tracking apparatus of the New Horizons spacecraft, currently traveling to the Pluto system where its arrival is scheduled for July 2015, should be able to reach an accuracy of 10 m (range) and 0.1  $\text{ mm } \text{ s }^{-1}$ mm s ? 1 (range-rate) over distances up to 50 au. This should allow to effectively constrain the location of a putative trans-Plutonian massive object, dubbed Planet X (PX) hereafter, whose existence has recently been postulated for a variety of reasons connected with, e.g., the architecture of the Kuiper belt and the cometary flux from the Oort cloud. Traditional scenarios involve a rock-ice planetoid with $m_\mathrm{X}\approx 0.7\,m_{\oplus }$ m X ≈ 0.7 m ⊕ at some 100–200 au, or a Jovian body with $m_\mathrm{X}\lesssim 5\,m_\mathrm{J}$ m X ? 5 m J at about 10,000–20,000 au; as a result of our preliminary sensitivity analysis, they should be detectable by New Horizons since they would impact its range at a km level or so over a time span 6 years long. Conversely, range residuals statistically compatible with zero having an amplitude of 10 m would imply that PX, if it exists, could not be located at less than about 4,500 au ( $m_\mathrm{X}=0.7\,m_{\oplus }$ m X = 0.7 m ⊕ ) or 60,000 au ( $m_\mathrm{X}=5\,m_\mathrm{J}$ m X = 5 m J ), thus making a direct detection quite demanding with the present-day technologies. As a consequence, it would be appropriate to rename such a remote body as Thelisto. Also fundamental physics would benefit from this analysis since certain subtle effects predicted by MOND for the deep Newtonian regions of our Solar System are just equivalent to those of a distant pointlike mass.  相似文献   

15.
We explore the long-term stability of Earth Trojans by using a chaos indicator, the Frequency Map Analysis. We find that there is an extended stability region at low eccentricity and for inclinations lower than about $50^{\circ }$ even if the most stable orbits are found at $i \le 40^{\circ }$ . This region is not limited in libration amplitude, contrary to what found for Trojan orbits around outer planets. We also investigate how the stability properties are affected by the tidal force of the Earth–Moon system and by the Yarkovsky force. The tidal field of the Earth–Moon system reduces the stability of the Earth Trojans at high inclinations while the Yarkovsky force, at least for bodies larger than 10 m in diameter, does not seem to strongly influence the long-term stability. Earth Trojan orbits with the lowest diffusion rate survive on timescales of the order of $10^9$  years but their evolution is chaotic. Their behaviour is similar to that of Mars Trojans even if Earth Trojans appear to have shorter lifetimes.  相似文献   

16.
Collisional excitation of neutral hydrogen atoms can significantly increase the intensity of Balmer lines with respect to pure recombination. If this effect is not taken into account, the abundance analysis of these objects returns biased values, and the bias may be significant if accuracies better than a few percent are required. The most affected objects are young, metal-poor Hii regions, due to their comparatively high temperatures. To date, estimates of collisional enhancement have been based on tailored modeling of individual Hii regions. In this contribution, I describe an ongoing effort to develop a general calibration suitable for application to large samples of objects. Emphasis is placed on the uncertainties affecting the resulting predictions.  相似文献   

17.
The direct detection of Kuiper Belt Objects (KBOs) by telescopic imaging is not currently practical for objects much less than 100 km in diameter. However, indirect methods such as serendipitous stellar occultations might still be employed to detect these bodies. The method of serendipitous stellar occultations has been previously used with some success in detecting KBOs—Roques et al. (Astron J 132(2):819–822, 2006) detected three Trans-Neptunian objects; Schlichting et al. (Nature 462(7275):895–897, 2009) and Schlichting et al. (Astrophys J 761:150, 2012) each detected a single object in archival Hubble Space Telescope data. However, previous assessments of KBO occultation detection rates have been calculated only for telescopes—we extend this method to video camera systems, and we apply this derivation to the automated meteor camera systems currently in use at the University of Western Ontario. We find that in a typical scenario we can expect one occultation per month. However recent studies such as those of Shankman et al. (Astrophys. J. Lett. 764. doi:10.1088/2041-8205/764/1/L2, 2013) and Gladman et al. (AAS/Division for Planetary Sciences Meeting Abstracts, 2012) which indicate that the population of small KBOs may be smaller than has been assumed in the past may result in a sharp reduction of these rates. Nonetheless, a survey for KBO occultations using existing meteor camera systems may provide valuable information about the number density of KBOs.  相似文献   

18.
This paper deals with the existence of libration points and their linear stability when the more massive primary is radiating and the smaller is an oblate spheroid. Our study includes the effects of oblateness of $\bar{J}_{2i}$ (i=1,2) with respect to the smaller primary in the restricted three-body problem. Under combining the perturbed forces that were mentioned before, the collinear points remain unstable and the triangular points are stable for 0<μ<μ c , and unstable in the range $\mu_{c} \le\mu\le\frac{1}{2}$ , where $\mu_{c} \in(0,\frac{1}{2})$ , it is also observed that for these points the range of stability will decrease. The relations for periodic orbits around five libration points with their semimajor, semiminor axes, eccentricities, the frequencies of orbits and periods are found, furthermore for the orbits around the triangular points the orientation and the coefficients of long and short periodic terms also are found in the range 0<μ<μ c .  相似文献   

19.
The equation of motion of long periodic libration around the Lagrangian point $L_4$ L 4 in the restricted three-body problem is investigated. The range of validity of an approximate analytical solution in the tadpole region is determined by numerical integration. The predictions of the model of libration are tested on the Trojan asteroids of Jupiter. The long time evolution of the orbital eccentricity and the longitude of the perihelion of the Trojan asteroids, under the effect of the four giant planets, is also investigated and a slight dynamical asymmetry is shown between the two groups of Trojans at $L_4$ L 4 and $L_5$ L 5 .  相似文献   

20.
X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号