首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We report observations of the cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) VHF radar at Troms and the EISCAT Svalbard radar (ESR). We compare them with observations of the dayside auroral luminosity, as seen by meridian scanning photometers at Ny Ålesund and of HF radar backscatter, as observed by the CUTLASS radar. We study the response to an interval of about one hour when the interplanetary magnetic field (IMF), monitored by the WIND and ACE spacecraft, was southward. The cusp/cleft aurora is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data. Initial conditions were characterised by a northward-directed IMF and cusp/cleft aurora poleward of the ESR. A strong southward turning then occurred, causing an equatorward motion of the cusp/cleft aurora. Within the equatorward expanding, southward-IMF cusp/cleft, the ESR observed structured and elevated plasma densities and ion and electron temperatures. Cleft ion fountain upflows were seen in association with elevated ion temperatures and rapid eastward convection, consistent with the magnetic curvature force on newly opened field lines for the observed negative IMF By. Subsequently, the ESR beam remained immediately poleward of the main cusp/cleft and a sequence of poleward-moving auroral transients passed over it. After the last of these, the ESR was in the polar cap and the radar observations were characterised by extremely low ionospheric densities and downward field-aligned flows. The IMF then turned northward again and the auroral oval contracted such that the ESR moved back into the cusp/cleft region. For the poleward-retreating, northward-IMF cusp/cleft, the convection flows were slower, upflows were weaker and the electron density and temperature enhancements were less structured. Following the northward turning, the bands of high electron temperature and cusp/cleft aurora bifurcated, consistent with both subsolar and lobe reconnection taking place simultaneously. The present paper describes the large-scale behaviour of the ionosphere during this interval, as observed by a powerful combination of instruments. Two companion papers, by Lockwood et al. (2000) and Thorolfsson et al. (2000), both in this issue, describe the detailed behaviour of the poleward-moving transients observed during the interval of southward Bz, and explain their morphology in the context of previous theoretical work.  相似文献   

2.
We document the detailed dynamics of the dayside aurora in the ≈1200–1600 MLT sector in response to a sharp southward turning of the interplanetary magnetic field (IMF) under negative IMF By conditions. Features not documented in previous work are elucidated by using two meridan scanning photometers (separated by 2 h) and an all-sky auroral imager in Ny Ålesund, Svalbard (75.5^MLAT) in combination with magnetograms from stations on Svalbard, covering the latitude range 71^–75^MLAT. The initial auroral response may be divided into three phases consisting of: (1) intensification of both the red (630.0 nm) and green (557.7 nm) line emissions in the cusp aurora near 1200 MLT and ≈100 km equatorward shift of its equatorward boundary, at ≈75^MLAT, (2) eastward and poleward expansions of the cusp aurora, reaching the 1430 MLT meridian after 5–6 min, and (3) east-west expansion of the higher-latitude aurora (at ≈77^–78^MLAT) in the postnoon sector. The associated magnetic disturbance is characterized by an initial positive deflection of the X-component at stations located 100–400 km south of the aurora, corresponding to enhanced Sunward return flow associated with the merging convection cell in the post-noon sector. The sequence of partly overlapping poleward moving auroral forms (PMAFs) during the first 15 min, accompanied by corresponding pulsations in the convection current, was followed by a strong westward contraction of the cusp aurora when the ground magnetograms indicated a temporary return to the pre-onset level. These observations are discussed in relation to the Cowley-Lockwood model of ionospheric response to pulsed magnetopause reconnection.  相似文献   

3.
We investigate the dayside auroral dynamics and ionospheric convection during an interval when the interplanetary magnetic field (IMF) had predominantly a positive Bz component (northward IMF) but varying By. Polar UVI observations of the Northern Hemisphere auroral emission indicate the existence of a region of luminosity near local noon at latitudes poleward of the dayside auroral oval, which we interpret as the ionospheric footprint of a high-latitude reconnection site. The large field-of-view afforded by the satellite-borne imager allows an unprecedented determination of the dynamics of this region, which has not previously been possible with ground-based observations. The location of the emission in latitude and magnetic local time varies in response to changes in the orientation of the IMF; the cusp MLT and the IMF By component are especially well correlated, the emission being located in the pre- or post-noon sectors for By < 0 nT or By > 0 nT, respectively. Simultaneous ground-based observations of the ionospheric plasma drift are provided by the CUTLASS Finland HF coherent radar. For an interval of IMF By 0 nT, these convection flow measurements suggest the presence of a clockwise-rotating lobe cell contained within the pre-noon dayside polar cap, with a flow reversal closely co-located with the high-latitude luminosity region. This pattern is largely consistent with recent theoretical predictions of the convection flow during northward IMF. We believe that this represents the first direct measurement of the convection flow at the imaged location of the footprint of the high-latitude reconnection site.  相似文献   

4.
We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) Svalbard radar (ESR), and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Ålesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system) Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm) enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996); however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.  相似文献   

5.
On August 21st 1998, a sharp southward turning of the IMF, following on from a 20 h period of northward directed magnetic field, resulted in an isolated substorm over northern Scandinavia and Svalbard. A combination of high time resolution and large spatial scale measurements from an array of coherent scatter and incoherent scatter ionospheric radars, ground magnetometers and the Polar UVI imager has allowed the electrodynamics of the impulsive substorm electrojet region during its first few minutes of evolution at the expansion phase onset to be studied in great detail. At the expansion phase onset the substorm onset region is characterised by a strong enhancement of the electron temperature and UV aurora. This poleward expanding auroral structure moves initially at 0.9 km s-1 poleward, finally reaching a latitude of 72.5°. The optical signature expands rapidly westwards at ~6 km s-1, whilst the eastward edge also expands eastward at ~0.6 km s-1. Typical flows of 600 m s-1 and conductances of 2 S were measured before the auroral activation, which rapidly changed to ~100 m s-1 and 10–20 S respectively at activation. The initial flow response to the substorm expansion phase onset is a flow suppression, observed up to some 300 km poleward of the initial region of auroral luminosity, imposed over a time scale of less than 10 s. The high conductivity region of the electrojet acts as an obstacle to the flow, resulting in a region of low-electric field, but also low conductivity poleward of the high-conductivity region. Rapid flows are observed at the edge of the high-conductivity region, and subsequently the high flow region develops, flowing around the expanding auroral feature in a direction determined by the flow pattern prevailing before the substorm intensification. The enhanced electron temperatures associated with the substorm-disturbed region extended some 2° further poleward than the UV auroral signature associated with it.  相似文献   

6.
A discussion is given of plasma flows in the dawn and nightside high-latitude ionospheric regions during substorms occurring on a contracted auroral oval, as observed using the EISCAT CP-4-A experiment. Supporting data from the PACE radar, Greenland magnetometer chain, SAMNET magnetometers and geostationary satellites are compared to the EISCAT observations. On 4 October 1989 a weak substorm with initial expansion phase onset signatures at 0030 UT, resulted in the convection reversal boundary observed by EISCAT (at \sim0415 MLT) contracting rapidly poleward, causing a band of elevated ionospheric ion temperatures and a localised plasma density depletion. This polar cap contraction event is shown to be associated with various substorm signatures; Pi2 pulsations at mid-latitudes, magnetic bays in the midnight sector and particle injections at geosynchronous orbit. A similar event was observed on the following day around 0230 UT (\sim0515 MLT) with the unusual and significant difference that two convection reversals were observed, both contracting poleward. We show that this feature is not an ionospheric signature of two active reconnection neutral lines as predicted by the near-Earth neutral model before the plasmoid is “pinched off”, and present two alternative explanations in terms of (1) viscous and lobe circulation cells and (2) polar cap contraction during northward IMF. The voltage associated with the anti-sunward flow between the reversals reaches a maximum of 13 kV during the substorm expansion phase. This suggests it to be associated with the polar cap contraction and caused by the reconnection of open flux in the geomagnetic tail which has mimicked “viscous-like” momentum transfer across the magnetopause.  相似文献   

7.
We present Interball Tail Probe observations from the high latitude mid-tail magnetopause which provide evidence of reconnection between the interplanetary magnetic field (IMF) and lobe field lines during a 6 h interval of stable northward and dawnward IMF on October 19, 1995. Results from a global magnetohydrodynamic simulation for this interval compare well with the Interball observations. With the simulations, we provide an extended global view of this event which gives us insight into the reconnection and convection dynamics of the magnetosphere. We find that reconnection occurs in a region of limited spatial extent near the terminator and where the IMF and the lobe field are anti-parallel. Reconnected IMF field lines drape over the dayside magnetosphere, convect along the flanks into the nightside, and enter the magnetotail through a small entry window that is located in the flank opposite to the reconnection site. Ionospheric convection is consistent with previous observations under similar IMF conditions and exhibits a two cell pattern with a dominant lobe cell over the pole. The magnetic mapping between the ionosphere and the lobe boundary is characterized by two singularities: the narrow entry window in the tail maps to a 6 h wide section of the ionospheric lobe cell. A singular mapping line cuts the lobe cell open and maps to almost the entire tail magnetopause. By this singularity the magnetosphere avoids having a stagnation point, i.e., the lobe cell center maps to a tailward convecting field line. The existence of singularities in the magnetic mapping between the ionosphere and the tail has important implications for the study of tail–ionosphere coupling via empirical magnetic field models. Because the lobe–IMF reconnection cuts away old lobe flux and replaces it with flux tubes of magnetosheath origin, solar wind plasma enters the lobes in a process that is similar to the one that operates during southward IMF.  相似文献   

8.
On 7 December 1992, a moderate substorm was observed by a variety of satellites and ground-based instruments. Ionospheric flows were monitored near dusk by the Goose Bay HF radar and near midnight by the EISCAT radar. The observed flows are compared here with magnetometer observations by the IMAGE array in Scandinavia and the two Greenland chains, the auroral distribution observed by Freja and the substorm cycle observations by the SABRE radar, the SAMNET magnetometer array and LANL geosynchronous satellites. Data from Galileo Earth-encounter II are used to estimate the IMF Bz component. The data presented show that the substorm onset electrojet at midnight was confined to closed field lines equatorward of the pre-existing convection reversal boundaries observed in the dusk and midnight regions. No evidence of substantial closure of open flux was detected following this substorm onset. Indeed the convection reversal boundary on the duskside continued to expand equatorward after onset due to the continued presence of strong southward IMF, such that growth and expansion phase features were simultaneously present. Clear indications of closure of open flux were not observed until a subsequent substorm intensification 25 min after the initial onset. After this time, the substorm auroral bulge in the nightside hours propagated well poleward of the pre-existing convection reversal boundary, and strong flow perturbations were observed by the Goose Bay radar, indicative of flows driven by reconnection in the tail.  相似文献   

9.
利用南极中山站极光全天空摄相、地磁、地磁脉动数据和Wind卫星的行星际磁场IMF观测数据,分析了7个亚暴期间高纬黄昏-子夜扇区极光弧的短暂增亮现象.极光弧特征是,短暂增亮随后很快衰减,历时10-20min,基本沿着日-地方向,有明显黄昏方向运动.这些事件大都发生在IMFBz南转之后,亚暴增长相或膨胀相期间,极光浪涌到达之前10-73min消失.相应的IMFBx>0,IMFBy<0.这种极光弧和亚暴极光不同,它们与地磁活动及Pi2脉动不相关.这7个极光弧的形态和IMF特征表明,极光弧的增亮很可能由尾瓣重联产生,很快衰减归因于IMFBz南向条件,而黄昏方向运动受IMFBy控制.  相似文献   

10.
卫星观测证实了磁尾等离子体团与亚暴活动的相关性,除了具有北-南双极特征的尾向传播等离子体团外,还发现地向传播等离子体团,它们表现为南-北双极中性片事件和南-北双极瓣区讯号. 资料分析表明:南-北双极讯号的出现几率远低于北-南双极讯号,并且南-北双极事件主要发生于行星际磁场北向和地磁宁静条件,它们往往与小的孤立的地磁亚暴相关. 本文根据地磁宁静时期(IMF Bz北向且By≥Bz)越尾电场Ey分量的分布特点,对地向传播等离子体团作模拟研究. 两类算例的数值结果展示了通量绳磁结构及具有复杂闭合磁力线位形的等离子体团的基本特征,上述特征与尾向传播的等离子体团类似,与IMP 8卫星关于地向传播南-北中性片事件的观测特征大致相符. 数值结果还展示了与Schindler示意图相类似的磁力线拓扑位形,在一定程度上为南-北事件出现几率低作出了解释;并且揭示了磁尾中性片内越尾磁场分量By对磁重联发展的抑制作用. 本文的模拟研究说明:无论磁尾处于活动时期(IMF Bz为南向),还是宁静时期(IMF Bz为北向且By≥Bz),磁场重联均是磁尾等离子体加速和加热的通用机制.  相似文献   

11.
According to observations, the discrete auroral arcs can sometimes be found, either deep inside the auroral oval or at the poleward border of the wide (so-called double) auroral oval, which map to very different regions of the magnetotail. To find common physical conditions for the auroral-arc generation in these magnetotail regions, we study the spatial relationship between the diffuse and discrete auroras and the isotropic boundaries (IBs) of the precipitating energetic particles which can be used to characterise locally the equatorial magnetic field in the tail. From comparison of ground observation of auroral forms with meridional profiles of particle flux measured simultaneously by the low-altitude NOAA satellites above the ground observation region, we found that (1) discrete auroral arcs are always situated polewards from (or very close to) the IB of > 30-keV electrons, whereas (2) the IB of the > 30-keV protons is often seen inside the diffuse aurora. These relationships hold true for both quiet and active (substorm) conditions in the premidnight-nightside (18– 01-h) MLT sector considered. In some events the auroral arcs occupy a wide latitudinal range. The most equatorial of these arcs was found at the poleward edge of the diffuse auroras (but anyway in the vicinity of the electron IB), the most poleward arcs were simultaneously observed on the closed field lines near the polar-cap boundary. These observations disagree with the notion that the discrete aurora originate exclusively in the near-Earth portion of plasma sheet or exclusively on the PSBL field lines. Result (1) may imply a fundamental feature of auroral-arc formation: they originate in the current-sheet regions having very curved and tailward-stretched magnetic field lines.  相似文献   

12.
Data from HF-radars are used to make the first simultaneous conjugate measurements of the day-side reconnection electric field. A period of 4 h around local magnetic noon are studied during a geospace environment modeling (GEM) boundary layer campaign. The interplanetary magnetic field (IMF) was southward whilst the eastward component (By) was variable. The flow patterns derived from the radar data show the expected conjugate asymmetries associated with IMF |By| ≥ 0. High-time resolution data (50 and 100 s) enable the flow of plasma across the open/closed field line boundary (the separatrix) to be studied in greater detail than in previous work. The latitude of the separatrix follows the same general trend in both hemispheres but shows a hemispherical difference of 4°, with the summer cusp at higher latitude, as expected from dipole tilt considerations. However, the short-time scale motion of the separatrix cannot be satisfactorily resolved within the best resolution (300 m s−1) of the experiment. The orientation of the separatrix with respect to magnetic latitude is found to follow the same trend in both hemispheres and qualitatively fits that predicted by a model auroral oval. It shows no correlation with IMF By. However, the degree of tilt in the Northern (summer) Hemisphere is found to be significantly greater than that given by the model oval. The convection pattern data show that the meridian at which throat flow occurs is different in the two hemispheres and is controlled by IMF By, in agreement with empirically derived convection patterns and theoretical models. The day-side reconnection electric field values are largest when the radar’s meridian is in the throat flow or early afternoon flow regions. In the morning or afternoon convection cells, the reconnection electric field tends to zero away from the throat flow region. The reconnection electric field observed in the throat flow region is bursty in nature.  相似文献   

13.
A study of dayside auroral conjugacy has been done using the cleft/boundary layer auroral particle boundaries observed by the DMSP-F7 satellite in the southern hemisphere and the global UV auroral images taken by the Viking spacecraft in the northern hemisphere. The 22 events have been studied on the basis of an internal IGRF 1985 magnetic field; it is shown that there is a displacement of up to 4° in latitude from the conjugate points with the northern aurora appearing to be located poleward of the conjugate point. No local time dependence of the north-south auroral location difference was seen. The use of a more realistic magnetic field model for tracing field lines which incorporates the dipole tilt angle and Kp index, the Tsyganenko 1987 long model plus the IGRF 1985 internal magnetic field model, appears to organize the data better. Although with this external plus internal model some tracings did not close in the opposite hemisphere, 70% of those that did indicated satisfactory conjugacy. The study shows that the degree of auroral conjugacy is dependent upon the accuracy of the magnetic field model used to trace to the conjugate point, especially in the dayside region where the field lines can either go to the dayside magnetopause near the subsolar point or sweep all the way back to the flanks of the magnetotail. Also the discrepancy in the latitude of northern and southern aurora can be partially explained by the displacement of the neutral sheet (source region of the aurora) by the dipole tilt effect.  相似文献   

14.
本文分析了2004年2月11日11:00~11:40 UT期间Cluster卫星簇的磁通门磁力计FGM)、等离子体电子及电流试验仪(PEACE)和CUTLASS 芬兰雷达对多个磁通量传输事件(FTEs)的同时观测. 在此期间,Cluster卫星簇位于北半球外极隙区附近,并于11:18 UT左右穿出磁层顶进入磁鞘,四颗卫星同时观测到了多个FTEs, 其出现具有准周期性,周期约为130 s. 利用Cluster四颗卫星的多点同时观测数据,采用最小方向微分法和时空微分方法,我们推断这些FTEs是尺度大小约为(0.87~1.81)RE的准二维结构,其运动方向为东北方向,与Cooling模型预测方向基本一致. CUTLASS芬兰雷达在相应的电离层区域观测到了明显的“极向运动雷达极光”结构,这些结构与Cluster卫星簇观测的FTEs有着很好的对应关系,它们是FTEs的雷达观测特征.  相似文献   

15.
The dynamics of the cusp region and post-noon sector for an interval of predominantly IMF By, Bz < 0 nT are studied with the CUTLASS Finland coherent HF radar, a meridian-scanning photometer located at Ny Ålesund, Svalbard, and a meridional network of magnetometers. The scanning mode of the radar is such that one beam is sampled every 14 s, and a 30° azimuthal sweep is completed every 2 minutes, all at 15 km range resolution. Both the radar backscatter and red line (630 nm) optical observations are closely co-located, especially at their equatorward boundary. The optical and radar aurora reveal three different behaviours which can interchange on the scale of minutes, and which are believed to be related to the dynamic nature of energy and momentum transfer from the solar wind to the magnetosphere through transient dayside reconnection. Two interpretations of the observations are presented, based upon the assumed location of the open/closed field line boundary (OCFLB). In the first, the OCFLB is co-located with equatorward boundary of the optical and radar aurora, placing most of the observations on open field lines. In the second, the observed aurora are interpreted as the ionospheric footprint of the region 1 current system, and the OCFLB is placed near the poleward edge of the radar backscatter and visible aurora; in this interpretation, most of the observations are placed on closed field lines, though transient brightenings of the optical aurora occur on open field lines. The observations reveal several transient features, including poleward and equatorward steps in the observed boundaries, braiding of the backscatter power, and 2 minute quasi-periodic enhancements of the plasma drift and optical intensity, predominantly on closed field lines.  相似文献   

16.
The effect of the interplanetary magnetic field (IMF) By component on the dayside auroral oval from Viking UV measurements for March–November 1986 is studied. Observations of dayside auroras from Viking UV images for large positive (15 cases) and negative (22 cases) IMF By (∣By∣>4 nT), suggest that: (1) the intensity of dayside auroras tends to increase for negative IMF By and to decrease for positive By, so that negative IMF By conditions seem preferable for observations of dayside auroras; (2) for negative IMF By, the auroral oval tends to be narrow and continuous throughout the noon meridian without any noon gap or any strong undulation in the auroral distribution. For positive IMF By, a sharp decrease and spreading of auroral activity is frequently observed in the post-noon sector, a strong undulation in the poleward boundary of the auroral oval around noon, and the formation of auroral forms poleward of the oval; and (3) the observed features of dayside auroras are in reasonable agreement with the expected distribution of upward field-aligned currents associated with the IMF By in the noon sector.  相似文献   

17.
This paper reviews quantitative analysis results of the energy transfer and dissipation processes in the GUMICS-4 global MHD simulation. Reconnection power dissipating magnetic energy, dynamo power transferring energy from plasma to the field, and energy flux transport across the magnetopause surface are all examined separately and shown to yield consistent results. This is used to argue that magnetic reconnection is the process controlling the energy transfer, even though it is not localized near the reconnection line. The most important factors controlling the reconnection efficiency are the interplanetary magnetic field (IMF) orientation and the solar wind speed, while the IMF magnitude and solar wind density play a lesser role. During northward IMF, the reconnection efficiency is larger for high speed and low IMF than for low speed and high IMF magnitude, even though the solar wind electric field in both cases is the same. Moreover, increasing pressure by increasing density has a different effect from equal increase of pressure by increasing the solar wind speed. Comparison with statistical observational results shows that the simulation results are in qualitative agreement with the observations, which significantly increases our confidence in interpreting the simulation results.  相似文献   

18.
本文基于自己开发的全球三维磁层模型, 模拟研究了IMF(Interplanetary Magnetic Field)北向并且By分量较大(时钟角为60°)时磁层顶三维结构及其重联图像. 结果发现, IMF By为正时, 在北极隙区附近尾-昏侧存在IMF与地磁场之间稳定持续的重联现象;参与重联的地球磁场既有闭合磁力线也有开放磁力线;IMF在北极隙区与地球闭合磁力重联后一端与南磁极相连的磁力线在尾向运动时还可能与北尾瓣的开放磁力线重联而重新闭合, 这种重联与磁力线循环过程不同于同一条IMF磁力线分别在南北半球与地磁场重联的模型. 南极隙区的重联发生在尾-晨侧, 其动力学过程与北极隙区情形类似. 我们的模拟结果表明, IMF By较大时不可能发生IMF同一条磁力线分别在南北极隙区重联的情形, 也不会因此而减少尾瓣的开放磁力线.  相似文献   

19.
The USU time-dependent ionospheric model (TDIM) simulated the northern (winter) and southern (summer) ionospheres as they responded to the changing solar wind and geomagnetic activity on 14 January 1988. This period began with moderately disturbed conditions, but as the IMF turned northward, the geomagnetic activity decreased. By 1400 UT, the IMF By component became strongly negative with Bz near zero; and eventually Bz turned southward. This began a period of intense activity as a magnetic storm developed. The magnetospheric electric field and auroral electron precipitation drivers for these simulations were obtained from the Naval Research Laboratories (NRL) Magnetohydrodynamic (MHD) magnetospheric simulation for this event.The F-region ionospheric simulations contrast the summer–winter hemispheres. Then, the difference in how the two hemispheres respond to the geomagnetic storm is related to the differences in magnetospheric energy deposition in the two hemispheres. This also emphasizes the role played by the E-region in the magnetosphere–ionosphere (M–I) coupling and subsequent lack of conjugacy in the two hemispheres. The F-region’s response to the changing geomagnetic conditions also demonstrates a striking lack of conjugacy. This manifests itself in a well-defined ionospheric morphology in the summer hemisphere and a highly irregular morphology in the winter hemisphere. These differences are found to be associated with the differences in the magnetospheric electric field input.  相似文献   

20.
Latitudinal variations in the nighttime plasma temperatures of the equatorial topside ionosphere during northern winter at solar maximum have been examined by using values modelled by SUPIM (Sheffield University Plasmasphere Ionosphere Model) and observations made by the DMSP F10 satellite at 21.00 LT near 800 km altitude. The modelled values confirm that the crests observed near 15° latitude in the winter hemisphere are due to adiabatic heating and the troughs observed near the magnetic equator are due to adiabatic cooling as plasma is transported along the magnetic field lines from the summer hemisphere to the winter hemisphere. The modelled values also confirm that the interhemispheric plasma transport needed to produce the required adiabatic heating/cooling can be induced by F-region neutral winds. It is shown that the longitudinal variations in the observed troughs and crests arise mainly from the longitudinal variations in the magnetic meridional wind. At longitudes where the magnetic declination angle is positive the eastward geographic zonal wind combines with the northward (summer hemisphere to winter hemisphere) geographic meridional wind to enhance the northward magnetic meridional wind. This leads to deeper troughs and enhanced crests. At longitudes where the magnetic declination angle is negative the eastward geographic zonal wind opposes the northward geographic meridional wind and the trough depth and crest values are reduced. The characteristic features of the troughs and crests depend, in a complicated manner, on the field-aligned flow of plasma, thermal conduction, and inter-gas heat transfer. At the latitudes of the troughs/crests, the low/high plasma temperatures lead to increased/decreased plasma concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号