首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A meso-α-scale polar low was observed over the Japan Sea on 19 December 2003. It initialed around 11 UTC over the northwestern part of the Japan Sea within a synoptic-scale parent low under the influence of baroclinic environment and disappeared over the eastern edge of Japan Islands with a lifetime of about 20 h. It is of interest that this polar low had “concentric eye-walls” and “warm core” structure at its mature stage. The evolutionary process and spatial structure of this polar low were investigated by using almost all available observational data, including the Geostationary Operational Environmental Satellite (GOES)-9, the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery, the Final Analyses (FNL) data issued by National Centers for Environmental Prediction (NCEP), the surface observational data and the 9-station sounding data of Japan Islands. In order to study its development mechanism, a 24-h numerical simulation using the version 4.4 of the Regional Atmospheric Modeling System (RAMS) starting from 12 UTC 19 December 2003 with an 8 km × 8 km resolution was performed. It is shown that the RAMS model reproduced the main features of the polar low reasonably well. The vorticity budget analyses indicate that the stretching term is the major contributor for the vorticity increase of the polar low. The baroclinic background seems to play significant role for the initial development of this polar low. However, the effect of the diabatic heating for its later development is also significant.  相似文献   

2.
At approximately 6:10 UTC in the morning of 17th August 2003, a squall line developed over south Catalonia (the northeast region of Spain). During the next 9 h, the squall moved rapidly northeast and crossed Catalonia and the French regions of Languedoc–Roussillon and Province, damaging and uprooting hundreds of trees and blocking trains in the region. Wind gusts reached were recoded up to 52 m/s with evidence of F2 intensity damage. This case study shows the characteristics of a derecho (widespread convectively induced windstorm).Radar observations of the evolving squall line show signatures often correlated with damaging surface winds, including:
a. Bow echoes,
b. Rear inflow notches,
c. Rear inflow jets,
d. Medium altitude radial convergence,
e. Narrow gradient of very marked reflectivity,
f. Development of isolated cells ahead of the convective line,
g. A band of convection off the northern end of the line known as a “warm advection wing”.
When examining the different surface observations, satellite, radar imagery and cloud-to-ground lightning data, this case shows many similarities to those investigated in the United States. The derecho is a hybrid case, but has many characteristics of warm season derechoes. This emanates from a mesoscale convective complex (MCC) moving along a quasi-stationary, low-level thermal boundary in an environment characterized by high potential instability and relatively strong mid-tropospheric winds.  相似文献   

3.
Study of the total lightning activity in a hailstorm   总被引:1,自引:0,他引:1  
A thunderstorm that developed over northeastern Spain on 16 June 2006 is analyzed. This severe thunderstorm produced hailstones as large as 40 mm and had a lifetime of 3 h and 30 min. Radar cross-sections show strong vertical development with cloud echo tops reaching an altitude of 13 km. The specific characteristics of the lightning activity of this storm were: (i) a large amount (81%) of negative cloud-to-ground (−CG) flashes with very low peak currents (< 10 kA in absolute value), (ii) a very large proportion of intra-cloud (IC) flashes with an IC/CG ratio reaching about 400, (iii) a large number of “short” IC flashes (with only 1-VHF source according to SAFIR detection), (iv) a large increase of the −CG flash rate and of the CG proportion near the end of the storm. The rate of −CG flashes with a low peak current were observed to evolve similarly to the rates of IC flashes. Most of them have been assumed to be IC flashes misclassified by the Spanish Lightning Detection Network (SLDN). They have been filtered as it is usually done for misclassified +CG flashes. After this filtering, CG flash rates remained very low (< 1 min− 1) with +CG flashes sometimes dominant. All the particular lightning activity characteristics similar to those observed in the Severe Thunderstorm Electrification and Precipitation Study (STEPS) campaigns support the hypothesis that this thunderstorm could have had an inverted-polarity or complex charge structure. The maximum IC flash rate (67 min− 1) peaked 24 min before the presence of reflectivity higher than 60 dBZ. The IC activity abruptly decreased during the period when reflectivity was dramatically increasing. The time of maximum reflectivity observed by radar was consistent with the times of reported hail at the ground.  相似文献   

4.
A multi-sensor study of the leading-line, trailing-stratiform (LLTS) mesoscale convective system (MCS) that developed over Texas in the afternoon of 7 April 2002 is presented. The analysis relies mainly on operationally available data sources such as GOES East satellite imagery, WSR-88D radar data and NLDN cloud-to-ground flash data. In addition, total lightning information in three dimensions from the LDAR II network in the Dallas–Ft. Worth region is used.GOES East satellite imagery revealed several ring-like cloud top structures with a diameter of about 100 km during MCS formation. The Throckmorton tornadic supercell, which had formed just ahead of the developing linear MCS, was characterized by a high CG+ percentage below a V-shaped cloud top overshoot north of the tornado swath. There were indications of the presence of a tilted electrical dipole in this storm. Also this supercell had low average CG− first stroke currents and flash multiplicities. Interestingly, especially the average CG+ flash multiplicity in the Throckmorton storm showed oscillations with an estimated period of about 15 min.Later on, in the mature LLTS MCS, the radar versus lightning activity comparison revealed two dominant discharge regions at the back of the convective leading edge and a gentle descent of the upper intracloud lightning region into the trailing stratiform region, apparently coupled to hydrometeor sedimentation. There was evidence for an inverted dipole in the stratiform region of the LLTS MCS, and CG+ flashes from the stratiform region had high first return stroke peak currents.  相似文献   

5.
In a recent publication “Glory phenomenon informs of presence and phase state of liquid water in cold clouds” Nevzorov [Nevzorov, A., 2006. Glory phenomenon informs of presence and phase state of liquid water in cold clouds. Atmospheric Research 82, 367–378] claims that “the convincing evidence has been provided that this sort of glory forms as a first-order bow from spherical particles with a refractive index of 1.81–1.82 and diameter over 20 μm”. This is a highly unusual finding because the refractive index of liquid water and ice is between 1.30 and 1.35 in the visible spectral range. The author concludes that “once more corroboration is gained […] of droplets of liquid water in specific phase state referred to amorphous water, or A-water”. Here we show that the phenomena described by the author are easily explained assuming liquid water with a refractive index of 1.33 and a realistic droplet size distribution with an effective radius of around 10 μm. We conclude that this type of observations does not corroborate the existence of amorphous water in the atmosphere. In a recent publication we showed how to quantitatively derive cloud optical thickness, effective droplet radius, and even the width of the size distribution from observations of the glory [Mayer, B., Schröder, M., Preusker, R., Schüller, L., 2004. Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study. Atmospheric Chemistry and Physics 4, 1255–1263].  相似文献   

6.
Measurements of the small-, intermediate-, and large-ion concentrations and the air–earth current density along with simultaneous measurements of the concentration and size distribution of aerosol particles in the size ranges 4.4–163 nm and 0.5–20 μm diameter are reported for a drifting snow period after the occurrence of a blizzard at a coastal station, Maitri, Antarctica. Ion concentrations of all categories and the air–earth current simultaneously decrease by approximately an order of magnitude as the wind speed increases from 5 to 10 ms− 1. The rate of decrease is the highest for large ions, lowest for small ions and in-between the two for intermediate ions. Total aerosol number concentration decreases in the 4.4–163 nm size range but increases in the 0.5–20 μm size range with wind speed. The size distribution of the nanometer particles shows a dominant maximum at ~ 30 nm diameter throughout the period of observations and the height of the maximum decreases with wind speed. However, larger particles show a maximum at ~ 0.7 μm diameter but the height of the maximum increases with increasing wind speed. The results are explained in terms of scavenging of atmospheric ions and aerosols by the drifting snow particles.  相似文献   

7.
Fog has been studied in the Atacama Desert of Chile for the past ten years. This paper analyzes its temporal and spatial variability, relying in part on satellite images (GOES) to analyze the frequent orographic fog and the low cloud deck (stratocumulus, Sc) that generates advective fog in the area. Fog water fluxes were measured with Standard Fog Collectors (SFC). Field trips and observers provided information on cloud top and base and the presence of fog. Vegetation in fog oases were used to confirm the results of these surveys.The Sc moves onshore into the continent with different intensities depending on season and time of day. The maximum spatial extent occurs during winter and at night. Fog is frequent in the coastal cliffs, where fog water fluxes of 7.0 L m− 2 day− 1 were measured using a SFC. It is less frequent 12 km inland, where the collection rates were less than 1 L m− 2 day− 1. The height of the fog collector above the ground affected the collection rate. The highest fog water fluxes were recorded at Alto Patache at altitudes of between 750 and 850 m a.s.l. The growth or thickness of the cloud is important in the collection of fog water. The information that GOES provides on the altitude of the top of low clouds is used to analyze this factor. Fog oases are described and analyzed in relation to how the geographical location of fog influences the growth of vegetation.  相似文献   

8.
As part of a series of studies on laser propagation for terrestrial free space optical (FSO) telecommunications or laser telecommunications, an experiment was conducted to determine the relationship between visibility in fog and optical attenuation (dB/km) at a laser wavelength of 1.55 μm. In the telecommunications industry, a semi-empirical equation, called the Kruse formula [Kruse, P.W., McGlauchlin, L., McQuistan, R.B., 1962. Elements of infrared technology: generation, transmission, and detection. John Wiley and Sons, New York] is typically used to calculate expected attenuation for a given meteorological visibility. The Kruse formula, however, was developed to relate meteorological visibility to optical attenuation over wavelengths from the visible to the near infrared (IR), and for dust and small particle aerosols with dimensions much smaller than the wavelength. Typically, suspended small aerosols have diameters that average about 0.1 μm while fog droplets have diameters that range upward from 2.5 μm with mean diameters that exceed 10 μm in some fogs. Therefore, application of the Kruse formula to attenuation in fog is not appropriate since fogs consist mainly of particles much larger than the laser wavelength. As part of the experiment, a transmissometer with an 85-m baseline and a dynamic range of 60 dB operated for thirteen months in an area prone to radiation fog. A commercial visibility sensor, similar to those used at airports, was located near the middle of the optical path of the transmissometer and operated over the same period. The largest attenuation measured at this site was just over 300 dB/km, corresponding to a visibility of 32 m. The key finding of the study is that the generally accepted Kruse formula relating visibility and optical attenuation may be too pessimistic at low visibilities, and actual attenuation values for a given visibility may be more than 20% lower than previously thought. At visibilities exceeding about 650 m, the Kruse formula gives a good estimate of optical attenuation.  相似文献   

9.
Measurements from July 4 to July 8, 2005 by a high resolution visible radiometer, a Raman lidar, a ground particulate matter sampler, and ground meteorological sensors have been combined in synergy to infer the intrusion over south-east Italy, of air masses from north-west Sahara, the Atlantic Ocean, and the continental Europe. It is shown that backscatter coefficient, depolarization-ratio, and lidar ratio vertical profiles represent the best tools to detect the intrusion of long range transported air masses and to monitor their effects on the vertical distribution of aerosol optical and microphysical properties. High resolution radiometers are instead important tools to monitor changes on columnar aerosol properties and size distributions.Backscatter coefficient, depolarization-ratio, and lidar ratio vertical profiles have revealed that aerosol optical and microphysical properties significantly changed with time and space during African dust outbreaks: the intrusion of dust particles that at first occurred above 2 km of altitude extending up to 6 km, affected the all aerosol load down to ground within few hours. Aerosol size distributions showed during dust events a clear bimodality with an accumulation mode maximum at 0.24 µm and a coarse mode maximum at 0.94 μm. Conversely, we have found that during the advection of air masses from the Atlantic and continental Europe, aerosol particles were mainly located below 2 km, their optical and microphysical properties were affected by smaller changes in time and space, and were characterized by depolarization ratios rather close to those due to a pure molecular atmosphere. In this case bimodal size distributions with an accumulation mode showing two sub-modes at 0.16 μm and 0.24 μm, respectively and a coarse mode centred at 0.94 μm have also been observed.  相似文献   

10.
An inter-comparison study of the aerosol optical thickness (AOT) at 0.55 μm retrieved using different satellite instruments and algorithms based on the analysis of backscattered solar light is presented for a single scene over central Europe on October 13th, 2005. For the first time comparisons have been performed for as many as six instruments on multiple satellite platforms. Ten different algorithms are briefly discussed and inter-compared. It was found that on the scale of a single pixel there can be large differences in AOT retrieved over land using different retrieval techniques and instruments. However, these differences are not as pronounced for the average AOT over land. For instance, the average AOT at 0.55 μm for the area 7–12E, 49–53N was equal to 0.14 for MISR, NASA MODIS and POLDER algorithms. It is smaller by 0.01 for the ESA MERIS aerosol product and larger by 0.04 for the MERIS BAER algorithm. AOT as derived using AATSR gives on average larger values as compared to all other instruments, while SCIAMACHY retrievals underestimate the aerosol loading. These discrepancies are explained by uncertainties in a priori assumptions used in the different algorithms and differences in the sensor characteristics. Validation against AERONET shows that MERIS provides the most accurate AOT retrievals for this scene.  相似文献   

11.
A comparison of MODIS-derived cloud amount with visual surface observations   总被引:6,自引:0,他引:6  
Two main sources for global cloud climatologies are visual surface observations and observations made by spaceborne sensors. Satellite observations compared with surface data show in most cases differences ranging from − 15% up to − 1%, depending on sensor and observation conditions. These differences are partially controlled by sensors' cloud detection capabilities — a higher number of spectral bands and higher spatial resolution are believed to allow discrimination of clouds from land/ocean/snow background. A Moderate-Resolution Imaging Spectroradiometer (MODIS) produces images of the atmosphere in 36 spectral bands with a spatial resolution of 250–1000 m, thus having a capacity for cloud detection far more advanced than other operating sensors. In this study, instantaneous MODIS cloud observations were compared with surface data for Poland for January (winter) and July (summer) 2004. It was found that MODIS observed 4.38% greater cloud amount in summer conditions and 7.28% in winter conditions. Differences were greater at night (7–8%) than in daytime (0.5–7%) and correlations ranged between 0.577 (winter night) and 0.843 (winter day, summer day and night).  相似文献   

12.
利用热带测雨卫星测雨雷达的10年探测结果,对夏季亚洲对流降水与层云降水雨顶高度分布、雨顶高度与地表降水强度的关系、雨顶高度日变化特征进行了研究。结果表明,青藏高原和中国东部平原的多数(70%以上)对流降水雨顶高度分布在8—12和5—10km,其他地区分布在5—9km;陆面对流降水雨顶平均高度高于洋面。洋面和陆面层云降水雨顶高度没有明显差异,多在5—8km。夏季亚洲浅对流降水比例少,而深厚对流主要出现在中国东部平原、西南、印度次大陆西部至伊朗高原东部地区,比例约40%。洋面和陆面的弱对流降水的雨顶平均高度在7—8km,弱层云降水相应的雨顶平均高度多小于7.5km;陆面约90%的强对流降水雨顶平均高度在9km以上,而强层云降水雨顶的平均高度通常不超过8.5km。夏季亚洲对流降水和层云降水的雨顶平均高度均随着地面平均降水率的增大而升高,两者遵从二次函数关系。对流降水及层云降水频次、强度和雨顶高度的日变化峰值分析表明,陆面这些参量的日变化强于洋面,并且三者的日变化基本同步。  相似文献   

13.
The initial discharge stages of two flashes during the Shandong Artificially Triggering Lightning Experiment (SHATLE) are analyzed based on the synchronous data of the current and close electromagnetic field. For a lightning flash, named 0503, the wire was connected, not electrically, but via a 5 m length of nylon, with the lightning rod; while for another, named 0602, the wire was connected with the rod directly. Results show that the discharge processes of the initial stage (IS) in flash 0503 are quite different from that of the usual classical-triggered flash 0602 and altitude-triggered flashes. A large pulse with a current of about 720 A resulted from the breakdown of the 5 m air gap during flash 0503, and the corresponding electric field at 60 m from the lightning rod was 0.38 kV/m. The upward positive leaders (UPLs) propagated continuously from the tip of the rocket after this breakdown. The geometric mean (GM) of the UPL peak current was 23.0 A. Vaporization of the wire occurred during the initial continuous current (ICC) stage and the largest current pulse was about 400 A. Compared with triggered flash 0503, the discharge processes of IS in flash 0602 were simple, only two large pulses similar to each other occurred before dart leader/return stroke sequences. The peak current of the first pulse was 2.1 kA and its corresponding electric field and magnetic field at a distance of 60 m from the lightning rod were 0.98 kV/m and 7.03 μT, respectively. During the second pulse, the wire disintegrated. The current decreased to the background level at the moment of the wire disintegration. The current of the second pulse in triggered flash 0602 was 2.8 kA, and the corresponding electric field and magnetic field at 60 m from the lightning rod were 1.22 kV/m and 9.01 μT, respectively.  相似文献   

14.
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m− 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m− 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day− 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

15.
In the Atacama Desert, the narrow littoral plain and the adjacent mountain range have a unique climate. This area is locally called the “coastal desert with abundant cloudiness”, and extends from the coastline up to an elevation of 1000 m. The climate is designated as being BWn according to Köppen's Climate Classification as adapted for Chile. In the original classification the acronym (Bn) is used for foggy environments. Toward the east a “normal desert” climate (BW) is found. This is known as one of the most extreme deserts of the world. In the BWn areas there are meteorological differences between low and high elevation zones. The climate of the coastal plains and the mountains is described in this paper in order to show that there is an area where the climate differs from those classified as BWn and BW in the Chilean Climate Classification. This area is located between 650 and 1200 m a.s.l. and contains several fog oases or lomas vegetation, rich in biodiversity and endemism.The weather is warmer near sea level, with an annual average temperature of 18 °C. At high elevation sites like Alto Patache, the temperature decreases at a rate of 0.7 °C for every 100-m increase in altitude. The average annual minimum temperature often approaches 1 °C in winter, while the mean annual temperature range is significant (8.3 °C in Los Cóndores). The mean monthly relative humidity in Alto Patache is over 80%, except during the summer months. During autumn, winter and spring high elevation fog is present in the study area at altitudes ranging from 650 m up to 1060 m, giving annual water yields of 0.8 to 7 L m− 2 day− 1. If vegetation is used as an indicator, the foggy zone lies between 650 m a.s.l. and 1200 m a.s.l. About 70% of the mountain range experiences the foggy climate, as opposed to the coastal plains that are characterized by a cloudy climate.  相似文献   

16.
A few years ago, we identified a deep convective transport mechanism, of water vapor through the tropopause, namely, storm top gravity wave breaking, such that tropospheric water substance can be injected into the lower stratosphere via this pathway. The main evidence presented previously was taken from the lower resolution AVHRR images of the storm anvil top cirrus plumes obtained by polar orbiting satellites. Recent observations have provided further supporting evidence for this important cross-tropopause transport mechanism. There are now many higher resolution satellite images, mainly from MODIS instrument, that show more definitely the existence of these plumes, many of which would probably be unseen by lower resolution images.Furthermore, a thunderstorm movie taken in Denver (USA) area during STEPS2000 field campaign and another thunderstorm movie taken by a building top webcam in Zurich also demonstrate that the jumping cirrus phenomenon, first identified by T. Fujita in 1980s, may be quite common in active thunderstorm cells, quite contrary to previous belief that it is rare. We have used a cloud model to demonstrate that the jumping cirrus is exactly the gravity wave breaking phenomenon that transports water vapor through the tropopause.These additional evidences provide increasing support that deep convection contributes substantially to the troposphere-to-stratosphere transport of water substance. This corroborates well with recent studies of the stratospheric HDO/H2O ratio which is much highly than it would be if the transport is via slow ascent. The only explanation that can be used to interpret this observation at present is that water substance is transported through the tropopause via rapid vertical motion, i.e., deep convection.  相似文献   

17.
Black carbon relationships with emissions and meteorology in Xi'an, China   总被引:4,自引:0,他引:4  
Aerosol black carbon (BC) was measured every 5 min at Xi'an, China from September 2003 to August 2005. Daily BC concentrations ranged from 2 to 65 μg m− 3, averaging 14.7 ± 9.5 μg m− 3 and displayed clear summer minima and winter maxima. BC typically peaked between 0800 and 1000 LST and again between 2000 and 2200 LST, corresponding with morning and evening traffic combined with nighttime residential cooking and heating. The nocturnal peak was especially evident in winter, when more domestic heating is used and pollutant-trapping surface-inversions form earlier than in summer. BC frequency distributions the most commonly occurring concentrations occurred between 5 and 10 μg m− 3 in all four seasons. BC ranged from 1.6% and 15.6%, and averaged 8.3% of PM2.5. A clear inverse relationship between BC and wind speed (WS) was found when WS was below 2.5 to 3.0 m s− 1, implying a local origin for BC. Mixed layer depths (MLDs) were shallower during BC episodes compared to cleaner conditions.  相似文献   

18.
Formation of horizontal convective rolls in urban areas   总被引:6,自引:0,他引:6  
The formation of horizontal convective rolls (HCRs) in urban areas is investigated in this paper using observations and fine-scale numerical simulations. Cloud streets organized parallel to the mean boundary-layer wind (a manifestation of HCRs) are seen in the Fengyun-2C satellite imagery around local noon in Beijing. Observed vertical velocity and horizontal wind fields from an urban wind profiler suggest that the time scale for alternating updraft and downdraft in the boundary layer is about 30 min, and the length of the updraft/downdraft is about 9 km. Numerical simulations show that most HCRs occur in the urban areas with − zi / L < 25 (zi: the boundary-layer depth, L: the Monin–Obukhov length). Sensitivity tests reveal that HCRs are common in urban boundary layers, while rural areas are more conducive to forming cellular convection; the aspect ratio of HCRs in urban areas is smaller than the typical value over natural landscapes.  相似文献   

19.
Summary This paper reports on a small-scale pilot experiment held early in the dry season near Darwin, Australia, in which fine-scale observations of several prescribed fires were made using infrared digital video. Infrared imaging is used routinely to locate fires as infrared radiation suffers little attenuation as it propagates through the smoke that normally obscures visible imagery. However, until now, little use has been made of digital video imagery in analyzing the convective-scale structure of prescribed (or wild) fires. The advantage of digital video imagery is that the individual frames can be objectively analyzed to determine the convective motion in the plane viewed by the camera. The infrared imagery shows mostly rising plumes, much like convective clouds. The flow is highly convective, and the vertical transport of heat is confined to relatively narrow thermals. The updrafts range from a few ms–1 to around 15ms–1. A numerical model is used to simulate one of the prescribed fires at very high-resolution. For the most part, the model predictions compare well to the observations. The model produces plumes that are around 7m high, and spaced around 5m apart, which is similar to that observed. The model correctly predicts the mean rate of spread of the fire to be 1.3ms–1. Perhaps the most serious limitations to using infrared observations of the type presented here are the difficulties in interpreting precisely the relationship between the observed infrared temperature field and the air temperature calculated by the model, and the exact connection between the infrared camera derived flow field and that calculated by the model.  相似文献   

20.
The changing chemical composition of cloud water and precipitation in the Western Sudety Mountains are discussed against the background of air-pollution changes in the Black Triangle since the 1980s until September 2004. A marked reduction of sulphur dioxide emissions between the early 1990's and the present (from almost 2 million tons to around 0.2 million tons) has been observed, with a substantial decline of sulphate and hydrogen concentration in cloud water (SO42− from more than 200 to around 70 μmol l− 1; H+ from 150 to 50 μmol l− 1) and precipitation (SO42− from around 80 to 20–30 μmol l− 1; H+ from around 60 to 10–15 μmol l− 1) samples. At some sites, where fog/cloud becomes the major source of pollutants, deposition hot spots are still observed where, for example, nitrogen deposition can exceed 20 times the relevant critical load. The results show that monitoring of cloud water chemistry can be a sensitive indicator of pollutant emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号