首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The late Jurassic to early Cretaceous Purbeck Limestone Group of Dorset has been a focus for media and academic attention for the last 150 years. For example, The Illustrated London News in 1857 carried an article by the Revd Charles Kingsley, (of The Water Babies fame), titled ‘Geological Discoveries at Swanage’. describing fossil‐hunting endeavours of Samuel Husband Beckles (1814–1890; Fig. 1 ). Beckles had been encouraged by Richard Owen (1804–1892) to go in search of the tiny fossilized mammalian remains in these strata. Beckles rose to the challenge and at his own expense employed a team of workmen to carry out the excavations; in the process they uncovered a thin layer containing the numerous remains of diminutive mammals along with the remains of other vertebrates, including turtles, crocodiles and ornithischian dinosaurs. Since then, dinosaur tracks and related discoveries from these same strata have often caught the imagination of the press, inspiring sensational headlines such as ‘Builder digs up giant lizard fight’ and ‘Dinosaur graveyard in Swanage Bay’!
Figure 1 Open in figure viewer PowerPoint Contemporary illustration of Samuel Beckles’ excavation on the cliffs of Durlston Bay, from Charles Kingsley's account of the discoveries at Swanage which appeared in The Illustrated London News in 1857.  相似文献   

2.
The tragic scenes of human suffering in the wake of the Asian tsunami in late December 2004 have thrown into sharp relief the Earth's destructive power (Fig. 1 ). Caused by a tectonic event off the coast of Sumatra, it could be described as a very large earthquake, an unusual tsunami and a massive disaster. Or, with a longer view, it could be considered a normal feature of a convergent plate boundary. Both views are correct.
Figure 1 Open in figure viewer PowerPoint Mass destruction after the tsunami hit the village on the sand bar at Phi Phi Island, Thailand, with unscathed limestone hills behind (Rex Features).  相似文献   

3.
Treasure!     
Andrew Middleton   《Geology Today》2004,20(5):185-188
The word ‘treasure’ conjures an image of objects of silver and gold, perhaps encrusted with gemstones, and some treasures dug from the ground certainly match this image (Fig. 1 ). However, a theme that ran through the recent exhibition of Treasure at the British Museum was that the archaeological value of treasure does not depend only on its content of precious metals or gems. Many items recovered from archaeological sites are made from or include natural rocks, minerals and gemstones, so that geological and mineralogical techniques and interpretative approaches often make an essential contribution to their study. This article explores the role of scientific examination in realizing the full archaeological value of treasure.
Figure 1 Open in figure viewer PowerPoint Group of items from a Roman hoard, found at Thetford. These objects are not in Treasure but may be seen in Gallery 49 of the British Museum.  相似文献   

4.
A devastating earthquake of magnitude 7 struck very close and almost beneath Port au Prince the capital of Haiti, the western half of the island of Hispaniola, early in the morning of Tuesday, 12 January 2010 ( Fig. 1 ). While in absolute terms this was by no means the largest earthquake recorded this year globally, the death toll is around 230 000, making it one of the world's worst earthquakes in terms of casualties in recorded history, with almost uncountable economic loss to one of the poorest countries in the world.
Figure 1 Open in figure viewer PowerPoint Intensity map of 2010 Haiti earthquake (Image: USGS).  相似文献   

5.
As anyone travelling on the roads of southeast England between 2006 and 2008 has probably been aware, major improvements have recently been made at the junction of the M25 and A2 motorways, south of the main Dartford crossing of the River Thames ( Fig. 1 ). The roadworks, funded by the UK Highways Agency, with the main contractors Jacobs Babtie and Costain, were accompanied by archaeological investigations carried out by Oxford Archaeology between 2003 and 2006. The archaeological programme had a major Palaeolithic/Pleistocene element under my direction ( Fig. 2 ) that has produced evidence of Neanderthal occupation early in the last glaciation (the Devensian, which lasted from 115 000 to 10 000 bp ), during a period when Britain had until now, been thought to have been entirely deserted.
Figure 1 Open in figure viewer PowerPoint Site location and areas of investigation.  相似文献   

6.
The magnitude 9.0 Tohoku or Sendai Earthquake ( Fig. 1 ) struck just off the northeast coast of Honshu, Japan on 11 March 2011 making it the fourth largest earthquake to be recorded since 1900, and the largest Japanese earthquake since modern seismometers were developed 130 years ago. Despite the earthquake being much more powerful than had been expected from the subduction zone east of Honshu, the earthquake preparedness of Japan resulted in relatively little earthquake damage—despite the protracted shaking with ground accelerations up to three times that of gravity. However, it was the resulting 10–15 metre high tsunami waves that wreaked havoc along the coastal plain, resulting in a death toll in the tens of thousands and an on‐going drama at the Fukushima I nuclear power plant. Modern seismology has its origins in the analyses of the 1906 San Francisco and 1923 Great Kanto earthquakes. The 2011 Tohoku (or ‘northeast’) earthquake looks set to similarly significantly advance our understanding of earthquakes and tsunamis due to the unprecedented volume of seismic, GPS, tide gauge and video data available. There is much information to be gained on how large earthquakes rupture, how buildings behave under prolonged severe shaking and how tsunamis propagate.
Figure 1 Open in figure viewer PowerPoint Tohoku earthquake global displacement wavefield from IRIS. http://www.iris.edu/hq/files/iris_news/images/Sendai_RS.jpg  相似文献   

7.
The Swedish Deep Drilling Program (SDDP) has been initiated to study fundamental problems of the dynamic Earth system, its natural history and evolution. Many key scientific questions can be addressed through in situ investigations only, requiring deep continental drilling. Some are unique to Scandinavia, most are of international interest and significance. At present, five core projects ( Fig. 1 ) with international teams are integrating scientific problems with societal and industrial applications. If SDDP succeeds to attract the funding required, Sweden will have a number of world‐class boreholes at key locations by 2020.
Figure 1 Open in figure viewer PowerPoint Locations of SDDP drilling project proposals. PFDP—Postglacial Fault Drilling Project; PaMVAS—Palaeoproterozoic mineralized volcanic arc systems: the Skellefte District; COSC—Collisional Orogeny in the Scandinavian Caledonides; DRL—The Dellen Impact Crater, a geoscientific deep rock laboratory; SELHO—Svecofennian accretion, an example of the early structural evolution in a large hot orogen; CISP—Concentric Impact Structures in the Palaeozoic: the Lockne and Siljan craters. Background and inset image from Blue Marble Next Generation data set (NASA Earth Observatory, http://earthobservatory.nasa.gov/Features/BlueMarble/ ).  相似文献   

8.
Plesiosaurs     
Plesiosaurs are an unusual and intriguing group of extinct aquatic reptiles ( Fig. 1 ). They are sauropterygians, a group known from an array of semi‐aquatic forms during the Triassic period: placodonts, pachypleurosaurs and nothosaurs. The first plesiosaurs are known from the very latest Triassic, but by the Early Jurassic plesiosaurs were cosmopolitan in distribution and lasted successfully to the latest Cretaceous, when they became victims of the K‐T extinction event. Plesiosaurs were predominantly marine organisms, although their fossils are not uncommon in brackish or even fresh water deposits. We know that all plesiosaurs were carnivorous; many of them were top predators in their respective ecosystems. But with no living descendants (or analogues) plesiosaurs are mysterious fossil organisms—as we will see, many questions regarding their biology remain unanswered or contentious. However, plesiosaurs are currently undergoing renewed scientific attention.
Figure 1 Open in figure viewer PowerPoint The beautifully preserved skeleton of the plesiosaur Rhomaleosaurus victor seen in ventral view, from the Lower Jurassic (Toarcian) of Holzmaden, Germany (total length 3.44 m). Redrawn from Fraas (1910).  相似文献   

9.
The superbly preserved dinosaurs and associated organisms from the Late Jurassic fossil Lagerstätte Tendaguru in southern Tanzania mark an exceptional success story in palaeontology. The new permanent exhibits of the Museum für Naturkunde in Berlin, highlighting the spectacular dinosaurs ( Fig. 1 ), are telling evidence. In more than 100 years of research, geoscientists produced a considerable amount of knowledge about the composition and diversity of the ancient fauna and flora at Tendaguru, their unique palaeobiological characteristics, and the continental to marginal marine ecosystems in which they lived. Several questions are still open to debate. These include the detailed genesis of the Lagerstätte, aspects of dinosaur palaeobiology, and their biogeographical affinities to contemporaneous assemblages from the Northern Hemisphere.
Figure 1 Open in figure viewer PowerPoint The discovery of Brachiosaurus was the crowning achievement of the German Tendaguru expedition of 1909–1913. The skeleton is about 13 metres tall and 23 metres long. It is on display in the dinosaur hall of the Museum für Naturkunde (MfN) in Berlin along with Dicraeosaurus, Kentrosaurus, Dysalotosaurus and Elaphrosaurus. They constitute the most significant dinosaur discoveries ever made in Africa. Photo: Antje Dittmann, MfN.  相似文献   

10.
Carbonate concretions are common features of sedimentary rocks of all geological ages. They are most obvious in sandstones and mudstones as ovoid bodies of rock that protrude from natural outcrops: clearly harder or better cemented than their host rocks. Many people are excited by finding fossils in the centre of mudstone‐hosted concretions ( Fig. 1 ) but spend little time wondering why the fossils are so well preserved. While the study of concretions has benefitted from the use of advanced analytical equipment, simple observations in the field can also help to answer many questions. For example, in cliff sections, original sedimentary beds and sedimentary structures can be traced right through concretions ( Fig. 2 ): so it can be deduced that the concretion clearly formed after these depositional structures were laid down. In this article we explain how and where concretions form and discuss the evidence, ranging from outcrop data to sophisticated laboratory analyses, which can be used to determine their origins. The roles of microbes, decaying carcasses, compaction and groundwaters are highlighted. Concretions not only preserve fossils but can also subdivide oil, gas and water reservoirs into separate compartments.
Figure 1 Open in figure viewer PowerPoint An early diagenetic carbonate concretion split in half to reveal an ammonite retaining its original aragonite shell, from the Maastrichtian of Antarctica. Image courtesy of Alistair Crame (British Antarctic Survey, NERC). Lens cap is 6 cm.  相似文献   

11.
The equivalent Mohr–Coulomb (M‐C) friction angle ? (J. Geotech. Eng. 1990; 116 (6):986–999) of the extended Matsuoka–Nakai (E‐M‐N) criterion has been examined under all possible stress paths. It is shown that ? depends only on the ratio of cohesion to confining stress c/σ and the frictional angle ?, where ? is the friction angle measured in triaxial compression (or extension) to which the E‐M‐N surface is fitted. It is also shown that ? is independent of c, when σ=0 and of σ when c=0, with the former representing an upper bound and the latter a lower bound of ? for any particular stress path. The closest point projection method has also been implemented successfully with the E‐M‐N criterion, and plane strain and axisymmetric element tests performed to verify some theoretical predictions relating to failure and post‐yielding behavior. Finally, a bearing capacity problem was analyzed using both E‐M‐N and M‐C, highlighting the conservative nature of M‐C for different friction angles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The thickest development of Carboniferous Limestone in Great Britain (about 1200 m) is in the Pembroke Peninsula of SW Wales. In various places, the regularity of the normally well‐stratified limestone is broken by zones of disturbance, which are spectacularly displayed in magnificent near‐vertical cliff sections. The zones generally occupy the whole of the 50 m‐high cliffs and are up to 300 m wide. The chief component of these zones is a chaotic, clast‐supported breccia, composed of angular limestone fragments welded together with varying degrees of firmness by sparry calcite veining or a normally sparse, red‐pink sandy or silty matrix. The breccias are very easy to distinguish and form a striking contrast to the grey cliff scenery hereabouts ( Figs 1, 2 ), yet they have not been discussed much—until now.
Figure 1 Open in figure viewer PowerPoint Location map, showing localities mentioned in the text, the outcrop of the Carboniferous Limestone, the chief synclinal axes and the distribution envelope of the Gash Breccias (after Thomas 1971 ). 1. Flimston Bay; 2. Bullslaughter Bay (west); 3. Bullslaughter bay (east); 4. Trevallen; 5. Box Bay; 6. Draught; 7. Whitesheet Rock; 8. Lydstep Point; 9. St Margaret's Point; 10. Den Point; 11. Valleyfield Top; 12. Pembroke Castle.  相似文献   

13.
A set of thermodynamic models is presented that, for the first time, allows partial melting equilibria to be calculated for metabasic rocks. The models consist of new activity–composition relations combined with end‐member thermodynamic properties from the Holland & Powell dataset, version 6. They allow for forward modelling in the system NaO–CaO–KO–FeO–MgO–AlO–SiO–HO–TiO–FeO. In particular, new activity–composition relations are presented for silicate melt of broadly trondhjemitic–tonalitic composition, and for augitic clinopyroxene with Si–Al mixing on the tetrahedral sites, while existing activity–composition relations for hornblende are extended to include KO and TiO. Calibration of the activity–composition relations was carried out with the aim of reproducing major experimental phase‐in/phase‐out boundaries that define the amphibolite–granulite transition, across a range of bulk compositions, at ≤13 kbar.  相似文献   

14.
The term ‘hiatus concretions’ was introduced for the first time by the late Ehrhard Voigt, a well‐known German bryozoan specialist, in 1968 (originally as Hiatus‐Konkretionen). Hiatus concretions are early diagenetic bodies that formed within the host sediment. In this respect, they are similar in composition to other concretions that are very common in siliciclastic deposits of different ages, some of which are known to contain fossils or minerals. Hiatus concretions, however, differ from conventional concretions in their complex post‐diagenetic history, including exhumation on the sea‐floor, colonization by various encrusting and/or boring organisms during a break in sedimentation, and final burial. Thus, the name ‘hiatus concretions’ refers to the fact that they indicate hiatal surfaces in sedimentary sequences ( Fig. 1 ). It is known that hiatus concretions may have developed during very different time‐spans: for example, within a part of one ammonite subzone (i.e. tens of thousands to a few hundreds of thousands of years) or much longer, during a time embracing more than a stage (i.e. several millions of years). The majority of the hiatus concretions known from the fossil record have carbonate cements, usually calcite, and these are the main focus of this article. Some hiatus concretions, however, are cemented by phosphate minerals.
Figure 1 Open in figure viewer PowerPoint Hiatus concretions in the field. A. A horizon of hiatus concretions weathered out from the Middle Jurassic (Bathonian) clay sediments at Krzyworzeka, Polish Jura, Poland. B. Close‐up of the hiatus concretions.  相似文献   

15.
Bagnold's sediment transport equation has proved to be important in studying tidal marine environments. This paper discusses three problems concerning Bagnold's transport equation and its practical application:
  • 1 Bagnold's suspended-load transport equation and the total-load transport equation with are incorrect from the viewpoint of energy conservation. In these equations the energy loss due to bedload transport has been counted twice. The correct form should be for suspended-load transport and for total-load transport with
  • 2 The commonly used Bagnold's transport coefficient K varies as a non-linear function of the dimensionless excess shear stress, which can be represented best by the power law , where the coefficient A and exponent B depend on sediment grain size D. The empirical values of A and B for fine to medium grained sands are determined using Guy et al.'s (1966) flume-experiment data.
  • 3 The sediment transport rates predicted from this equation are compared with bedform migration measurements in the flume and the field. This comparison shows that the sediment transport rates measured from bedform migrations are higher than the predicted bedload transport rates, but comparable to the calculated total-load (bedload plus intermittent suspended-load) transport rates. This indicates that bedform migration involves both bedload and intermittent suspended-load transport. As a logical conclusion, bedform migration data should be compared with Bagnold's total-load transport equation rather than with his bedload transport equation. In this respect the term ‘bed material’ might be more appropriate than the term ‘bedload’ for estimating sediment transport rate from bedform migration data.
The sediment transport rates predicted from this modified Bagnold transport equation are in good agreement with field measurements of bedform migration rates in four individual tidal marine environments, which cover a wide range of sediment grain size, flow velocity and bedform conditions (ranging from small ripples, megaripples to sandwaves).  相似文献   

16.
Autogenic cycles of channelization, terminal deposit formation, channel backfilling and channel abandonment have been observed in the formation of fans and deltas. In subcritical flow, these terminal deposits are characterized as mouth bars that lead to flow bifurcation, backwater and eventual channel backfilling. Similar, although less well characterized, cycles also take place on supercritical subaerial and submarine fans. This study investigates the hydraulics and morphodynamics of autogenic incision and backfilling cycles associated with supercritical distributive channel flow in alluvial fans. The research questions of the study are: (i) how are supercritical autogenic cycles on alluvial fans different from the subcritical cycles; (ii) what are the hydraulic and sediment transport characteristics at the various stages of autogenic feedback cycles; and (iii) what role do the cycles play in the overall fan evolution? These questions are investigated in the laboratory, and emphasis is placed on measuring the hydraulic and topographic evolution of the systems during the cycles. The cycles arise quasi‐periodically under constant water and sediment discharge. Periods of sheet‐like flow are competent to move sediment () but not competent enough to carry the full imposed load. The net result is preferential deposition near the inlet, resulting in fan steepening and an increase in flow competency with time. At a sediment supply to capacity ratio of , the sheet‐like flow is unstable to small erosional events near the inlet, resulting in the collapse of the distributed flow to a strong channelized state. During channelization, a graded () supercritical (Fr > 1) channel develops and transports eroded and fed sediment up to and through the fan front – extending the fan, initiating a lobe shaped deposit and reducing the local slope. The slopes defined by a sheet‐like flow with and channelized flow with set the maximum and minimum slopes on the fan, respectively. Once formed, graded channels act as bypass conduits linking the inlet with the terminal deposit. On average, deposits are up to six channel depths in thickness and have volumes approximately five times that of the excavated channel. The main distinctive characteristics of the supercritical cycles relate to how the flow interacts with the terminal deposit. At the channel to deposit transition, the flow undergoes a weak hydraulic jump, resulting in rapid sedimentation, dechannelization and lateral expansion of the flow, and deposition of any remaining sediment on top of the channel fill and floodplain. This process often caps the channel as the deposit propagates up channel erasing memory of the excavated channel.  相似文献   

17.
Volcanic ash is dispersed in the atmosphere according to meteorology and particle properties, including size and shape. However, the multiple definitions of size and shape for non-spherical particles affect our ability to use physical particle properties to understand tephra transport. Moreover, although particles are often excluded from operational ash dispersion model setups, ash in tephra deposits 1000 km from source can exceed . Here we measure the shape and size of samples of Vedde ash from Iceland, an exceptionally widespread tephra layer in Europe, collected in Iceland and Norway. Using X-ray computed tomography and optical microscopy, we show that distal ash is more anisotropic than proximate ash, suggesting that shape exerts an important control on tephra dispersion. Shape also impacts particle size measurements. Particle long axis, a parameter often reported by tephrochronologists, is on average greater than geometric size, used by dispersion modellers. By using geometric size and quantifying shape, we can explain the transport of Vedde ash particles more than 1200 km from source. We define a set of best practices for measuring the size and shape of cryptotephra shards and discuss the benefits and limitations of using physical particle properties to understand cryptotephra transport.  相似文献   

18.
Carbonate‐replacement polymetallic mineralization at the Huanzala deposits (9°51′S, 77°00′W) was conducted in two contrasting stages that occurred in almost the same location. Early‐stage mineralization has a relation with a granodiorite porphyry stock, whereas the late‐stage mineralization is genetically associated with quartz porphyry sills. The early stage involved low to intermediate sulfidation Cu–Zn–(Pb) mineralization associated with metasomatic skarn, and the late stage involved high to intermediate sulfidation Cu–Zn–Pb–(Mn) mineralization associated with hydrothermal alteration characterized by paragonitic sericitization. The orebodies are hosted by steeply dipping (approximately 60°NE) Lower Cretaceous carbonate rocks in a relatively narrow range of approximately 4 km in horizontal extent and less than 1 km in depth. The pathway of the early‐stage brine‐derived fluids (300–>400°C, >33 wt% NaCl equivalent) along a plot of log against 1000/T is best explained by the progressive dual decline of the value and the temperature under rock‐buffering conditions; this decline saw the pathway progress through the stability field of pyrrhotite to reach that of pyrite and promoted a decrease in FeS from 14.5 to 1.6 mol% in the sphalerite. In contrast, an explanation for the pathway of the late‐stage fluids (140–290°C, 3–13 wt% NaCl equivalent) is given by an almost isothermal decline at approximately 270°C, with passing through the stability field of pyrite–bornite to reach that of chalcopyrite, promoting an increase in FeS from 0.1 to 1.6 mol% in the sphalerite, suggesting gas‐buffering conditions. The ore formation pressure records in the fluid inclusions illustrate an approximately 2‐km erosion during the roughly 2‐Myr total lifetime of the hydrothermal system.  相似文献   

19.
Palaeontology was established as a science in the Victorian era, yet has roots that stretch deeper into the recesses of history. More than 2000 years ago, the Greek philosopher Aristotle deduced that fossil sea shells were once living organisms, and around 500 ad Xenophanes used fossils to argue that many areas of land must have previously been submarine. In 1027, the Persian scholar Avicenna suggested that organisms were fossilized by petrifying fluids; this theory was accepted by most natural philosophers up until the eighteenth century Enlightenment, and even beyond. The late 1700s were notable for the work of Georges Cuvier who established the reality of extinction. This, coupled with advances in the recognition of faunal successions made by the canal engineer William Smith, laid the framework for the discipline that would become known as palaeontology. As the nineteenth century progressed, the scientific community became increasingly well organized. Most fossil workers were gentleman scientists and members of the clergy, who self‐funded their studies in a new and exciting field. Many of the techniques used to study fossils today were developed during this ‘classical’ period. Perhaps the most fundamental of these is to expose a fossil by splitting the rock housing it, and then conduct investigations based upon the exposed surface ( Fig. 1 ). This approach has served the science well in the last two centuries, having been pivotal to innumerable advances in our understanding of the history of life. Nevertheless, there are many cases where splitting a rock in this way results in incomplete data recovery; those where the fossils are not flattened, but are preserved in three‐dimensions. Even the ephemeral soft‐tissues of organisms are occasionally preserved in a three‐dimensional state, for example in the Herefordshire, La Voulte Sûr Rhone and Orsten ‘Fossil Lagerstätten’ (sites of exceptional fossil preservation). These rare and precious deposits provide a wealth of information about the history of life on Earth, and are perhaps our most important resource in the quest to understand the palaeobiology of extinct organisms. With the aid of twenty‐first century technology, we can now make the most of these opportunities through the field of ‘virtual palaeontology’—computer‐aided visualization of fossils.
Figure 1 Open in figure viewer PowerPoint A split nodule showing the fossil within, in this case a cockroachoid insect. Fossil 4 cm long (From Garwood & Sutton, in press ).  相似文献   

20.
The vertical component of the turbulent flow acceleration term, , is used to determine the net positive vertical force that may support a suspended sediment load. A dimensionless criterion, Λ, is proposed for the maintenance of suspension, defined as the ratio of the maximum vertical turbulent stress to immersed weight of the suspended load above a unit bed area. In order that a suspension be maintained: where v ′ is instantaneous vertical turbulent velocity, σ and ρ are solid and fluid densities, respectively and m is the suspended load dry mass. The Λ criterion is dynamic, being a ratio of stresses and is analogous in this respect to Shields dimensionless stress criterion, θ, for the initiation of bedload motion. The new criterion is successful in predicting the maintenance of steady-state suspended sediment transport in open channel shear flow and deposition from non-uniform particulate density flows of wall jet type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号