首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
龚婷婷  高冰  吉子晨  曹慧宇  张蕴灵 《地理科学》2022,42(10):1848-1856
基于MODIS温度数据,采用TTOP模型和Stefan公式模拟了青藏高原地区的冻土分布并计算了活动层厚度,并与地面观测结果进行了对比。结果表明:2003—2019年青藏高原多年冻土面积为1.01×106 km2;多年冻土活动层厚度区域平均值为1.79 m, 活动层厚度区域平均的变化率为3.67 cm/10a,且草甸地区的变化率明显大于草原地区,5100~5300 m高程带的活动层厚度变化速率最大。  相似文献   

2.
中亚土地资源开发与利用分析   总被引:3,自引:1,他引:2  
中亚地区土地资源开发与利用研究信息资料有限,研究深度无法满足亚欧内陆干旱区社会经济可持续发展的科学要求。采用欧空局(ESA)GlobCover 2 2005年的全球陆地覆盖数据集资料和世界粮农组织(FAO)统计资料,较为系统分析了1992-2009年中亚土地资源开发与利用及其变化趋势。研究表明:(1)中亚耕地面积及作物产量呈先迅速下降后缓慢上升的趋势,耕地面积由1992年的43.1×104 km2(比例10.9%)下降到2000年的29.8×104 km2(比例7.58%),然后上升至2009年的31.6×104 km2(比例8.04%),但仍未恢复到1990年代初的水平;(2)林地与草地面积变化不明显,但草地载畜量变化显著。其中哈萨克斯坦2009年草地载畜量(6.25×107标准羊单位)仅为1992年草地载畜量(9.91×107标准羊单位)的63.1%;土库曼斯坦2009年草地载畜量为2.96×107标准羊单位,是1992年草地载畜量(1.04×107标准羊单位)的3倍左右;乌兹别克斯坦、塔吉克斯坦和吉尔吉斯斯坦草地载畜量均有不同程度的增加;(3)中亚地区土地资源生产潜力巨大,但在土地利用过程中出现了农田土壤侵蚀、土壤盐渍化和过渡放牧等生态问题,如何有效治理与防治上述问题,对中亚地区土地资源可持续利用和生态保护具有重要意义。  相似文献   

3.
闫虎  王玉杰  张会兰 《干旱区地理》2015,38(6):1226-1233
生态环境敏感性分析对于生态环境功能得到保护和恢复,资源得到高效利用,生态安全得到保障,区域可持续发展能力得到增强具有重要作用。本文根据巴音郭楞蒙古自治州自然地理特征,采用GIS分析和专家集成方法,分别进行了巴州土壤侵蚀敏感性、土地沙漠化敏感性、土壤盐渍化敏感性和生物多样性及生境敏感性评价,最后展开生态环境敏感性综合研究。结果表明:巴州生态环境敏感性共分为极敏感、高度敏感、敏感、轻度敏感以及不敏感5个等级。生态环境极敏感区面积为2.7×104 km2,占全州面积5.7%;高度敏感区为12.7×104 km2,占26.4%;敏感区面积为14.8×104 km2,占30.8%;轻度敏感地区为7.9×104 km2,占16.4%;不敏感区面积为10.0×104 km2,占20.7%。  相似文献   

4.
黄河源区多年冻土空间分布变化特征数值模拟   总被引:3,自引:1,他引:2  
马帅  盛煜  曹伟  吴吉春  胡晓莹  王生廷 《地理学报》2017,72(9):1621-1633
基于IPCC第五次评估报告预估的气温变化情景,采用数值模拟的方法对黄河源区典型冻土类型开展模拟,推算过去及预测未来黄河源区冻土分布空间变化过程和发展趋势。结果表明:1972-2012年源区多年冻土只有少部分发生退化,退化的冻土面积为833 km2,季节冻土主要集中在源区东南部的热曲谷地、小野马岭以及两湖流域南部的汤岔玛地带;RCP 2.6、RCP 6.0、RCP 8.5情景下,2050年多年冻土退化为季节冻土的面积差别不大,分别为2224 km2、2347 km2、2559 km2,占源区面积的7.5%、7.9%、8.6%;勒那曲、多曲、白马曲零星出现季节冻土,野牛沟、野马滩以及鄂陵湖东部的玛多四湖所在黄河低谷大片为季节冻土;2100年多年冻土退化为季节冻土的面积分别为5636 km2、9769 km2、15548 km2,占源区面积的19%、32.9%、52.3%;星宿海、尕玛勒滩、多格茸的多年冻土发生退化,低温冻土变为高温冻土,各类年平均地温出现了不同程度的升高。到2100年,RCP 2.6情景下源区多年冻土全部退化为季节冻土主要发生在目前年平均地温高于-0.15 oC的区域,而-0.15~-0.44 oC的区域部分发生退化;RCP 6.0、RCP 8.5情景下目前年平均地温分别为高于-0.21 oC以及-0.38o C的区域多年冻土全部发生退化,而-0.21~-0.69 oC以及-0.38~-0.88 oC的区域部分发生退化。  相似文献   

5.
近30年来青藏高原西大滩多年冻土变化   总被引:32,自引:1,他引:31  
结合1975年已有勘探资料,对青藏高原多年冻土北界西大滩进行了雷达勘探。勘探发现,近30年来青藏高原多年冻土北界发生较大规模的多年冻土退化,多年冻土面积从1975年的160.5 km2退化成现在的141.0 km2,缩小约12%;开始出现多年冻土的最低高程为4 385 m,比1975年升高了25 m。近30年来研究区的气候变化是造成北界多年冻土退化的主要原因。相同气候背景下,多年冻土腹部地温有升高,但在30年尺度上不会发生明显的退化。本次冻土区域调查的结果可为检验冻土-气候关系模型的可靠与否提供依据。  相似文献   

6.
青藏高原生态系统固碳释氧价值动态测评   总被引:6,自引:1,他引:5  
本文旨在定量评价青藏高原生态系统的固碳释氧价值及其动态变化,为改善区域生态环境提供参考。基于MODIS/NDVI数据,利用光能利用率模型测算净第一性生产(NPP)物质量,并通过光合作用方程式换算成固定CO2和释放O2的物质量,以此为基础,采用造林成本法和工业制氧法对青藏高原固碳释氧价值量进行估算。结果表明:2000年、2005年和2010年固定CO2的价值分别为384.36×109元、393.23×109元和356.41×109元,释放O2的价值分别为408.31×109元、415.02×109元和378.61×109元。2000-2005年固碳释氧价值增加了15.58×109元,2005-2010年下降了73.23×109元,而2000-2010年下降了57.65×109元。固碳释氧价值在空间上呈现出从东南向西北递减的趋势,这与青藏高原的水热条件分布基本一致。在价值构成中,草原>森林>草甸>其它类型>灌丛>农田。2000-2010年青藏高原生态系统固碳释氧价值呈现减小趋势,表明近年来气候变化和人类活动导致青藏高原的生态环境出现了退化趋势。  相似文献   

7.
1930s-2000年广西地区石漠化分布的变迁   总被引:4,自引:1,他引:3  
根据民国时期《广西省各县石山林木保护办法》中对石山的定义,对应目前石漠化等级划分方法,把该时期的石山区解读为轻度及以上石漠化分布地区.通过对1930s国民政府参谋本部陆地测量总局编绘的1:10万广西省地形图上所绘石山范围进行数字化,并与2000年广西壮族自治区石漠化分布现状图进行比较,揭示了近70年来广西地区石漠化分布在空间上的变化.研究表明:① 1930s广西地区轻度及以上石漠化面积为31922.25 km2,比2000年的27123.21 km2多出4799 km2,说明民国时期广西地区轻度及以上石漠化土地分布范围比当代的大,但在空间变迁上表现出此增彼减的变化特点;② 2000年的数据中有47个县石漠化面积比1930s的少,减少的总面积为9045.5 km2,集中分布在广西西部和中部,都安瑶族自治县的变化最明显,近70年内减少了894.8 km2;③ 2000年有30个县的石漠化面积比1930s的多,共增加了4246 km2,集中分布在广西东北部,其中全州县增加了556.55 km2.  相似文献   

8.
黄河源区冻土分布制图及其热稳定性特征模拟   总被引:5,自引:0,他引:5  
以黄河源区多年冻土分布现状和热力特征为研究目标,通过野外调查及实测数据,分析了黄河源区不同地形地貌、不同地表覆盖条件下的冻土形成、分布特征和以地温为基础的热学特征,探讨了不同尺度因素对多年冻土分布的影响。结果表明,在高程低于4 300 m的平原区,多年冻土多不发育;在高于4 350 m的山区,局地地形对多年冻土的形成与分布作用显著。除阳坡地形外,多年冻土均比较发育;介于4 300~4 350 m的低山丘陵和平原区,局地地形、地表植被、土壤湿度等因素共同决定着多年冻土的形成和分布格局。以年均地温指标为基础,构建了以纬度、经度和高程为自变量的回归模型,并对阳坡地形进行微调和校正。结果表明,以0oC作为划分季节冻土和多年冻土的标准和界限,多年冻土面积2.5×104km2,约占整个源区面积的85.1%;季节冻土面积0.3×104km2,约占整个源区面积的9.7%。进一步以0.5oC或1.0oC为分类间隔绘制了黄河源区多年冻土热稳定性空间分布图。  相似文献   

9.
中国北方沙漠化土地时空演变分析   总被引:117,自引:57,他引:60  
对2000年中国北方256×104 km2区域内沙漠化土地的遥感监测结果表明:沙漠化土地总面积现已达到38.57×104 km2,其中轻度和潜在沙漠化土地13.93×104 km2,占沙漠化土地面积的36.1%;中度沙漠化土地9.977×104 km2,占25.9%;重度沙漠化土地7.909×104 km2,占20.5%;严重沙漠化土地面积6.756×104 km2,占17.5%。与20世纪50年代后期到70年代中期和80年代后期的沙漠化土地发展状况相比,目前我国沙漠化土地演变趋势具以下特征:(1)沙漠化土地仍在蔓延,面积已由1987年的33.895×104 km2增加到了2000年的38.569×104 km2,13a中净增4.674×104 km2;(2)沙漠化土地继续呈加速发展的趋势,年平均发展速率从20世纪50年代后期到70年代中期的1560 km2、70年代中期到80年代后期的2100 km2发展到90年代的3600 km2;(3)部分旱农区以及农牧交错地区沙漠化土地出现明显逆转,但荒漠草原地区沙漠化土地面积继续扩大,并且程度有所加剧。  相似文献   

10.
纳木错流域近30 年来湖泊 - 冰川变化对气候的响应   总被引:13,自引:0,他引:13  
利用1970 航测地形图和1991、2000 年两期卫星影像数据, 人工建立数字高程模型 (DEM), 解译不同时期的湖泊、冰川边界, 在GIS 技术支持下采用图谱的方法, 定量分析了 湖泊、冰川的面积变化情况。结果表明, 自1970~2000 年期间, 纳木错湖面面积从1941.64 km2 增加到1979.79 km2, 增加的速率为1.27 km2/a; 流域内冰川的面积从167.62 km2 减少到141.88 km2, 退缩速率为0.86 km2/a。其中, 湖面面积在1991~2000 年的增加速率为1.76 km2/a, 明显大于其在1970~1991 年的1.03 km2/a; 而冰川面积在1991~2000 年的退缩速率为 0.97 km2/a, 明显大于其在1970~1991 年的0.80 km2/a。对比该流域前后两个时期的气温、降水和蒸发变化, 发现升温幅度的增加是冰川加速退缩的根本原因, 而湖面的加速扩张主要受冰川的加剧退缩及其引起的融水增加影响, 但与区域降水量略微增加和蒸发量显著减少也具有密切联系。区域降水增加和蒸发减少及其与湖面扩张之间的内在联系仍是一个需要深入探讨的问题。  相似文献   

11.
The degradation of permafrost stability in China over the past 30 years is evaluated using a new, high-resolution near-surface air temperature reanalysis dataset. Results show that the permafrost extent clearly decreased by 22% from 1980 to 2010, that is, a loss of 12.684;104 km2. The degradation occurred not only in the transition regions between permafrost and seasonally frozen ground, but also and more importantly, in the interior of the permafrost regions. The degradation in the interior of permafrost regions accounted for 87% of the total degraded areas. The degradation occurred mainly during the 1980s to 1990s in the northeast permafrost area and the Qilian Mountains, and during the 1990s to 2000s in most areas of the Qinghai-Tibet Plateau (QTP). This degradation will have systemic impacts on engineered infrastructures in permafrost regions, the water balance, and the global carbon budget. A more robust physical model should be used to evaluate the permafrost thermal stability at finer resolution in the future.  相似文献   

12.
Jason R. Janke   《Geomorphology》2005,67(3-4):375-389
Permafrost distribution, or ground that remains frozen for at least 2 years, has been modeled using a combination of Geographic Information System (GIS) techniques, Digital Elevation Model (DEM) variables, and land cover in alpine regions of the world. In the Front Range, however, no such empirical models have been developed, and field data are restricted in spatial extent, but rock glaciers are in abundance. Here, I present a probabilistic logistic regression model that is based on topoclimatic information (elevation and aspect) for rock glaciers derived from U.S. Geological Survey (USGS) 10-m DEMs. Classes of land cover, obtained from an Enhanced Thematic Mapper Plus (ETM+) image classification, were assigned weights and were then multiplied by the regression results to refine estimates. The effectiveness of the model was evaluated by comparing mean probability scores with rock glacier activity categories, Mean Annual Air Temperature (MAAT) from climatic stations on Niwot Ridge, and Bottom Temperature of winter Snow (BTS) measurements, while a Monte Carlo simulation was used to detect uncertainty associated with the original DEM. Permafrost scores >50% covered about 8.9% (242 km2) of the study area (2722 km2) with the highest scores clustered around Longs and Rowe Peaks. Permafrost locations showed a strong correlation with rock glacier activity classes, the −1.0 °C MAAT isotherm, and BTS measurements less than −3.0 °C. The uncertainty analysis revealed that slight global differences exist between the original and error prone DEM; however, local variations in aspect caused the most uncertainty. These results indicate that the model accurately represents regional distribution of permafrost. Therefore, topoclimatic information from rock glaciers and land cover, when combined with an uncertainty analysis, can effectively be used to map the occurrence of Front Range permafrost, providing an imperative tool for cartographers, planners, and geocryologists.  相似文献   

13.
Glaciers are the most important fresh-water resources in arid and semi-arid regions of western China. According to the Second Chinese Glacier Inventory (SCGI), primarily compiled from Landsat TM/ETM+ images, the Qilian Mountains had 2684 glaciers covering an area of 1597.81±70.30 km2 and an ice volume of ~84.48 km3 from 2005 to 2010. While most glaciers are small (85.66% are <1.0 km2), some larger ones (12.74% in the range 1.0–5.0 km2) cover 42.44% of the total glacier area. The Laohugou Glacier No.12 (20.42 km2) located on the north slope of the Daxue Range is the only glacier >20 km2 in the Qilian Mountains. Median glacier elevation was 4972.7 m and gradually increased from east to west. Glaciers in the Qilian Mountains are distributed in Gansu and Qinghai provinces, which have 1492 glaciers (760.96 km2) and 1192 glaciers (836.85 km2), respectively. The Shule River basin contains the most glaciers in both area and volume. However, the Heihe River, the second largest inland river in China, has the minimum average glacier area. A comparison of glaciers from the SCGI and revised glacier inventory based on topographic maps and aerial photos taken from 1956 to 1983 indicate that all glaciers have receded, which is consistent with other mountain and plateau areas in western China. In the past half-century, the area and volume of glaciers decreased by 420.81 km2 (–20.88%) and 21.63 km3 (–20.26%), respectively. Glaciers with areas <1.0 km2 decreased the most in number and area recession. Due to glacier shrinkage, glaciers below 4000 m completely disappeared. Glacier changes in the Qilian Mountains presented a clear longitudinal zonality, i.e., the glaciers rapidly shrank in the east but slowly in the central-west. The primary cause of glacier recession was warming temperatures, which was slightly mitigated with increased precipitation.  相似文献   

14.
天山北麓经济发展与绿洲扩张   总被引:27,自引:0,他引:27  
借助地学信息图谱技术,以不同时相、不同尺度的图像数据源为基础,编制出1949年以来天山北麓绿洲分布图4幅,绿洲演化规律为:1949-1967年为绿洲迅速扩张阶段,耕地面积急剧增加,1967-2000年绿洲扩张速度减缓,耕地面积总量基本保持平衡,城市化进程加快,分析了天山北绿洲经济带发展现状,论述了北麓经济带,城市群和主导产业分布格局,讨论了绿洲扩张过程中水资源利用变化以及生态环境问题,这些对研究50年来北麓绿洲经济带的变化具有重要意义,也对未来北麓绿洲经济带的发展具有指导作用。  相似文献   

15.
近50年气候变化背景下中国西部冰川面积状况分析(英文)   总被引:3,自引:1,他引:2  
Based on the glacier area variation records in the typical regions of China moni-tored by remote sensing, as well as the meteorological data of air temperature and precipitation from 139 stations and the 0℃ isotherm height from 28 stations, the glacier area shrinkage in China and its climatic background in the past half century was discussed. The initial glacier area calculated in this study was 23,982 km2 in the 1960s/1970s, but the present area was only 21,893 km2 in the 2000s. The area-weighted shrinking rate of glacier was 10.1%, and the interpolated annual percentage of area changes (APAC) of glacier was 0.3% a-1 since 1960. The high APAC was found at the Ili River Basin and the Junggar Interior Basin around the Tianshan Mountains, the Ob River Basin around the Altay Mountains, the Hexi Interior Basin around the Qilian Mountains, etc. The retreat of glacier was affected by the climatic background, and the influence on glacier of the slight-increased precipitation was counteracted by the significant warming in summer.  相似文献   

16.
The main objective of our study was to provide consistent information on land cover changes between the years 1990 and 2010 for the Cerrado and Caatinga Brazilian seasonal biomes. These areas have been overlooked in terms of land cover change assessment if compared with efforts in monitoring the Amazon rain forest. For each of the target years (1990, 2000 and 2010) land cover information was obtained through an object-based classification approach for 243 sample units (10  km × 10  km size), using (E)TM Landsat images systematically located at each full degree confluence of latitude and longitude. The images were automatically pre-processed, segmented and labelled according to the following legend: Tree Cover (TC), Tree Cover Mosaic (TCM), Other Wooded Land (OWL), Other Land Cover (OLC) and Water (W). Our results indicate the Cerrado and Caatinga biomes lost (gross loss) respectively 265,595 km2 and 89,656 km2 of natural vegetation (TC + OWL) between 1990 and 2010. In the same period, these areas also experienced gain of TC and OWL. By 2010, the percentage of natural vegetation cover remaining in the Cerrado was 47% and in the Caatinga 63%. The annual (net) rate of natural vegetation cover loss in the Cerrado slowed down from −0.79% yr−1 to −0.44% yr−1 from the 1990s to the 2000s, while in the Caatinga for the same periods the rate increased from −0.19% yr−1 to −0.44% yr−1. In summary, these Brazilian biomes experienced both loss and gains of Tree Cover and Other Wooded Land; however a continued net loss of natural vegetation was observed for both biomes between 1990 and 2010. The average annual rate of change in this period was higher in the Cerrado (−0.6% yr−1) than in the Caatinga (−0.3% yr−1).  相似文献   

17.
Solifluction movement rates from 1952 to 2008 for the Abisko region, northern Sweden, have been compiled and analysed through correlation tests and multiple regression. The temporal analysis is based on two datasets ( Lobe11 & gridAB and Line B ) from Kärkevagge. The dataset Lobe11 & gridAB show a strong correlation between movement rates and mean annual air temperature (MAAT) and MAAT is also identified as one of the significant contributing parameters in the multiple regression model. No significant correlations were found for the Line B dataset. The spatial analysis indicates generally higher movement rates in the western part of the region and at lower altitudes mainly between 700 and 900 m a.s.l., but the spatial variability is high. To reduce the influence of the temporal variation the data for the correlation tests of the spatial variations were divided into two parts: 1957 to 1980 and 1981 to 2008. The correlation analysis of the dataset 1957 to 1980 shows a significant negative correlation between annual average movement rates and permafrost probability and altitude. The dataset 1981 to 2008 shows a positive correlation between movement rates and wetness index. It is concluded that movement rates may increase with higher MAAT in the western part of the region (Kärkevagge), the spatial variability of movement rates within the region is very high and that altitude (and/or permafrost) together with wetness index are the main controls on the regional spatial variation. The study highlights the limitations in establishing statistical relationships between movement rates and climate using data from different field empirical studies.  相似文献   

18.
We initially estimated the cropland area at county level using local historical documents for the Songnen Plain (SNP) in the 1910s and 1930s. We then allocated this cropland area to grid cells with a size of 1 km × 1 km, using a range of cultivation possibilities from high to low; this was based on topography and minimum distances to rivers, settlements, and traffic lines. Cropland areas for the 1950s were obtained from the Land Use Map of Northeast China, and map vectorization was performed with ArcGIS technology. Cropland areas for the 1970s, 1980s, 1990s, 2000s, and 2010s were retrieved from Landsat images. We found that the cropland areas were 4.92 × 104 km2 and 7.60 × 104 km2, accounting for 22.8% and 35.2% of the total area of the SNP in the 1910s and 1930s, respectively, which increased to 13.14 × 104 km2, accounting for 60.9% in the 2010s. The cropland increased at a rate of 1.18 × 104 km2 per decade from the 1910s to 1970s while it was merely 0.285 × 104 km2 per decade from the 1970s to 2010s. From the 1910s to 1930s, new cultivation mainly occurred in the central SNP while, from the 1930s to 1970s, it was mainly over the western and northern parts. This spatially explicit reconstruction could be offered as primary data for studying the effects of changes in human-induced land cover based on climate change over the last century.  相似文献   

19.
贾文雄  张禹舜  李宗省 《地理科学》2014,34(8):1002-1009
利用1960~2009年的日降水量资料,选用13项极端降水指数,采用线性趋势、10年趋势滑动、Mann-kendall等方法,对祁连山及河西走廊地区极端降水的时空变化特征进行了研究。结果表明:极端降水日数呈增多趋势,极端降水强度呈减小趋势,极端降水总量呈增加趋势,连续干旱日数、连续湿润日数呈减少趋势,一日最大降水量、五日最大降水量呈增大趋势;极端降水变化存在一定区域差异,走廊平原中西部的降水明显增加,降水变率在减小,走廊平原中部极端降水的日数在增多,降水极值在增大,走廊平原祁连山东部的降水在增加,降水极值在增大,但连续极端降水的总量在减少,祁连山中部的降水在明显增加,降水的极端性在明显增大,对气候变暖的响应最敏感;不同极端降水指数分别在20世纪60年代中期、70年代中期、80年代初期、80年代中后期、90年代中期发生了突变,这些突变点与东亚季风、南亚季风、西风环流等大尺度环流系统强弱变化的时间点是一致的。  相似文献   

20.
The distribution of mountain permafrost along Trail Ridge Road (TRR) in Rocky Mountain National Park, Colorado, was modeled using ‘frost numbers’ and a ‘temperature of permafrost model’ (TTOP) in order to assess the accuracy of prediction models. The TTOP model is based on regional observations of air temperature and heat transfer functions involving vegetation, soil, and snow; whereas the frost number model is based on site-specific ratios of ground temperature measurements of frozen and thawed degree-days. Thirty HOBO© temperature data loggers were installed near the surface as well as at depth (30 to 85 cm). From mid-July 2008 to 2010, the mean annual soil temperature (MAST) for all surface sites was − 1.5 °C. Frost numbers averaged 0.56; TTOP averaged − 1.8 °C. The MAST was colder on western-facing slopes at high elevations. Surface and deeper probes had similar MASTs; however, deeper probes had less daily and seasonal variation. Another model developed at the regional scale based on proxy indicators of permafrost (rock glaciers and land cover) classified 5.1 km2 of permafrost within the study area, whereas co-kriging interpolations of frost numbers and TTOP data indicated 2.0 km2 and 4.6 km2 of permafrost, respectively. Only 0.8 km2 were common among all three models. Three boreholes drilled within 2 m of TRR indicate that permafrost does not exist at these locations despite each borehole being classified as containing permafrost by at least one model. Addressing model uncertainty is important because nutrients stored within frozen or frost-affected soils can be released and impact alpine water bodies. The uncertainty also exposes two fundamental problems: empirical models designed for high latitudes are not necessarily applicable to mountain permafrost, and the presence of mountain permafrost in the alpine tundra of the Colorado Front Range has not been validated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号