首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 609 毫秒
1.
疏散星团是探究银河系结构与演化的良好示踪体,一直以来颇受关注.之前关于疏散星团的研究中,仅有一小部分疏散星团有金属丰度参数,而且,金属丰度的测量,是基于不同质量的观测数据,采用了不同的方法.收集了一个年龄大于2 Gyr的老年疏散星团样本,通过整理这些星团成员星的金属丰度数据,一方面,以星团NGC 2682为例,对比了不同光谱巡天项目给出的星团成员星金属丰度的系统差异;另一方面,计算了星团成员星金属丰度的平均值和中位值,作为该疏散星团的金属丰度推荐值.此外,还利用该样本探究了银盘径向金属丰度梯度随时间的演化,结果表明,早期银盘有着更加陡峭的径向金属丰度梯度,随着演化时间的增加,银盘径向金属丰度梯度逐渐趋于平缓,为银盘化学演化模型提供了更加严格的观测约束.  相似文献   

2.
<正>恒星的化学元素丰度特征能够反映其形成和演化历史.以化学元素丰度为手段,研究了银河系中恒星的径向迁移对银河系化学演化的影响,以及球状星团中渐进巨星支(AGB)恒星的多星族问题.近年的观测和理论研究表明:恒星在银盘里有径向迁移.基于详细的银河系化学演化模型,再采用分布函数模拟恒星径向迁移过程,研究了恒星的径向迁移对银盘径向元素丰度梯度的影响.结果显示:  相似文献   

3.
为了理解银盘的径向丰度梯度形成机制及冷气体演化,构建了银盘化学演化模型.模型中采用了与分子氢相关的恒星形成律,分开计算了分子氢和原子氢的质量面密度演化,并将模型预言和观测到的各物理量径向轮廓进行了比较.结果表明,模型预言对所采用的内落时标非常敏感,采用与分子氢相关的恒星形成律的模型能够较好地符合银盘基本的观测特征,尤其是能够自然地得到银盘的径向氧丰度梯度和冷气体的径向面密度轮廓.采用瞬时或非瞬时循环假设对冷气体的演化影响不大,在气体密度较低的情况下更是如此.  相似文献   

4.
整理汇集了同时具备距离、年龄与金属丰度数据的疏散星团样本,共计118个。利用这些资料,对银河系疏散星团的金属丰度分布性质进行了若干统计分析,进一步研究了银盘径向金属丰度梯度随时间和空间的演化情况,并对银盘年龄-金属丰度关系作了讨论。  相似文献   

5.
大样本的银盘恒星的运动学数据和元素丰度特征是研究银河系结构及演化,尤其是银盘形成和演化的2个重要探针。本文首先介绍了银河系的总体结构特征,然后较详细的综述了以上2个探针的重要性。对我国LAMOST项目在研究银河系结构方面,尤其是银盘的形成和演化方面的能力作了合理的分析。  相似文献   

6.
研究发现,即使在银河系长期缓慢演化的过程中,其核球中依然可能存在垂直的金属丰度梯度。该结果反驳了早期研究中认为的银河系核球中长期缓慢演化的过程会消除任何存在的化学丰度梯度的观点。通过使用一个模拟银河系薄盘的多体数值模拟模型得出该研究结果,该模型能自洽地通过盘的棒不稳定性和屈曲不稳定性形成一个盒状/花生状的核球,并结合化学-动力学模型,分析银河系核球中化学成分的演化。在该演化模型中设定了一个初始的径向金属丰度梯度(-0.3 dex/kpc),通过长期缓慢的演化过程,其核球部分呈现出与观测相符的垂直金属丰度梯度。对此一种可能的解释是,星系盘的金属丰度分布在长期缓慢演化的过程中经历了“两步”演化过程,首先盘星系初始半径较大的贫金属粒子在径向混合的过程中产生了更大的径向速度弥散,然后由于核球的屈曲不稳定性演化,垂向速度弥散最终会保持与径向速度弥散的一定比值(约0.8)。这个机制导致贫金属粒子在演化过程中能占据更大的垂向范围,从而形成核球的垂直金属丰度梯度。银河系核球动力学模型通过简单的化学-动力学过程揭示的核球金属丰度演化机制,应在包含更复杂的核球演化机制的模型中同样存在。此外,还通过化学动力...  相似文献   

7.
张华伟  赵刚 《天文学进展》2000,18(2):151-158
银河系的银盘、银晕、核球的平均金属丰度为-0.2,-1.6,-0.2。年龄-金属丰度关系给出了银河系形成和演化的线索。为了解释观测的年龄-金属丰度关系及其弥散,银河系化学演化模型必须考虑恒星轨道运动、非瞬时混合等机制。  相似文献   

8.
给出并解释了星际介质中轻元素D,3He,4He和Li的最新观测数据.星际介质中轻元素的丰度观测结果可以用来检验标准大爆炸核合成理论,因此对这些元素的丰度研究具有重要的天体物理意义.到目前为止,轻元素丰度的观测结果基本上支持开放宇宙的观点.根据最新的观测结果,在本地星际介质中D丰度可能存在小尺度不均匀性,而对类星体吸收云的观测表明不同观测者所获得的原初D丰度结果最大差别可达一个量级.如果观测是可靠的,那么在目前的标准大爆炸核合成理论和星系化学演化模型框架下还不能解释这种结果.另外种种迹象表明太阳系丰度可能不代表45亿年前本地星际介质的丰度.  相似文献   

9.
锂是少数几种在大中生成的元素之一,研究锂丰度对于探讨各种元素核合成理论以及星系的早期化学演化规律都具有十分重要的意义,阐述了有关恒星(类太阳星,晕族恒星和主序前得)及星团锂丰度的新近观测结果。介绍了在锂的核合成理论研究方面非局部热动平衡效应的影响及锂在恒星演化中的衰竭机制等理论的研究进展和存在的问题。  相似文献   

10.
晚型星系金属丰度与自转速度的关系   总被引:1,自引:0,他引:1  
星系物质化学组成的研究不仅对于理解有关星系形成和演化的各种物理过程具有重要意义,而且还可以对星系形成和演化的各种理论模型提供重要的约束。随着观测技术及理论工作水平的不断提高,利用星系的大量观测资料来系统地研究星系化学组成与星系宏观性质之间的关系将成为可能。星系金属丰度与光度之间的强相关性以及晚型星系金属丰度与自转速度的关系即是其中最有意义的内容之一。全面回顾了星系金属丰度与星系宏观观测性质间关系的研究历史,重点评述了晚型星系金属丰度与自转速度关系的最新研究进展,详细讨论了目前对此类关系的物理解释及其对星系形成和演化模型的影响。  相似文献   

11.
History of Star Formation and Chemical Enrichment in the Milky Way Disk   总被引:2,自引:0,他引:2  
Based on a physical treatment of the star formation law similar to that given by Efstathiou, we have improved our two-component chemical evolution model for the Milky Way disk. Two gas infall rates are compared, one exponential, one Gaussian. It is shown that the star formation law adopted in this paper depends more strongly on the gas surface density than that in Chang et al. It has large effects on the history of star formation and gas evolution of the whole disk. In the solar neighborhood, the history of chemical evolution and star formation is not sensitive to whether the infall rate is Gaussian or exponential. For the same infall time scale, both forms predict the same behavior for the current properties of the Galactic disk. The model predictions do depend on whether or not the infall time scale varies with the radius, but current available observations cannot decide which case is the more realistic. Our results also show that it would be inadequate to describe the gradient evolution along the Gala  相似文献   

12.
According to the two-infall model for the chemical evolution of the Galaxy the halo and bulge formed on a relatively short timescale (0.8–1.0 Gyr) out of the first infall episode, whereas the disk accumulated much more slowly and ‘inside-out’ during a second independent infall episode. We explored the effects of a threshold in the star formation process, during both the halo and disk phases. In the comparison between model predictions and available data, we have focused our attention on abundance gradients as well as gas, stellar and star formation rate distributions along the disk. We suggest that the mechanism for the formation of the halo leaves detectable imprints on the chemical properties of the outer regions of the disk, whereas the evolution of the halo and the inner disk are almost completely disentangled. This is due to the fact that the halo and disk densities are comparable at large Galactocentric distances and therefore the gas lost from the halo can substantially contribute to building up the outer disk. We predict that the abundance gradients along the Galactic disk have increased in time during the first billion years of the disk evolution and remained almost constant in the last ~5Gyrs. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

13.
In order to understand the forming mechanism of the radial abun- dance gradient of the Galactic disk and the evolution of cold gas, we have con- structed a chemical evolution model of the Galactic disk, in which the star for- mation law concerned with molecular hydrogens is adopted, and the evolution of mass surface density is calculated for the molecular and atomic hydrogens separately, then the model predictions and the observed radial distributions of some physical quantities are compared. The result indicates that the model prediction is sensitive to the adopted infall timescale, the model which adopts the star formation law concerned with the molecular hydrogens can agree well with the major observed properties of the Galactic disk, especially can obtain naturally the radial oxygen abundance gradient of the Galactic disk, and the radial surface density profile of cold gas. The assumption of instantaneous or non-instantaneous recycling approximation has a small effect on the evolution of cold gas, especially in the case of rather low gas density.  相似文献   

14.
1 INTRODUCTIONRadial abundance gradient along the Galactic disk constitutes one of the most importantobservational constraillts fOr models of the evolution of the Galactic disk. The existence of sucha gradient is now well established, through radio and optical observations of HII regions, diskstars, pIanetary nebulae (see Henry and Worthey 1999 for a detailed review) and open clusters(Friel 1995, 1999). An average gradiellt of dlog(X/H)/dR ~ --0.06 dex kpc--' is observed inthe Milky …  相似文献   

15.
We have collected nearly all the available observed data of the elements from Ba to Dy in halo and disk stars in the metallicity range -4.0 <[Fe/H]< 0.5. Based on the observed data of Ba and Eu, we evaluated the least-squares regressions of [Ba/Fe] on [Fe/H], and [Eu/H] on [Ba/H]. Assuming that the heavy elements (heavier than Ba) are produced by a combination of the main components of s- and r-processes in metal-poor stars, and choosing Ba and Eu as respective representative elements of the main s- and the main r-processes, a statistical model for predicting the Galactic chemical evolution of the heavy elements is presented. With this model, we calculate the mean abundance trends of the heavy elements La, Ce, Pr, Nd, Sm, and Dy with the metallicity. We compare our results with the observed data at various metallicities, showing that the predicted trends are in good agreement with the observed trends, at least for the metallicity range [Fe/H]> -2.5. Finally, we discuss our results and deduce some importa  相似文献   

16.
This paper presents an analysis of the first 2MASS (The Two Micron All Sky Survey) sampler data as observed at lower Galactic latitude in our Galaxy. These new near-infrared data provide insight into the structure of the thin disk of our Galaxy, The interpretation of star counts and color distributions of stars in the near-infrared with the synthetic stellar population model, gives strong evidence that the Galactic thin disk density scale length,h R , is rather short (2.7 ± 0.1 kpc).  相似文献   

17.
Recent data on the empirical metallicity distribution of G dwarfs in the disk solar neighbourhood are fitted in two different ways. We use an extended Poisson distribution in the limit where the probability of star formation is small, and a Gauss distribution in the limit where a large number of physical variables is required to determine stellar metal abundance. Both are found to reproduce the data at the same (acceptable) extent, with a slight preference for the former. The emprirical, differential metallicity distribution of G dwarfs in the disk solar neighbourhood is compared with its theoretical counterpart, in the picture of a closed, comoving model of chemical evolution. The limits of the currently used infall models are discussed and a scenario of galactic formation and evolution is presented. The Galactic history is thought as made of two main phases: contraction (which produces the extended component) and equilibrium (which gives the disk). In this view, the stars observed within the solar cylinder did not necessarily arise from the primordial gas which later collapsed into the disk solar neighbourhood. It is found that the G-dwarf problem is strongly alleviated, with the possible exception of the low-metallicity and high-metallicity tail of the distribution. The best choice of parameters implies: (i) a metal yield in the contraction phase which is larger by a factor of about 5 with respect to the equilibrium phase; (ii) a model halo mass fraction of about 0.3; (iii) a model disk mass fraction of about 0.6. It provides additional support to the idea of a generalized Schmidt star formation law, which is different in different phases of evolution. The model, cumulative, G-dwarf metallicity distribution in the disk solar neighbourhood is found to predict too may low-metallicity stars with respect to its empirical counterpart, related to a Poissonian or Gaussian fit. The main resons for the occurrence of a G-dwarf problem are discussed. Finally, a stochastic process of star formation, related to a Poisson distribution, is briefly outlined.  相似文献   

18.
We analyse two recent computations of Type II supernova nucleosynthesis by Woosley & Weaver (hereafter WW95) and Thielemann, Nomoto & Hashimoto (hereafter TNH96), focusing on the ability to reproduce the observed [Mg/Fe] ratios in various galaxy types. We show that the yields of oxygen and total metallicity are in good agreement. However, TNH96 models produce more magnesium in the intermediate and less iron in the upper mass range of Type II supernovae than WW95 models. To investigate the significance of these discrepancies for chemical evolution, we calculate simple stellar population yields for both sets of models and different initial mass function slopes. We conclude that the Mg yields of WW95 do not suffice to explain the [Mg/Fe] overabundance either in giant elliptical galaxies and bulges or in metal-poor stars in the solar neighbourhood and the Galactic halo. Calculating the chemical evolution in the solar neighbourhood according to the standard infall model, we find that, using WW95 and TNH96 nucleosynthesis, the solar magnesium abundance is underestimated by 29 and 7 per cent, respectively.   We include the relaxation of the instantaneous mixing approximation in chemical evolution models by splitting the gas component into two different phases. In additional simulations of the chemical evolution in the solar neighbourhood, we discuss various time-scales for the mixing of the stellar ejecta with the interstellar medium. We find that a delay of the order of 108 yr leads to a better fit of the observational data in the [Mg/Fe]–[Fe/H] diagram without destroying the agreement with solar element abundances and the age–metallicity relation.  相似文献   

19.
The space velocities and Galactic orbital elements of stars calculated from the currently available high-accuracy observations in our compiled catalog of spectroscopic magnesium abundances in dwarfs and subgiants in the solar neighborhood are used to identify thick-disk objects. We analyze the relations between chemical, spatial, and kinematic parameters of F–G stars in the identified subsystem. The relative magnesium abundances in thick-disk stars are shown to lie within the range 0.0 < [Mg/Fe] < 0.5 and to decrease with increasingmetallicity starting from [Fe/H] ≈ ?1.0. This is interpreted as evidence for a longer duration of the star formation process in the thick disk. We have found vertical gradients in metallicity (gradZ[Fe/H] = ?0.13 ± 0.04 kpc?1) and relative magnesium abundance (gradZ[Mg/Fe] = 0.06 ± 0.02 kpc?1), which can be present in the subsystem only in the case of its formation in a slowly collapsing protogalaxy. However, the gradients in the thick disk disappear if the stars whose orbits lie in the Galactic plane, but have high eccentricities and low azimuthal space velocities atypical of the thin-disk stars are excluded from the sample. The large spread in relative magnesium abundance (?0.3 < [Mg/Fe] < 0.5) in the stars of the metal-poor “tail” of the thick disk, which constitute ≈8% of the subsystem, can be explained in terms of their formation inside isolated interstellar clouds that interacted weakly with the matter of a single protogalactic cloud. We have found a statistically significant negative radial gradient in relative magnesium abundance in the thick disk (gradR[Mg/Fe] = ?0.03 ± 0.01 kpc? 1) instead of the expected positive gradient. The smaller perigalactic orbital radii and the higher eccentricities for magnesium-richer stars, which, among other stars, are currently located in a small volume of the Galactic space near the Sun, are assumed to be responsible for the gradient inversion. A similar, but statistically less significant inversion is also observed in the subsystem for the radial metallicity gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号