首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate scenarios for the Netherlands are constructed by combining information from global and regional climate models employing a simplified, conceptual framework of three sources (levels) of uncertainty impacting on predictions of the local climate. In this framework, the first level of uncertainty is determined by the global radiation balance, resulting in a range of the projected changes in the global mean temperature. On the regional (1,000–5,000 km) scale, the response of the atmospheric circulation determines the second important level of uncertainty. The third level of uncertainty, acting mainly on a local scale of 10 (and less) to 1,000 km, is related to the small-scale processes, like for example those acting in atmospheric convection, clouds and atmospheric meso-scale circulations—processes that play an important role in extreme events which are highly relevant for society. Global climate models (GCMs) are the main tools to quantify the first two levels of uncertainty, while high resolution regional climate models (RCMs) are more suitable to quantify the third level. Along these lines, results of an ensemble of RCMs, driven by only two GCM boundaries and therefore spanning only a rather narrow range in future climate predictions, are rescaled to obtain a broader uncertainty range. The rescaling is done by first disentangling the climate change response in the RCM simulations into a part related to the circulation, and a residual part which is related to the global temperature rise. Second, these responses are rescaled using the range of the predictions of global temperature change and circulation change from five GCMs. These GCMs have been selected on their ability to simulate the present-day circulation, in particular over Europe. For the seasonal means, the rescaled RCM results obey the range in the GCM ensemble using a high and low emission scenario. Thus, the rescaled RCM results are consistent with the GCM results for the means, while adding information on the small scales and the extremes. The method can be interpreted as a combined statistical–dynamical downscaling approach, with the statistical relations based on regional model output.  相似文献   

2.
We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.  相似文献   

3.
The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.  相似文献   

4.
降尺度方法在东亚气候预测中的应用   总被引:4,自引:2,他引:2  
东亚气候变异十分复杂,全球动力预测系统对该地气候异常的预测能力偏低,如何进一步提高东亚地区气候异常的预测水平是一个非常重要的科学和现实需求问题。为此,近些年一系列的动力和统计降尺度方法得以发展。本文主要回顾了这些降尺度方法在东亚气候预测研究和实时预测中的应用。首先,文中简要介绍了我国目前应用于实时预测的全球动力预测系统及其性能,这是开展降尺度的科学和技术基础;在此基础上,从区域模式物理过程参数化方案的评估与遴选、区域模式在东亚气候预测中的应用两个方面,对于动力降尺度方法的发展和应用做了回顾;在统计降尺度的综述中,本文主要关注了东亚夏季汛期和冬季气候异常的预测,特别是针对东亚冬季气候异常,本文中提出了新的高效的统计与动力相结合的预测方法。最后,展望了短期气候预测需要进一步深入研究的科学和技术问题。  相似文献   

5.
Regional climate models (RCMs) have been increasingly used for climate change studies at the watershed scale. However, their performance is strongly dependent upon their driving conditions, internal parameterizations and domain configurations. Also, the spatial resolution of RCMs often exceeds the scales of small watersheds. This study developed a two-step downscaling method to generate climate change projections for small watersheds through combining a weighted multi-RCM ensemble and a stochastic weather generator. The ensemble was built on a set of five model performance metrics and generated regional patterns of climate change as monthly shift terms. The stochastic weather generator then incorporated these shift terms into observed climate normals and produced synthetic future weather series at the watershed scale. This method was applied to the Assiniboia area in southern Saskatchewan, Canada. The ensemble led to reduced biases in temperature and precipitation projections through properly emphasizing models with good performance. Projection of precipitation occurrence was particularly improved through introducing a weight-based probability threshold. The ensemble-derived climate change scenario was well reproduced as local daily weather series by the stochastic weather generator. The proposed combination of dynamical downscaling and statistical downscaling can improve the reliability and resolution of future climate projection for small prairie watersheds. It is also an efficient solution to produce alternative series of daily weather conditions that are important inputs for examining watershed responses to climate change and associated uncertainties.  相似文献   

6.
This paper investigates how using different regional climate model (RCM) simulations affects climate change impacts on hydrology in northern Europe using an offline hydrological model. Climate change scenarios from an ensemble of seven RCMs, two global climate models (GCMs), two global emissions scenarios and two RCMs of varying resolution were used. A total of 15 climate change simulations were included in studies on the Lule River basin in Northern Sweden. Two different approaches to transfer climate change from the RCMs to hydrological models were tested. A rudimentary estimate of change in hydropower potential on the Lule River due to climate change was also made. The results indicate an overall increase in river flow, earlier spring peak flows and an increase in hydropower potential. The two approaches for transferring the signal of climate change to the hydrological impacts model gave similar mean results, but considerably different seasonal dynamics, a result that is highly relevant for other types of climate change impacts studies.  相似文献   

7.
Although representation of hydrology is included in all regional climate models (RCMs), the utility of hydrological results from RCMs varies considerably from model to model. Studies to evaluate and compare the hydrological components of a suite of RCMs and their use in assessing hydrological impacts from future climate change were carried out over Europe. This included using different methods to transfer RCM runoff directly to river discharge and coupling different RCMs to offline hydrological models using different methods to transfer the climate change signal between models. The work focused on drainage areas to the Baltic Basin, the Bothnian Bay Basin and the Rhine Basin. A total of 20 anthropogenic climate change scenario simulations from 11 different RCMs were used. One conclusion is that choice of GCM (global climate model) has a larger impact on projected hydrological change than either selection of emissions scenario or RCM used for downscaling.  相似文献   

8.
We utilize a revised Thornthwaite climate classification system for model intercomparisons and to visualize future climate change. This classification system uses an improved moisture factor that accounts for both evapotranspiration and precipitation, a thermal index based on potential evapotranspiration, and even intervals between categories for ease of interpretation. The use of climate types is a robust way to assess a model’s ability to reproduce mutlivariate conditions. We compare output from multiple regional climate models (RCMs) participating in NARCCAP (North American Regional Climate Change Assessment Program) as well as their coarser driving general circulation models (GCMs). Overall, the RCM ensemble does a good job in reproducing the main features of U.S. climate types. The “added-value” gained by downscaling with RCMs is significant, particularly in topographic regions such as the west coast and Appalachian Mountains. Ensemble model output from the scenario simulations indicates a recession of cold climate zones across the eastern U.S. and northern tier of the country as well as in mountainous areas. Projections also indicate the development of a novel climate zone, the torrid climate, across southern portions of the country. In addition, the U.S. will become drier, particularly across the Midwest as the moisture boundary shifts eastward, and in the the Appalachian region. Climate types in the Pacific Northwest, however, will not change greatly. Finally, we demonstrate possible applications for the forecast climate types and associated output variables.  相似文献   

9.
To assist the government of Vietnam in its efforts to better understand the impacts of climate change and prioritise its adaptation measures, dynamically downscaled climate change projections were produced across Vietnam. Two Regional Climate Models (RCMs) were used: CSIRO’s variable-resolution Conformal-Cubic Atmospheric Model (CCAM) and the limited-area model Regional Climate Model system version 4.2 (RegCM4.2). First, global CCAM simulations were completed using bias- and variance-corrected sea surface temperatures as well as sea ice concentrations from six Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models. This approach is different from other downscaling approaches as it does not use any atmospheric fields from the GCMs. The global CCAM simulations were then further downscaled to 10 km using CCAM and to 20 km using RegCM4.2. Evaluations of temperature and precipitation for the current climate (1980-2000) were completed using station data as well as various gridded observational datasets. The RCMs were able to reproduce reasonably well most of the important characteristics of observed spatial patterns and annual cycles of temperature. Average and minimum temperatures were well simulated (biases generally less than 1oC), while maximum temperatures had biases of around 1oC. For precipitation, although the RCMs captured the annual cycle, RegCM4.2 was too dry in Oct.-Nov. (-60% bias), while CCAM was too wet in Dec.- Mar. (130% bias). Both models were too dry in summer and too wet in winter (especially in northern Vietnam). The ability of the ensemble simulations to capture current climate increases confidence in the simulations of future climate.  相似文献   

10.
A methodology is developed for testing the downscaling ability of nested regional climate models (RCMs). The proposed methodology, nick-named the Big-Brother Experiment (BBE), is based on a "perfect-prognosis" approach and hence does not suffer from model errors nor from limitations in observed climatologies. The BBE consists in first establishing a reference climate by performing a large-domain high-resolution RCM simulation: this simulation is called the Big Brother. This reference simulation is then degraded by filtering short scales that are unresolved in today's global objective analyses (OA) and/or global climate models (GCMs) when integrated for climate projections. This filtered reference is then used to drive the same nested RCM (called the Little Brother), integrated at the same high-resolution as the Big Brother, but over a smaller domain that is embedded in the Big-Brother domain. The climate statistics of the Little Brother are then compared with those of the Big Brother over the Little-Brother domain. Differences can thus be attributed unambiguously to errors associated with the nesting and downscaling technique, and not to model errors nor to observation limitations. The results of the BBE applied to a one-winter-month simulation over eastern North America at 45-km grid-spacing resolution show that the one-way nesting strategy has skill in downscaling large-scale information to the regional scales. The time mean and variability of fine-scale features in a number of fields, such as sea level pressure, 975-hPa temperature and precipitation are successfully reproduced, particularly over regions where small-scale surface forcings are strong. Over other regions such as the ocean and away from the surface, the small-scale reproducibility is more difficult to achieve.  相似文献   

11.
Four high resolution atmospheric general circulation models (GCMs) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre sea surface temperature and sea-ice extent. The response over Europe, calculated as the difference between the 2071–2100 and the 1961–1990 means is compared with the same diagnostic obtained with nine Regional Climate Models (RCM) all driven by the Hadley Centre atmospheric GCM. The seasonal mean response for 2m temperature and precipitation is investigated. For temperature, GCMs and RCMs behave similarly, except that GCMs exhibit a larger spread. However, during summer, the spread of the RCMs—in particular in terms of precipitation—is larger than that of the GCMs. This indicates that the European summer climate is strongly controlled by parameterized physics and/or high-resolution processes. The temperature response is larger than the systematic error. The situation is different for precipitation. The model bias is twice as large as the climate response. The confidence in PRUDENCE results comes from the fact that the models have a similar response to the IPCC-SRES A2 forcing, whereas their systematic errors are more spread. In addition, GCM precipitation response is slightly but significantly different from that of the RCMs.  相似文献   

12.
The WAMME regional model intercomparison study   总被引:5,自引:3,他引:2  
Results from five regional climate models (RCMs) participating in the West African Monsoon Modeling and Evaluation (WAMME) initiative are analyzed. The RCMs were driven by boundary conditions from National Center for Environmental Prediction reanalysis II data sets and observed sea-surface temperatures (SST) over four May–October seasons, (2000 and 2003–2005). In addition, the simulations were repeated with two of the RCMs, except that lateral boundary conditions were derived from a continuous global climate model (GCM) simulation forced with observed SST data. RCM and GCM simulations of precipitation, surface air temperature and circulation are compared to each other and to observational evidence. Results demonstrate a range of RCM skill in representing the mean summer climate and the timing of monsoon onset. Four of the five models generate positive precipitation biases and all simulate negative surface air temperature biases over broad areas. RCM spatial patterns of June–September mean precipitation over the Sahel achieve spatial correlations with observational analyses of about 0.90, but within two areas south of 10°N the correlations average only about 0.44. The mean spatial correlation coefficient between RCM and observed surface air temperature over West Africa is 0.88. RCMs show a range of skill in simulating seasonal mean zonal wind and meridional moisture advection and two RCMs overestimate moisture convergence over West Africa. The 0.5° computing grid enables three RCMs to detect local minima related to high topography in seasonal mean meridional moisture advection. Sensitivity to lateral boundary conditions differs between the two RCMs for which this was assessed. The benefits of dynamic downscaling the GCM seasonal climate prediction are analyzed and discussed.  相似文献   

13.
现阶段的动力气候模式尚不能满足东亚区域气候预测的实际需求,这就需要动力和统计相结合的方法,将动力模式中具有较高预测技巧的大尺度环流信息应用到降水等气象要素的统计预测模型当中,以改善后者预测效果。本文中所介绍的组合统计降尺度模型,可将动力气候模式预测的大尺度环流变量和前期观测的外强迫信号作为预测因子来预测中国夏季降水异常。交叉检验结果显示,组合统计降尺度预测模型的距平相关系数较原始模式结果有较大提高。在实时夏季降水预测中,2013~2018年平均的预测技巧相对较高,趋势异常综合检验(PS)评分平均为71.5分,特别是2015~2018年平均的PS评分预测技巧达到72.7分,总体上高于业务模式原始预测和业务发布预测的技巧。该组合统计降尺度模型预测性能稳定,为我国季节预测业务提供了一种有效参考。  相似文献   

14.
基于DERF的SD方法预测月降水和极端降水日数   总被引:3,自引:1,他引:2       下载免费PDF全文
针对动力气候模式对区域或更小空间尺度内的日降水预测技巧偏低的问题,应用最优子集回归 (OSR) 方法对国家气候中心业务化的月动力气候模式 (DERF) 输出的高度场、风场和海平面气压场进行降尺度处理用于降水预测,旨在提高预测准确率。1982—2006年交叉检验结果表明:OSR方法能显著提高降水预测技巧,其中11~40 d改善效果最为显著。在此基础上,应用一步法和两步法两种统计降尺度方法预测极端降水日数,交叉检验结果表明:两种方法均优于随机预测,冬季两步法预测技巧略高于一步法,夏季一步法略优于两步法。综合认为OSR,OSR结合随机天气发生器 (WG) 两种统计降尺度方法对月尺度降水或极端降水日数的预测均具有较高的技巧,可作为短期气候预测的重要参考信息。  相似文献   

15.
The potential impact of climate warming on patterns of malaria transmission has been the subject of keen scientific and policy debate. Standard climate models (GCMs) characterize climate change at relatively coarse spatial and temporal scales. However, malaria parasites and the mosquito vectors respond to diurnal variations in conditions at very local scales. Here we bridge this gap by downscaling a series of GCMs to provide high-resolution temperature data for four different sites and show that although outputs from both the GCM and the downscaled models predict diverse but qualitatively similar effects of warming on the potential for adult mosquitoes to transmit malaria, the predicted magnitude of change differs markedly between the different model approaches. Raw GCM model outputs underestimate the effects of climate warming at both hot (3-fold) and cold (8–12 fold) extremes, and overestimate (3-fold) the change under intermediate conditions. Thus, downscaling could add important insights to the standard application of coarse-scale GCMs for biophysical processes driven strongly by local microclimatic conditions.  相似文献   

16.
17.
De Li Liu  Heping Zuo 《Climatic change》2012,115(3-4):629-666
This paper outlines a new statistical downscaling method based on a stochastic weather generator. The monthly climate projections from global climate models (GCMs) are first downscaled to specific sites using an inverse distance-weighted interpolation method. A bias correction procedure is then applied to the monthly GCM values of each site. Daily climate projections for the site are generated by using a stochastic weather generator, WGEN. For downscaling WGEN parameters, historical climate data from 1889 to 2008 are sorted, in an ascending order, into 6 climate groups. The WGEN parameters are downscaled based on the linear and non-linear relationships derived from the 6 groups of historical climates and future GCM projections. The overall averaged confidence intervals for these significant linear relationships between parameters and climate variables are 0.08 and 0.11 (the range of these parameters are up to a value of 1.0) at the observed mean and maximum values of climate variables, revealing a high confidence in extrapolating parameters for downscaling future climate. An evaluation procedure is set up to ensure that the downscaled daily sequences are consistent with monthly GCM output in terms of monthly means or totals. The performance of this model is evaluated through the comparison between the distributions of measured and downscaled climate data. Kruskall-Wallis rank (K-W) and Siegel-Tukey rank sum dispersion (S-T) tests are used. The results show that the method can reproduce the climate statistics at annual, monthly and daily time scales for both training and validation periods. The method is applied to 1062 sites across New South Wales (NSW) for 9 GCMs and three IPCC SRES emission scenarios, B1, A1B and A2, for the period of 1900–2099. Projected climate changes by 7 GCMs are also analyzed for the A2 emission scenario based on the downscaling results.  相似文献   

18.
The West African monsoon (WAM) circulation and intensity have been shown to be influenced by the land surface in numerous numerical studies using regional scale and global scale atmospheric climate models (RCMs and GCMs, respectively) over the last several decades. The atmosphere–land surface interactions are modulated by the magnitude of the north–south gradient of the low level moist static energy, which is highly correlated with the steep latitudinal gradients of the vegetation characteristics and coverage, land use, and soil properties over this zone. The African Multidisciplinary Monsoon Analysis (AMMA) has organised comprehensive activities in data collection and modelling to further investigate the significance land–atmosphere feedbacks. Surface energy fluxes simulated by an ensemble of land surface models from AMMA Land-surface Model Intercomparison Project (ALMIP) have been used as a proxy for the best estimate of the “real world” values in order to evaluate GCM and RCM simulations under the auspices of the West African Monsoon Modelling Experiment (WAMME) project, since such large-scale observations do not exist. The ALMIP models have been forced in off-line mode using forcing based on a mixture of satellite, observational, and numerical weather prediction data. The ALMIP models were found to agree well over the region where land–atmosphere coupling is deemed to be most important (notably the Sahel), with a high signal to noise ratio (generally from 0.7 to 0.9) in the ensemble and a inter-model coefficient of variation between 5 and 15%. Most of the WAMME models simulated spatially averaged net radiation values over West Africa which were consistent with the ALMIP estimates, however, the partitioning of this energy between sensible and latent heat fluxes was significantly different: WAMME models tended to simulate larger (by nearly a factor of two) monthly latent heat fluxes than ALMIP. This results due to a positive precipitation bias in the WAMME models and a northward displacement of the monsoon in most of the GCMs and RCMs. Another key feature not found in the WAMME models is peak seasonal latent heat fluxes during the monsoon retreat (approximately a month after the peak precipitation rates) from soil water stores. This is likely related to the WAMME northward bias of the latent heat flux gradient during the WAM onset.  相似文献   

19.
The projected climate change signals of a five-member high resolution ensemble, based on two global climate models (GCMs: ECHAM5 and CCCma3) and two regional climate models (RCMs: CLM and WRF) are analysed in this paper (Part II of a two part paper). In Part I the performance of the models for the control period are presented. The RCMs use a two nest procedure over Europe and Germany with a final spatial resolution of 7 km to downscale the GCM simulations for the present (1971–2000) and future A1B scenario (2021–2050) time periods. The ensemble was extended by earlier simulations with the RCM REMO (driven by ECHAM5, two realisations) at a slightly coarser resolution. The climate change signals are evaluated and tested for significance for mean values and the seasonal cycles of temperature and precipitation, as well as for the intensity distribution of precipitation and the numbers of dry days and dry periods. All GCMs project a significant warming over Europe on seasonal and annual scales and the projected warming of the GCMs is retained in both nests of the RCMs, however, with added small variations. The mean warming over Germany of all ensemble members for the fine nest is in the range of 0.8 and 1.3 K with an average of 1.1 K. For mean annual precipitation the climate change signal varies in the range of ?2 to 9 % over Germany within the ensemble. Changes in the number of wet days are projected in the range of ±4 % on the annual scale for the future time period. For the probability distribution of precipitation intensity, a decrease of lower intensities and an increase of moderate and higher intensities is projected by most ensemble members. For the mean values, the results indicate that the projected temperature change signal is caused mainly by the GCM and its initial condition (realisation), with little impact from the RCM. For precipitation, in addition, the RCM affects the climate change signal significantly.  相似文献   

20.
The study examines climate change scenarios of Central European heat waves with a focus on related uncertainties in a large ensemble of regional climate model (RCM) simulations from the EURO-CORDEX and ENSEMBLES projects. Historical runs (1970–1999) driven by global climate models (GCMs) are evaluated against the E-OBS gridded data set in the first step. Although the RCMs are found to reproduce the frequency of heat waves quite well, those RCMs with the coarser grid (25 and 50 km) considerably overestimate the frequency of severe heat waves. This deficiency is improved in higher-resolution (12.5 km) EURO-CORDEX RCMs. In the near future (2020–2049), heat waves are projected to be nearly twice as frequent in comparison to the modelled historical period, and the increase is even larger for severe heat waves. Uncertainty originates mainly from the selection of RCMs and GCMs because the increase is similar for all concentration scenarios. For the late twenty-first century (2070–2099), a substantial increase in heat wave frequencies is projected, the magnitude of which depends mainly upon concentration scenario. Three to four heat waves per summer are projected in this period (compared to less than one in the recent climate), and severe heat waves are likely to become a regular phenomenon. This increment is primarily driven by a positive shift of temperature distribution, but changes in its scale and enhanced temporal autocorrelation of temperature also contribute to the projected increase in heat wave frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号