首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
兰州冬季大气气溶胶光学厚度及其与能见度的关系   总被引:14,自引:9,他引:14  
利用光度计资料,计算了兰州冬季大气气溶胶的光学厚度,并利用计算结果进一步得出了Angstrom浑浊度系数β和波长指数α,对计算结果的分析表明,兰州冬季气溶胶与历史同期相比,光学厚度较大,浑浊度较高,且多为大粒子。此外,本文还对气溶胶光学厚度与能见度进行了分析、拟合,二者的变化趋势正好相反,光学厚度与能见度之间近似呈指数递减的关系。  相似文献   

2.
成都夏季气溶胶消光特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用成都2017年6~8月的米散射微脉冲激光雷达观测数据,对成都夏季气溶胶消光系数、边界层高度以及气溶胶光学厚度进行了反演,并结合太阳光度计观测资料、地面颗粒物浓度以及大气能见度数据研究了气溶胶消光系数日变化与月变化规律,气溶胶消光系数的垂直分布特征及影响因素。结果表明:气溶胶消光系数的日变化受人类活动以及边界层日变化影响显著,表现出凌晨与傍晚最大,早晨次之,午后最小的特征。消光高值出现在200m以下和300~700m的高度区间,夜间观察到的消光高值可能与颗粒物在夜间近地面浓度较高以及本地夜间降水频发有关。激光雷达反演的消光系数与光度计反演的气溶胶光学厚度在夏季各月的表现一致,夏季各月消光极值均出现在100~150m的近地面层。近地面消光系数与地面颗粒物浓度之间具有较好的正相关,并且粒子粒径更小时相关性更好。气溶胶光学厚度主要来自低层大气的贡献,0.1~0.2μm的细粒子气溶胶占比对于大气消光有主要影响,但气溶胶对大气的消光影响除了与粒子浓度有关,还与粒子的理化性质有关。   相似文献   

3.
文章利用国家卫星气象中心引进的以暗像元特性为基础的气溶胶光学厚度反演软件,对内蒙古地区2009年12月至2010年12月的EOS/MODIS气象卫星资料进行反演,计算0.55μm气溶胶光学厚度,并提取119个气象台站气溶胶光学厚度值按盟市进行月平均、年平均值统计分析,寻找气溶胶光学厚度的空间分布特征和时间变化规律。结果表明:(1)内蒙古地区气溶胶光学厚度存在非常明显的空间分布特征,最高值区主要集中在中部和西部地区,东部的大部地区基本没有最高值出现。(2)内蒙古地区气溶胶光学厚度存在明显的时间变化规律。从1月份逐渐增加,到6月和7月份达到全年最大值,再逐渐降低趋势;春季和夏季最大,而秋季和冬季最小,夏季>春季>秋季>冬季。  相似文献   

4.
黑碳气溶胶光学厚度的全球分布及分析   总被引:11,自引:2,他引:11  
马井会  郑有飞  张华 《气象科学》2007,27(5):549-556
利用全球气溶胶数据集GADS(Global Aerosol Data Set)计算了冬夏两季黑碳气溶胶质量浓度分布以及在波长0.55μm处的光学厚度、吸收系数和散射系数在全球的分布,并分析了原因。通过分析黑碳气溶胶复折射指数虚部、单次散射反照率、非对称因子、吸收系数、散射系数和消光系数随波长的变化,得出黑碳气溶胶的吸收系数和散射系数在小于0.5μm的短波范围内具有相同的数量级,随着波长的增大,吸收系数比散射系数大几个数量级;黑碳气溶胶对小于1μm的短波有强烈的吸收作用。另外还给出了冬夏两季南北半球及全球黑碳气溶胶平均光学厚度值、7个地区黑碳气溶胶光学厚度及质量浓度最大值,其中冬季黑碳气溶胶光学厚度的最大值为0.027 5,位于东亚地区;而质量浓度最大值为1.555μg/m3,位于西欧地区。  相似文献   

5.
沈阳大气气溶胶光学特性及其影响因子   总被引:4,自引:0,他引:4  
利用2010年3—10月沈阳大气成分监测站CE-318太阳光度计观测资料,计算沈阳大气气溶胶光学厚度和波长指数等大气光学特性参数,结合地面气象观测资料,分析大气气溶胶光学特性及其影响因子。结果表明:沈阳气溶胶光学厚度在3—6月较高,8月较低,9—10月气溶胶光学厚度略有增加;除4月和8月外,气溶胶光学厚度与风速基本呈反相关;气溶胶光学厚度与可吸入颗粒物(particulate matter,PM)质量浓度变化趋势基本一致;气溶胶光学厚度日平均值距平的绝对值、改变率均与降水强度成正比;地面能见度与气溶胶光学厚度呈负相关。由气溶胶浑浊度系数计算的能见度在4—6月与实际观测的能见度基本吻合,由气溶胶标高计算的水平能见度整体小于实际观测的水平能见度。  相似文献   

6.
利用2006年3~5月天空辐射计观测数据反演得到北京地区春季大气气溶胶光学性质参数,包括大气气溶胶光学厚度(0.5μm)、Angstrm指数、单次散射反射比和粒子谱分布特征。结果表明:北京地区春季气溶胶平均光学厚度0.67,Angstrm指数0.54,单次散射比0.88,粒子吸收性质较弱,粒子谱呈双峰形,以粗粒子为主,粗、细模态粒子粒径分别集中在0.17μm和7.7μm左右。相比2004年此次观测期间气溶胶粒径较大,粒子体积浓度较高,散射作用在其消光特性中的比重略有下降。光学厚度日变化呈单峰型,日间单次散射比随时间逐渐递减,Angstrm指数在上午递减趋势明显,午后变得稳定。对同时观测的天空辐射计与CE-318不同波长光学厚度结果进行比较,结果显示两者得到的光学厚度相关性很好,各波长小时平均结果的相对误差小于7%。  相似文献   

7.
2008年北京奥运会期间大气气溶胶物理特征分析   总被引:5,自引:0,他引:5  
应用MODIS卫星的气溶胶产品资料和地面的光学粒子计数器的资料,对比分析了北京地区2006、2007、2008年7~9月的气溶胶光学厚度、细粒子光学厚度、Angstrom指数、气溶胶粒子数浓度谱及体积谱,发现2008年北京奥运会期间(7月20日~9月20日)的气溶胶光学厚度比2006、2007年同期明显降低,气溶胶细模态光学厚度占总光学厚度的比上升,Angstrom指数上升,气溶胶细粒子数浓度没有明显相对变化,而粗粒子数浓度则减少约50%.利用大气标高,将MODIS反演的气溶胶柱的质量浓度转化为地面气溶胶质量浓度.用粒子计数器得到的体积谱,在假定气溶胶粒子密度的情况下,计算出其质量浓度.将这两种方法得到的气溶胶质量浓度与国家环境保护部公布的空气质量指数换算得到的可吸入颗粒物(PM10)质量浓度进行比较.结果表明:北京奥运期间空气质量总体达到了国家二级空气质量标准;与2006、2007年同期相比,2008年气溶胶PM10质量浓度明显下降,而这主要是由气溶胶粗粒子的减少引起的.  相似文献   

8.
北方沙尘气溶胶光学厚度和粒子谱的反演   总被引:11,自引:4,他引:11  
利用CE-318太阳光度计在内蒙古额济纳旗、东胜、锡林浩特三地观测的2002年6月喇3年5月间的太阳直接辐射数据,应用消光法反演大气气溶胶光学厚度[AOT(λ),Aerosol Optical Thickness]和粒子谱分布,并分析其变化特征。结果表明,该地区气溶胶光学厚度具有明显的时空变化:春季最大,冬季最小,AOT(λ=440nm)平均最大值为0.78,最小值为0.13。3个观测点中,额济纳旗的光学厚度最大,东胜最小。光学厚度的日变化主要有4种形式:1)早晨高傍晚低;2)早晨低傍晚高;3)早晚低中午高;4)变化平缓。这主要与沙尘天气的发生、大气层结稳定度和人类活动等因素有关。气溶胶粒子谱分布基本符合Junge谱,在粒径0.3μm、0.6μm和1.0μm处出现峰值。但是在不同天气条件下粒子谱有很大差异,在沙尘暴天气中,大粒子和巨粒子数有明显的增加,粒子数浓度要比晴天背景大气大了约一个量级。春季气溶胶粒子数浓度最大,夏秋季次之,冬季最小,但相差不超过一个量级。  相似文献   

9.
2009年石家庄地区大气气溶胶的飞机探测研究   总被引:4,自引:2,他引:2  
马梁臣  银燕 《气象科学》2014,34(1):47-53
利用2009年石家庄地区不同季节的3次机载粒子探测系统PMS(Particle Measurement System)的探测资料,结合地面天气形势、风场和探空资料对石家庄地区,晴空背景下大气气溶胶的统计特征、数浓度、平均粒径的垂直分布特征以及谱分布特征进行了分析。结果表明:晴天条件下气溶胶的数浓度随高度递减,粒径随高度变化不大;在数值上,4月16日气溶胶数浓度和粒径最大,其次是10月15日,最小的是6月10日,3次粒径变化幅度都不大;逆温层底层气溶胶明显积累,气溶胶浓度在1.5 km以下大气边界层内明显高于其他层次,逆温层的高度和厚度影响气溶胶的分布;3次不同季节晴天背景下石家庄地区气溶胶谱型基本一致呈单峰分布,小于0.3μm的细粒子对气溶胶的数浓度贡献最大。  相似文献   

10.
北京地区春末-秋初气溶胶理化特性的观测研究   总被引:10,自引:0,他引:10       下载免费PDF全文
分析了1997年5~9月和1998年4~9月北京整层大气气溶胶光学厚度、近地面气溶胶粒子数浓度的日变化、季节变化及其与气象要素的关系,还分析了 1997年5月16日、7月21日和8月2日收集的北京单个气溶胶粒子样品的形态、大小和化学元素组成.结果显示,北京地区春末-秋初整层大气气溶胶光学厚度在0.1~1.6之间变化;气溶胶数浓度(D>0.3μm)为几~几百个/cm3;整层大气气溶胶光学厚度的日变化型式与近地面气溶胶数浓度呈现相反的走向;气溶胶光学厚度和数浓度的日、季节变化显示了整层大气和近地面大气气溶胶与该地区气象、气候条件的关系.气溶胶数浓度与大气相对湿度呈正相关,与风向的关系是偏东风数浓度大,西、西南风数浓度小.电子显微镜分析的结果表明:颗粒物的形态以不规则形、丸形、液态滴形和方形为主;颗粒物化学元素组成有Si、K、S、Al、Mg、Ca、Fe等元素;人类活动排放的Zn、P、Ti、pb、Ba等元素也探测到;北京近地面粒子的一个显著特点是富含Ca和K元素,它们可能分别来自建筑粉尘和有机物的燃烧;给出了一个典型的碳黑粒子和一个粒子经过凝结过程的"卫星"滴环绕的矿物粒子的照片和元素谱图.  相似文献   

11.
《Atmospheric Research》2008,87(3-4):194-206
This work aims at determining the aerosol particle radii in the atmosphere of Athens. Such a work is carried out in Athens for the first time. For this purpose, solar spectral direct-beam irradiance measurements were used in the spectral range 310–575 nm. To estimate the particle radius from aerosol optical depth retrieval, a minimization technique was employed based on the golden-section search of the difference between experimental and theoretical values of the aerosol optical depth. The necessary Mie computations were performed based on the algorithm LVEC.In this study, the mean particle radius of a given distribution was calculated every 30 min during cloudless days in the period November 1996 to September 1997. The largest particles were observed in the summer and the smallest during winter. The result was verified by the increased values of the aerosol optical depth and the turbidity factors calculated in the summer. The differences in the diurnal variation from season to season are attributed to the prevailing wind regime, pollutant emission and sink rates in the atmosphere of Athens.  相似文献   

12.
This work aims at determining the aerosol particle radii in the atmosphere of Athens. Such a work is carried out in Athens for the first time. For this purpose, solar spectral direct-beam irradiance measurements were used in the spectral range 310–575 nm. To estimate the particle radius from aerosol optical depth retrieval, a minimization technique was employed based on the golden-section search of the difference between experimental and theoretical values of the aerosol optical depth. The necessary Mie computations were performed based on the algorithm LVEC.In this study, the mean particle radius of a given distribution was calculated every 30 min during cloudless days in the period November 1996 to September 1997. The largest particles were observed in the summer and the smallest during winter. The result was verified by the increased values of the aerosol optical depth and the turbidity factors calculated in the summer. The differences in the diurnal variation from season to season are attributed to the prevailing wind regime, pollutant emission and sink rates in the atmosphere of Athens.  相似文献   

13.
利用地面激光雷达、太阳光度计观测反演气溶胶光学特性参数,结合PM2.5观测数据,分析了2018年1月25—28日北京一次完整污染过程中气溶胶光学特性变化。基于观测数据,利用短波辐射传输模式计算了不同程度污染日,晴空背景下气溶胶对辐射加热率的改变程度。结果表明:清洁日(25日),PM2.5日平均质量浓度为19.00 μg·m-3,440 nm气溶胶光学厚度为0.13,单次散射反照率为0.87,整层气溶胶消光系数低于0.10 km-1,短波辐射均为增温效应;污染期间(26—27日),PM2.5日平均质量浓度为83.21 μg·m-3,气溶胶光学厚度为2.48,气溶胶散射能力增强,单次散射反照率达到0.94,气溶胶主要消光层厚度提升至3.00 km高度,消光系数平均值为0.43 km-1,气溶胶在垂直方向的变化导致气溶胶中上层(1.50~3.00 km高度)加热作用强烈,短波辐射加热率平均值达到13.89 K·d-1,而低层(1.50 km高度以内)加热作用较弱,加热率平均值仅为0.99 K·d-1。气溶胶散射能力增强导致加热作用减弱,污染日加热率对于气溶胶散射能力变化更敏感。  相似文献   

14.
敦煌地区大气气溶胶光学厚度的季节变化   总被引:5,自引:10,他引:5  
李韧  季国良 《高原气象》2003,22(1):84-87
讨论了利用太阳直接辐射资料反演大气气溶胶光学厚度的一种方法,并且用1981-1983年敦煌地区太阳直接辐射资料计算了该地区大气气溶胶光学厚度的季节变化特征,结果表明:敦煌地区大气气溶胶光学厚度冬季稳定,变化小,春季不稳定,变化幅度大,夏季次之;秋季较小。  相似文献   

15.
敦煌地区晴空散射辐射影响因子的统计特征   总被引:3,自引:0,他引:3  
利用敦煌地区1981—1983年全年及1984年与1985年1~2月的日射观测资料,统计分析了敦煌地区晴空下散射辐射与太阳高度角、大气柱气溶胶垂直光学厚度等影响因子的关系,用最小二乘法拟合得到了相应的函数关系式。拟合结果表明:晴空下散射辐射与太阳高度角符合幂函数关系;晴空下散射辐射随大气柱气溶胶光学厚度线性增长。  相似文献   

16.
利用Terra和Aqua卫星上的MODIS探测反演气溶胶产品,比较分析了中国中东部和印度次大陆地区的气溶胶物理特性的异同。研究结果表明:中国中东部气溶胶类型以烟尘为主,印度次大陆地区东、西部分别以烟尘和沙尘为主。两地气溶胶光学厚度均有明显的年际变化,冬季低,夏季高。在夏季,两地烟尘所占比例都很大,且光学厚度也大,故两地污染状况都比较严重。总体来说,中国中东部地区污染程度要高于印度次大陆地区。  相似文献   

17.
SUN-PHOTOMETER CALIBRATION AND ITS APPLICATION   总被引:6,自引:1,他引:6       下载免费PDF全文
Sun-photometer has been widely used to investigate various optical properties of the atmosphere.In order to derivean accurate atmospheric optical depth,great care in the sun-photometer calibration is required.In this paper,the fea-ture of a new sun-photometer is described.Calibration results based on the Langley method at Mt.Huangshan are re-ported.Effect of the atmospheric instability on retrieving the calibration values is discussed and errors in calibration atMt.Huangshan due to temporal variation of aerosol concentration are estimated.It is shown that the calibratedsun-photometer can be used to derive the atmospheric optical depth to an accuracy of 5%.As one of its applications,examples of determination of turbidity parameters and columnar aerosol size distribution are presented.  相似文献   

18.
利用2008年5月16日至2009年4月17日太湖地区多光谱旋转遮光辐射仪(multi—filter ro—tating shadow—band radiometer,简称MFRSR)的观测资料进行反演,得出415、500、615、675和870nm5个波段大气气溶胶光学厚度(aerosol optical depth,简称AOD)及各季节浑浊度系数和波长指数的统计结果。结果表明,5个波段AOD的最大值分别为1.9、1.6、1.3、1.2和1.0;它们谱分布的半宽度分别为0.90、0.70、0.55、0.45和0.25;AOD频率分布极大值处所对应的AOD值分别为0.750、0.550、0.475、0.425和0.425。5个波段AOD的平均值在春季最大,夏季次之,除870nm外,均为冬季最小。浑浊度系数变化范围为0~1.25,其中大于0.2的占97%以上,大于0.4的占66%以上。春季、夏季、秋季和冬季的波长指数变化范围分别为0~3.0、0~2.8、0.2~2.0和0.2~2.0,表明太湖地区大气污染较为严重,且受人为源的影响显著。相对于秋冬季,春夏季有较大粒径的气溶胶粒子存在。  相似文献   

19.
The aerosol optical depth of the atmosphere obtained from spectral sun photometer measurements and the integral optical depth determined from standard actinometric observations of direct solar radiation are the parameters of the optical state of the atmosphere. The quantitative estimates of the integral transparency and aerosol optical depth of the atmosphere in Antarctica are presented, their long-term variability over the entire period of observations is analyzed. The comparison of obtained data with the estimates for other natural regions and conditions revealed that during the periods without the impact of volcanic eruptions, the levels of atmospheric aerosol turbidity in Antarctica over the recent decades are minimal on the planet and can be considered as global background characteristics.  相似文献   

20.
利用2010—2020年黑龙江省龙凤山区域大气本底站气溶胶光学特性长期观测资料, 分析并探讨了背景地区气溶胶光学厚度、波长指数、单次散射反照率、粒子体积谱分布以及气溶胶直接辐射强迫效应的变化特征。结果表明: 龙凤山区域气溶胶光学厚度最高值出现在7月, 平均值为0.67;最小值出现在12月、1月和2月, 平均值分别为0.17、0.02和0.18;气溶胶光学厚度在17时达到最高值为0.39。气溶胶波长指数在4—5月最低, 平均值分别为1.20和1.21;12月最高, 平均值为1.74;波长指数在12时达到峰值, 为1.44。单次散射反照率最低值分别出现在4月、8月和10月, 平均值分别为0.84、0.82和0.84;气溶胶单次散射反照率在12时出现峰值, 为0.95。龙凤山区域春季气溶胶粗粒子体积分数最高值出现在5月, 为0.04 μm3·μm-2, 有效半径为3.85 μm; 夏季气溶胶细粒子体积分数最高值出现在7月, 为0.06 μm3·μm-2, 有效半径为0.19 μm; 秋冬季龙凤山背景地区气溶胶细粒子和粗粒子体积分数均进一步减小。龙凤山区域地面和大气层顶气溶胶直接辐射强迫最高值均出现在7月, 分别为-94.44 W·m-2和-22.33 W·m-2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号