首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
总结并分析了在非饱和土边坡稳定性评价方面的研究成果与新进展。首先总结了影响非饱和土边坡稳定性的各种因素,介绍了将基质吸力引入到各种非饱和土边坡稳定性分析方法中不同的实现思路,并讨论了这些方法的优点和不足;然后结合黄土和膨胀土两类非饱和土的特殊性质探讨了这两类土的边坡稳定性分析的研究现状和面临的问题,提出了将非饱和土力学普遍规律与黄土、膨胀土的特殊性相结合是有效解决和发展新的非饱和黄土、膨胀土边坡稳定性评价方法的主要思路和研究方向。  相似文献   

2.
Hysteresis is a common feature exhibited in hydraulic properties of an unsaturated soil. The movement of wetting front and the hysteresis effect are important factors which impact the shear strength of the unsaturated soil and the mechanics of shallow landslides. These failures are mainly triggered by the deepening of the wetting front accompanied by a decrease in matric suction induced by infiltration. This research establishes a method for determining a stability analysis of unsaturated infinite soil slopes, integrating the influence of infiltration and the water retention curve hysteresis. Furthermore, the present stability analysis method including the infiltration model and the advanced Mohr–Coulomb failure criterion calculates the variations of the safety factor (FS) in accordance with different slope angle, depth and hydrological processes. The experimentally measured data on the effect of hysteresis are also carried out for comparison. Numerical analyses, employing both wetting and drying hydraulic behaviour of unsaturated soil, are performed to study the difference in soil‐water content as observed in the experiments. The simulating approximations also fully responded to the experimental data of sand box. The results suggest that the hysteresis behaviour affect the distribution of soil‐water content within the slope indeed. The hysteresis made the FS values a remarkable recovery during the period of non‐rainfall in a rainfall event. The appropriate hydraulic properties of soil (i.e. wetting or drying) should be used in accordance with the processes that unsaturated soil actually experience. This method will enable us to acquire more accurate matric suction head and the unsaturated soil‐shear strength as it changes with the hysteretic flow, in order to calculate into the stability analysis of shallow landslides. An advanced understanding of the process mechanism afforded by this method is critical to realizing a reliable and appropriate design for slope stabilization. It also offers some immediate reference information to the disaster reduction department of the government. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
为解决在膨胀土山区修建机场时跑道地基处理的问题,以安康地区膨胀土为研究对象,在对现行石灰改良膨胀土施工控制参数常用方法分析的基础上,进行膨胀土及石灰改良膨胀土的膨胀性能和强度的相关试验。研究结果表明:随着石灰掺量的增加,最优含水率增大,最大干密度减小,胀缩潜势呈降低趋势,石灰掺量与最大干密度呈非线性关系,在石灰掺量达到9%时有荷膨胀率变化的规律性很强;相同石灰掺量改良土的CBR与击实功、含水量等因素有关,并不随着压实系数增加而增大。掺加石灰的比例对石灰改良膨胀土的强度增长影响较大,石灰掺量9%时的CBR值明显大于其他掺量;相同压实系数下石灰掺量3%和6%改良膨胀土的压缩性比较接近,石灰掺量增加到9%时其压缩性明显降低。结合试验结果,提出用石灰改良膨胀土对跑道进行地基处理,并以膨胀性指标作为主要控制指标、强度指标作为验证指标来确定施工参数。  相似文献   

4.

The present study proposes a novel and simplified methodology to assess the seismic bearing capacity (SBC) of a shallow strip footing by incorporating strength non-linearity arising due to partial saturation of a soil matrix. Furthermore, developed methodology incorporates the modal response analysis of soil layers to assess SBC. A constant matric suction distribution profile has been considered throughout the depth of the soil. The Van Genuchten equation and corresponding fitting parameters have been considered to quantify matric suction in the analysis. SBC has been obtained for three different geomaterials; viz. sand, fly ash and clay, based on their predominant grain size and diverse soil water characteristics curve (SWCC) attributes. Variation of SBC with different modes of vibration and damping ratio are reported for ranges of matric suction pertinent to the geomaterials considered in the study. The relative significance of matric suction on SBC has been reported for suction values within the transition zone of each geomaterial. It is observed that the SBC of sand is drastically reduced, with matric suction reaching beyond the residual suction value. The SBC of fly ash remains constant beyond the residual suction value, whereas the SBC of clay shows an increasing trend toward the practical range of matric suction values.

  相似文献   

5.
Changes in groundwater elevation may cause a change in the net normal stress and matric potential within the soil mass, which results in volume changes of unsaturated soil. This research investigated the relationship between the drawdown of groundwater and the characteristics of volumetric compressibility of unsaturated soil. Sand column experiments were designed and conducted to measure the volume changes of coarse and fine sands under different types of drainage conditions at fast and slow drainage rates. The finite element program FEMWATER was calibrated and used to simulate the distributions of stress, tension and moisture content within the sands. Finally, based on the changes of net normal stress and matric potential and the observed volume change of the sands, a least‐square method was applied to determine the volumetric consolidation parameters of the unsaturated soils. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The tensiometer, introduced by Richards and Gardner (1936) has been a tool often ignored in unsaturated zone investigations. Hazardous waste disposal studies that require values of unsaturated zone matric potentials will expand tensiometer use. Familiarity with operation and installation principles is necessary to ensure quality data collection.
The essential elements of a tensiometer are a porous cup connected with tubing to a vacuum gauge; all are filled with water. When the porous cup is buried in unsaturated soil, the soil draws water through the cup wall, until the water tension inside the cup equals the surrounding soil-water tension. The tension is transmitted through the water filled tube to an accessible vacuum gauge (manometer or transducer) and is recorded manually or automatically.
Although specialized tensiometers exist, the tensiometer presented here in detail is suited to diverse on-site applications. Constructed from readily available, inexpensive parts, it can measure as much as 0.85 bar of tension. Design features include a flushing system for removal of entrapped air or mercury, and an easily maintained modular network of nylon manometers and water-supply tubes.
Good hydraulic connection between porous cup and soil and meticulous backfill procedures are necessary for accurate measurement of representative matric potentials. Proper and consistent use of tensiometers should yield reliable values of matric potentials, and lead to a better understanding of unsaturated zone processes.  相似文献   

8.
通过饱和原状黄土常规三轴试验和非饱和原状黄土等吸力三轴试验研究吸力和净围压对非饱和黄土强度变形的影响,并用HUANG等、胡冉等和方祥位等提出的土水特征曲线模型分析剪切过程中排水规律。研究结果表明:等吸力下原状土样固结剪切体积变形随净围压增大而增大;等净围压下原状土样固结剪切体积变形量随吸力的增大基本呈减小趋势。p-q平面内饱和土CSL线逐渐超过低吸力下非饱和土CSL线,原因在于随着p值增大,相对于非饱和土,饱和土孔隙比越来越小,较小孔隙比对抗剪强度的贡献逐渐大于非饱和土吸力对抗剪强度的贡献。应用固结稳定的数据拟合出HUANG等和胡冉等提出的模型参数,并预测剪切过程中的排水量,发现剪切速率对排水量有影响,这两种模型适用于剪切速率慢,排水充分的情况,而方祥位等提出的模型对不同剪切速率会拟合出不同的参数。  相似文献   

9.
Understanding the response of partially saturated earth structures under various static and dynamic loads is important for the design and construction of economical and safe geotechnical engineering structures. In this study, the numerical approach is used to understand the dynamics of partially saturated soils. The mathematical equations governing the dynamics of partially saturated soils are derived based on the theory of mixtures and implemented within a finite element framework. The stress–strain behavior of the soil is represented by an elasto-plastic constitutive model for unsaturated soil based on bounding surface concept and the moisture-suction behavior is modeled using van Genuchten model. Fully coupled finite element simulations are performed to study the response of partially saturated soil embankment under earthquake loading and validated with centrifuge test results available in the literature. The predicted displacement responses are in good agreement with the measured responses. The pore water pressure, pore air pressure, matric suction, the degree of saturation in various elements and the response of the embankment under different initial moisture content are also discussed.  相似文献   

10.
The closed form three-dimensional Green׳s function of a semi-infinite unsaturated poroelastic medium subjected to an arbitrary internal harmonic loading is derived, with consideration of capillary pressure and dynamic shear modulus varying with saturation. By applying the Fourier expansion techniques and Hankel integral transforms to the circumferential and radial coordinates, respectively, the general solution for the governing partial differential equations is obtained in the transformed domain. A corresponding boundary value problem is formulated. The integral solutions for the induced displacements, pore pressure and net stress are then determined considering the continuity conditions. The formulas are compared with the degenerated solution of saturated soils and confirmed. Numerical results reveal that the response of the unsaturated half-space depends significantly on the saturation by altering dynamic shear modulus to account for the effects of matric suction on soil stiffness. Slight differences between the results occur if only the saturation is taken into account. Moreover, a large source-depth results in a pronounced contribution to the reduction of surface displacement amplitudes. The analytical solutions concluded in the study offer a broader application to dynamic response associated with axi-symmetric and asymmetric conditions.  相似文献   

11.
Though it is well known that vegetation affects the water balance of soils through canopy interception and evapotranspiration, its hydrological contribution to soil hydrology and stability is yet to be fully quantified. To improve understanding of this hydrological process, soil water dynamics have been monitored at three adjacent hillslopes with different vegetation covers (deciduous tree cover, coniferous tree cover, and grass cover), for nine months from December 2014 to September 2015. The monitored soil moisture values were translated into soil matric suction (SMS) values to facilitate the analysis of hillslope stability. Our observations showed significant seasonal variations in SMS for each vegetation cover condition. However, a significant difference between different vegetation covers was only evident during the winter season where the mean SMS under coniferous tree cover (83.6 kPa) was significantly greater than that under grass cover (41 kPa). The hydrological reinforcing contribution due to matric suction was highest for the hillslope with coniferous tree cover, while the hillslope with deciduous tree cover was second and the hillslope with grass cover was third. The greatest contributions for all cover types were during the summer season. During the winter season, the wettest period of the monitoring study, the additional hydrological reinforcing contributions provided by the deciduous tree cover (1.5 to 6.5 kPa) or the grass cover (0.9 to 5.4 kPa) were insufficient to avoid potential slope failure conditions. However, the additional hydrological reinforcing contribution from the coniferous tree cover (5.8 to 10.4 kPa) was sufficient to provide potentially stable hillslope conditions during the winter season. Our study clearly suggests that during the winter season the hydrological effects from both deciduous tree and grass covers are insufficient to promote slope stability, while the hydrological reinforcing effects from the coniferous tree cover are sufficient even during the winter season. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
密度对非饱和粘土渗透系数的影响研究   总被引:1,自引:0,他引:1  
李小伟  王世梅  黄净萍 《地震工程学报》2011,33(Z1):214-217,222
取三峡库区某滑坡滑带土制备不同干密度的重塑土样进行饱和渗透试验和非饱和土水特征曲线试验,得到不同干密度重塑土样的土水特征曲线,通过理论公式预测出相应的非饱和渗透系数,进而得到不同干密度重塑土样渗透系数与基质吸力的关系.结果显示:渗透系数随着基质吸力的增大而呈非线性减小,当基质吸力较高时,渗透系数随基质吸力的变化比较小;...  相似文献   

13.
The results of laboratory experiments on studying the electrical conductivity σ of a clay mineral montmorillonite from different sedimentary mineral deposits of Dagestan in the temperature interval from 100 to 1000°C are presented. The general regularities in the dependence of the electrical conductivity σ of the studied samples on the absolute temperature T are accounted for by the existence of the associated complexes of elementary defects of the crystal lattice. These complexes play important role in a variety of kinetic processes under the conditions of the Earth’s interior, and their existence is demonstrated by the experiments. The activation energy of the electrical conductivity and the preexponential factors are determined for all the temperature zones. The relationship between the pattern of temperature variations in electrical conductivity and the processes of releasing interlayer water and hydroxyls from different energy sites is established. It is concluded that the anomalous change in electrical conductivity in some samples reflects the postsedimentation changes of montmorillonite manifesting themselves by the emergence of a hydromuscovite component.  相似文献   

14.
In the last decade, sediment replenishment forming cohesionless sandy banks below dams has become an increasingly common practice in Japan to compensate for sediment deficits downstream. The erosion process of the placed cohesionless sediment is a combination of lateral toe-erosion and the following mass failure. To explore cohesionless bank failure mechanisms, a series of experiments was done in a soil tank using a compacted sandy soil mass exposed to an increasing water level. Two types of uniform sand(D_(50) = 0.40 mm and 0.17 mm) and two bank heights(50 cm and 25 cm) were used under the condition of a constant bank slope of 75°. The three dimensional(3D) geometry of the bank after failure was measured using a handheld 3D scanner. The motion of bank failure was captured using the particle image velocimetry(PIV) technique, and the matric suction was measured by tensiometers. The compacted sandy soil was eroded by loss of matric suction accompanying the rise in water level which subsequently caused rotational slide and cantilever toppling failure due to destabilization of the bank. The effect of erosion protection resulting from the slumped blocks after these failures is discussed in the light of different failure mechanisms. Tensile strength is analyzed by inverse calculation of cantilever toppling failure events. The tensile strength had non-linear relation with degree of saturation and showed a peak.The findings of the study show that it is important to incorporate the non-linear relation of tensile strength into stability analysis of cantilever toppling failure and prediction of tension crack depth within unsaturated cohesionless banks.  相似文献   

15.
Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table fluctuations in response to precipitation; however, observed variations in soil morphology also occurred above the maximum height of observed saturation. Variations in unsaturated fluxes have been hypothesized to explain differences in soil horizon thickness and presence/absence of specific horizons but have not been explicitly investigated. We examined tensiometer and shallow groundwater well records to identify differences in unsaturated water fluxes among podzols that show distinct morphological and chemical differences. The lack of vertical hydraulic gradients at the study sites suggests that lateral unsaturated flow occurs in several of the soil units. We propose that the variations in soil horizon thickness and presence/absence observed at the site are due in part to slope‐parallel water flux in the unsaturated portion of the solum. In addition, unsaturated flow may be involved in the translocation of spodic material that primes those areas to contribute water with distinct chemistry to the stream network and represents a potential source/sink of organometallic compounds in the landscape.  相似文献   

16.
Previous studies have shown that water retention curve (WRC) and the hydraulic conductivity vary because of changes of the void ratio or porosity of soil. However, limited documents pointed out the change of hydraulic properties of soil when compacted to different porosities while considering both of the drying and wetting processes of the WRC. This information is sometimes necessary for research like finger flow analysis or the occurrence of wetting and drying cycles as what would be seen in the field. Therefore, this study aims to examine the change of WRC characteristics with varied porosity considering both of the drying and wetting path in WRC by conducting a sand box experiment. Results show that the same type of sand compacted to various porosities have different hydraulic parameters. Hydraulic conductivities generally decrease with reduced porosities; shape parameter α of the van Genuchten equation (1980) linearly decreases with declining porosity and shape parameter n in a reversal manner for the sands of interest whether in the drying process or wetting process. The unsaturated properties of sand are further characterized by inspecting the variations of moisture content, matric suction and vertical displacement of soil body subject to periodic changes of the water level by another sand box experiment. The outcomes suggest that the saturated water content and residual water content are changing during the wetting–drying process, which can be an implication of the changed properties of WRC. The characteristics of volumetric deformation might be varied as well because of the observation of the dissimilar patterns of the changing vertical displacements among each wetting–drying process. Infiltration patterns of the sands also are identified through numerical modelling by introducing a constant infiltration flux from the surface followed by a no‐influx condition. Results indicate that less water accumulates in the sand near the surface for the sand compacted to higher porosity, but water can move deeper. Hydraulic conductivity is found as the prime factor dominating the evolvement of wetting fronts. However, shape parameters of water retention curves also affect the infiltration pattern to some extent. In addition, different sands with similar porosities can have quite different infiltrating characteristics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Relationships between gravimetric soil moisture content (w) and matric potential (ϕ), and between volumetric soil moisture content (θv) and pressure head (h) were approximated for the unsaturated zone on Long Island, New York. Soil samples were collected from two sites using a hand auger. The soil moisture content was determined using the filter‐paper (wf) and gravimetric (w) methods, respectively. The wf was then used in an empirical equation to estimate ϕm. Each set of ϕm and w was combined with a straight‐line empirical model to obtain a wm) relationship. Soil ϕm was converted to h, and w to the volumetric moisture content θv, in order to produce a θv(h) curve. Graphical and statistical comparison showed that the resulting θv(h) curves fell within one order of magnitude of similar curves generated by a more sophisticated non‐linear model developed previously. The simplicity and low cost of the filter‐paper approach described in this study recommends it for preliminary studies of hydraulic properties in the unsaturated zone. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Accurate determination of the water retention curve (WRC) of a soil is essential for the understanding and modelling of the subsurface hydrological, ecological, and biogeochemical processes. Volcanic ash soils with andic properties (Andosols) are recognized as important providers of ecological and hydrological services in mountainous regions worldwide due to their large fraction of small size particles (clay, silt, and organic matter) that gives them an outstanding water holding capacity. Previous comparative analyses of in situ (field) and standard laboratory methods for the determination of the WRC of Andosols showed contrasting results. Based on an extensive analysis of laboratory, experimental, and field measured WRCs of Andosols in combination with data extracted from the published literature we show that standard laboratory methods using small soil sample volumes (≤300 cm3) mimic the WRC of these soils only partially. The results obtained by the latter resemble only a small portion of the wet range of the Andosols' WRC (from saturation up to −5 kPa, or pF 1.7), but overestimate substantially their water content for higher matric potentials. This discrepancy occurs irrespective of site-specific land use and cover, soil properties, and applied method. The disagreement limits our capacity to infer correctly subsurface hydrological behaviour, as illustrated through the analysis of long-term soil moisture and matric potential data from an experimental site in the tropical Andes. These findings imply that results reported in past research should be used with caution and that future research should focus on determining laboratory methods that allow obtaining a correct characterization of the WRC of Andosols. For the latter, a set of recommendations and future directions to solve the identified methodological issues is proposed.  相似文献   

19.
The dependence of the soil water content ? upon the matric potential ψ is studied within a fractal approach that regards the water retention curve as a sequence of well defined fractal regimes. Each of such regimes accounts for a given functional dependence ??(ψ), which in turn is characterized by a fractal dimension. The difference between the double fractal (observed into sandy soils) and multifractal (observed into clay soils) regime is explained by recalling that, for a sandy soil, the transition from saturated to dry conditions is driven by a steep reduction of ψ. To the contrary, for a clay (where the change from the highest water contents to the smallest ones is characterized by a large range of the matric potential), the multifractal behaviour is observed. These results are also confirmed by the analysis of experimental data. In particular, we show that the intermediate regime, generally accounting for the fractal multimodality, is due to the sandy nature of the soil at stake, practically immaterial. Finally, we demonstrate that our model can be also regarded as the straightforward generalization of that of Millán and González‐Posada ( 2005 ).  相似文献   

20.
The distributions of specific catchment area and specific dispersal area values over the hillside studied by Anderson and Burt (1978) relate much more closely to the observed distributions of soil water matric potential than do the occurrences of contour concavity on which the authors rely. Highest potential always occurred in the zone of large specific catchment area except immediately after rainfall, when it occurred in the zone of small dispersal area. Isolines of low potential persistently conformed to those of specific dispersal area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号