首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Soret diffusion rise times were observed and resolved for Fe–Ni–S–P melts at 10 kbar in thermal gradients between 1300 and 1450°C. A steady-state separation of S-rich components to the hot end of the 2 mm long liquid charges is achieved in about 20 minutes. Chemical diffusivities of about 10−5 cm2/s are consistent with these observations and those of the compaction velocity of aggregates of crystalline Fe metal against the cold end of our experiments. These rapid diffusivities are not rapid enough for diffusion to be an important agent of bulk mass transfer in the addition or extraction of light elements in the Earth's core.  相似文献   

2.
Extensive recording of currents, collection of water samples and routine meteorological and tide records provide a base for this study of the dynamics of Australia's largest river, the Murray, during one of its rare floods in 1974. The results suggest that the Coorong. a narrow lagoon extending from the river mouth to the Southeast, at right angles to prevailing winds, was formed as a flood escape mechanism. Geological evidence displays the existence of similar geometries formed in the past in an area which at one time was a deep gulf of the Southern Ocean extending into Australia. The same mechanism may have been at work elsewhere in the world.  相似文献   

3.
A computational procedure for two-dimensional finite-element analysis of dam–water–sediment–rock systems subjected to seismic excitations is reviewed. In particular, the semidiscrete approximation of the water–sediment–rock region on the upstream side of the dam by means of a hyperelement is described in detail. The sediment is represented in the hyperelement as a fluid-filled porous solid on the basis of the Biot theory of wave propagation in poroelastic media while the water is taken as a compressible, inviscid fluid and the rock as a viscoelastic solid. An application of the procedure to a study of the effects of sediment porosity and thickness on the response of a model dam to horizontal and vertical ground motions is presented and discussed.  相似文献   

4.
A coupling model of Finite Elements (FEs), Boundary Elements (BEs), Infinite Elements (IEs) and Infinite Boundary Elements (IBEs) is presented for analysis of soil–structure interaction (SSI). The radiation effects of the infinite layered soil are taken into account by FE–IE coupling, while the underlying bed rock half-space is discretized into BE–IBE coupling whereby the non-horizontal bed rock surface can be accounted for. Displacement compatabilities are satisfied for all types of aforementioned elements. The equivalent linear approach is employed for approximation of nonlinearity of the near field soil. This model has some advantages over the current SSI program in considering the bed rock half-space and non-vertical wave incidence from the far field. Examples of verification demonstrate the applicability and accuracy of the method when compared with the FLUSH program. Finally, the effects of the relative modulus ratio Er/Es of rock and soil and the incident angles of non-vertical waves on the responses of the structure and the soil are examined. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
A study of soil–structure–fluid interaction (SSFI) of a lock system subjected to harmonic seismic excitation is presented. The water contained lock is embedded in layered soils supported by a half-space bedrock. The ground excitation is prescribed at the soil–bedrock interface. The response is numerically obtained through a hybrid boundary element (BEM) finite element method (FEM) formulation. The semi-infinite soil and the fluid are modeled by the BEM and the lock is modeled by the FEM. The equilibrium equation for the lock system is obtained by enforcing compatibility and equilibrium conditions at the fluid–structure, soil–structure and soil–layer interfaces under conditions of plane strain. To the authors’ knowledge this is the first study of a lock system that considers the effects of dynamic soil–fluid–structure interaction through a BEM–FEM methodology. A numerical example and parametric studies are presented to examine the effects of the presence of water, lock stiffness, and lock embedment on the response.  相似文献   

6.
An approach is presented to stiffness–damping simultaneous optimization for displacement–acceleration simultaneous control. To make a shear building model stiffer, the sum of mean-square interstorey drifts to stationary random excitations is minimized or the mean-square top-floor absolute acceleration is maximized subject to the constraints on total storey stiffness capacity and total damper capacity. Optimality conditions are derived and a two-step optimization method using the optimality conditions is devised. In the first step, the optimal design is found for a specified set of total storey stiffness capacity and total damper capacity. In the second step, a series of optimal designs is found with respect to a varied set of total storey stiffness capacity and total damper capacity. While increase of total stiffness capacity and increase of total damper capacity are both effective in reduction of deformation, only increase of total damper capacity is effective in reduction of acceleration. Acceleration control is carried out in the second step via increase of total damper capacity. It is shown through numerical examples that the proposed method is efficient and reliable. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
8.
This paper presents an analytical method for establishing a stage–fall–discharge rating using hydraulic performance graphs (HPG). The rating curves derived from the HPG are used as the basis to establish the functional relation of stage, fall and discharge through regression analysis following the USGS procedure. In doing so, the conventional trial‐and‐error process can be avoided and the associated uncertainties involved may be reduced. For illustration, the proposed analytical method is applied to establish stage–fall–discharge relations for the Keelung River in northern Taiwan to examine its accuracy and applicability in an actual river. Based on the data extracted from the HPG for the Keelung River, one can establish a stage–fall–discharge relation that is more accurate than the one obtained by the conventionally used relation. Furthermore, the discharges obtained from the proposed rating method are verified through backwater analysis for measured high water level events. The results indicate that the analytical stage–fall–discharge rating method is capable of circumventing the shortcomings of those based on single‐station data and, consequently, enhancing the reliability of flood estimation and forecasting. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Rainfall intensity–duration–frequency (IDF) relationships describe rainfall intensity as a function of duration and return period, and they are significant for water resources planning, as well as for the design of hydraulic constructions. In this study, the two‐parameter lognormal (LN2) and Gumbel distributions are used as parent distribution functions. Derivation of the IDF relationship by this approach is quite simple, because it only requires an appropriate function of the mean of annual maximum rainfall intensity as a function of rainfall duration. It is shown that the monotonic temporal trend in the mean rainfall intensity can successfully be described by this parametric function which comprises a combination of the parameters of the quantile function a(T) and completely the duration function b(d) of the separable IDF relationship. In the case study of Aegean Region (Turkey), the IDF relationships derived through this simple generalization procedure (SGP) may produce IDF relationships as successfully as does the well‐known robust estimation procedure (REP), which is based on minimization of the nonparametric Kruskal–Wallis test statistic with respect to the parameters θ and η of the duration function. Because the approach proposed herein is based on lower‐order sample statistics, risks and uncertainties arising from sampling errors in higher‐order sample statistics were significantly reduced. The authors recommend to establish the separable IDF relationships by the SGP for a statistically favorable two‐parameter parent distribution, because it uses the same assumptions as the REP does, it maintains the observed temporal trend in the mean additionally, it is easy to handle analytically and requires considerably less computational effort. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A continuum model for the interaction analysis of a fully coupled soil–pile–structure system under seismic excitation is presented in this paper. Only horizontal shaking induced by harmonic SH waves is considered so that the soil–pile–structure system is under anti‐plane deformation. The soil mass, pile and superstructure were all considered as elastic with hysteretic damping, while geometrically both pile and structures were simplified as a beam model. Buildings of various heights in Hong Kong designed to resist wind load were analysed using the present model. It was discovered that the acceleration of the piled‐structures at ground level can, in general, be larger than that of a free‐field shaking of the soil site, depending on the excitation frequency. For typical piled‐structures in Hong Kong, the amplification factor of shaking at the ground level does not show simple trends with the number of storeys of the superstructure, the thickness and the stiffness of soil, and the stiffness of the superstructure if number of storeys is fixed. The effect of pile stiffness on the amplification factor of shaking is, however, insignificant. Thus, simply increasing the pile size or the superstructure stiffness does not necessarily improve the seismic resistance of the soil–pile–structure system; on the contrary, it may lead to excessive amplification of shaking for the whole system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The seismic response of a critical rotating machine either rigidly attached to a floor or independently isolated housed within an initially aseismically designed or uncontrolled structure are investigated. A particular isolation system, the Resilient‐Friction Base Isolator (RFBI), is employed. Finite element formulations of a rotor‐disk‐bearing model on a rigid base are developed. The equations of motion for the combined rotating machine–structure–RFBI systems are presented. Parametric studies are performed to investigate the effects of variations in system physical properties including friction coefficient, mass ratio, shaft flexibility, bearing rigidity, bearing damping and speed of rotation on the response of rotating machines for the combined rotating machine–structure–isolator systems. Comparative studies in the peak response of the rotating machine supported on various isolation systems and the corresponding fixed base system are carried out. The study indicates that the Resilient‐Friction Base Isolator can significantly reduce the seismic response of rotating components to potentially damaging ground excitations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Rainfall intensity–duration–frequency (IDF) curves are used in the design of urban infrastructure. Their estimation is based on rainfall frequency analysis, usually performed on rainfall records from a single gauged station. However, available at‐site record length is often too short to provide accurate estimates for long return periods. In the present study, a general framework for pooled rainfall frequency analysis based on the index‐event model is proposed for IDF estimation at gauged stations. Pooling group formation is defined by the region of influence approach on the basis of the geographical distance similarity measure. Several pooled approaches are defined and evaluated by a procedure through which quantile estimation and uncertainty are assessed. Alternate approaches for the definition of a pooling group are based on different criteria regarding initial pooling group size (and the relationship between size and return period), approaches for assessing pooling group homogeneity, and the use of macroregions in pooling group formation. The proposed framework is applied to identify the preferred approach for pooled rainfall intensity frequency analysis in Canada. Pooled approaches are found to provide more precise estimates than the at‐site approach, especially for long return periods. Pooled parent distribution selection supported the use of the generalized extreme value distribution across the country. Recommendations for pooling group formation include increasing the pooling group size with increases in return period and identifying an appropriate trade‐off between pooling group homogeneity and size for long return periods.  相似文献   

13.
Hans Van de Vyver 《水文研究》2018,32(11):1635-1647
Rainfall intensity–duration–frequency (IDF) curves are a standard tool in urban water resources engineering and management. They express how return levels of extreme rainfall intensity vary with duration. The simple scaling property of extreme rainfall intensity, with respect to duration, determines the form of IDF relationships. It is supposed that the annual maximum intensity follows the generalized extreme value (GEV) distribution. As well known, for simple scaling processes, the location parameter and scale parameter of the GEV distribution obey a power law with the same exponent. Although, the simple scaling hypothesis is commonly used as a suitable working assumption, the multiscaling approach provides a more general framework. We present a new IDF relationship that has been formulated on the basis of the multiscaling property. It turns out that the GEV parameters (location and scale) have a different scaling exponent. Next, we apply a Bayesian framework to estimate the multiscaling GEV model and to choose the most appropriate model. It is shown that the model performance increases when using the multiscaling approach. The new model for IDF curves reproduces the data very well and has a reasonable degree of complexity without overfitting on the data.  相似文献   

14.
A version of the global–local finite element method is presented for studying dynamic steady-state soil–structure interaction wherein the soil medium extends to infinity. Herein, only axisymmetric behaviour is considered. In this approach, conventional finite elements are used to model the structure and some portion of the surrounding soil medium considered to be homogeneous and isotropic. A complete set of outgoing waves in the form of spherical harmonics for the entire space is used to represent the behaviour in the half-space beyond the finite element mesh and these are termed the global functions. Full traction and displacement continuity is enforced at the finite element mesh interface with the outer region. On the free surface of the half-space in the outer field, traction-free surface conditions are enforced by demanding that a sequence of integrals of the weighted-average tractions must vanish. Numerical examples are presented for the response of different shaped foundations, resting on the free surface or at various submerged levels, due to a normal seismic plane compressional wave. Plots of differential scattering cross-sections show the angular distribution of the energy (its directional nature) of the scattered field.  相似文献   

15.
By coupling FEM and BEM, a numerical method was developed for dynamic response analyses of dam–foundation–reservoir systems in the time domain. During formulation, the weighted residual procedure was applied to the coupling of several equations of motion for solid and fluid in the FE and BE regions, and an algorithm similar to the Newmark beta procedure was finally obtained. The algorithm is advantageous in that it takes into account all the effects of dam–foundation, dam–reservoir and reservoir–foundation interactions, as well as of the absorption of both elastodynamic and hydrodynamic waves at the boundaries of the foundation and the reservoir. To demonstrate the validity of the present method, the impulsive response of a dam–foundation–reservoir system was calculated using the algorithm, and showed a good agreement with the existing results obtained by other researchers.  相似文献   

16.
In this paper, a study on the transient response of an elastic structure embedded in a homogeneous, isotropic and linearly elastic half-plane is presented. Transient dynamic and seismic forces are considered in the analysis. The numerical method employed is the coupled Finite-Element–Boundary-Element technique (FE–BE). The finite element method (FEM) is used for discretization of the near field and the boundary element method (BEM) is employed to model the semi-infinite far field. These two methods are coupled through equilibrium and compatibility conditions at the soil–structure interface. Effects of non-zero initial conditions due to the pre-dynamic loads and/or self-weight of the structure are included in the transient boundary element formulation. Hence, it is possible to analyse practical cases (such as dam–foundation systems) involving initial conditions due to the pre-seismic loads such as water pressure and self-weight of the dam. As an application of the proposed formulation, a gravity dam has been analysed and the results for different foundation stiffness are presented. The results of the analysis indicate the importance of including the foundation stiffness and thus the dam–foundation interaction.  相似文献   

17.
18.
A study on the dynamic response of a railway track is presented via a 3-D formulation based on the frequency domain Boundary Element Method (BEM) and the Finite Element Method (FEM). The railway track consists of a group of surface, massive, rigid footings resting on a viscoelastic half-space and connected by an overlaying rail structure. The BEM, employing the full-space fundamental solutions and quadrilateral elements, is used for the simulation of the elastic half-space while the FEM is used to model the rigid footings and the rail superstructure. The loading function consists of a set of externally applied, harmonic or transient loads. Frequency as well as transient, by way of FFT, results are presented for various modes of vibration. Various numerical studies assess the through-the-soil interaction of the adjacent footings, the influence of soil damping, the effect of the overlaying structure on the frequency content of the system, and the effective simulation of an infinitely long railway track by a truncated one.  相似文献   

19.
Seth Rose 《水文研究》2009,23(8):1105-1118
An extensive dataset (230 precipitation gauges and 79 stream gauges) was used to analyse rainfall–runoff relationships in 10 subregions of a 482000 km2 area in the south‐eastern USA (Maryland, Virginia, North Carolina, South Carolina and Georgia). The average annual rainfall and runoff for this study area between 1938 and 2005 were 1201 and 439 mm, respectively. Average runoff/rainfall ratios during this period varied between 0·24 in the southernmost Coastal Plain subregion to 0·64 in the Blue Ridge Province. Watershed elevation and relief are the principal determinants governing the conversion of rainfall to runoff. Temporal rainfall variation throughout the south‐eastern USA ranges from ~40% above and below normal while the variation for runoff is higher, from ? 75% to + 100%. In any given year there can exist a ± 25–50% error in predicted runoff deviation using the annual rainfall–runoff regression. Fast Fourier Transform and autoregressive spectral analysis revealed dominant cyclicities for rainfall and runoff between 14 and 17 years. Secondary periodicities were typically between 6–7 and 10–12 years. The inferred cyclicity may be related to ENSO and/or Central North Pacific atmospheric phenomena. Mann–Kendall analyses indicate that there were no consistent statistically significant temporal trends with respect to south‐eastern US rainfall and runoff during the study period. The results of U‐tests similarly indicated that rainfall between 1996 and 2005 was not statistically higher or lower than during earlier in the study period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
An effective way to study the complex seismic soil‐structure interaction phenomena is to investigate the response of physical scaled models in 1‐g or n‐g laboratory devices. The outcomes of an extensive experimental campaign carried out on scaled models by means of the shaking table of the Bristol Laboratory for Advanced Dynamics Engineering, University of Bristol, UK, are discussed in the present paper. The experimental model comprises an oscillator connected to a single or a group of piles embedded in a bi‐layer deposit. Different pile head conditions, that is free head and fixed head, several dynamic properties of the structure, including different masses at the top of the single degree of freedom system, excited by various input motions, e.g. white noise, sinedwells and natural earthquake strong motions recorded in Italy, have been tested. In the present work, the modal dynamic response of the soil–pile–structure system is assessed in terms of period elongation and system damping ratio. Furthermore, the effects of oscillator mass and pile head conditions on soil–pile response have been highlighted, when the harmonic input motions are considered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号