首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 903 毫秒
1.
Arsenite sorption on troilite (FeS) and pyrite (FeS2)   总被引:4,自引:0,他引:4  
Arsenic is a toxic metalloid whose mobility and availability are largely controlled by sorption on sulfide minerals in anoxic environments. Accordingly, we investigated reactions of As(III) with iron sulfide (FeS) and pyrite (FeS2) as a function of total arsenic concentration, suspension density, sulfide concentration, pH, and ionic strength. Arsenite partitioned strongly on both FeS and FeS2 under a range of conditions and conformed to a Langmuir isotherm at low surface coverages; a calculated site density of near 2.6 and 3.7 sites/nm2 for FeS and FeS2, respectively, was obtained. Arsenite sorbed most strongly at elevated pH (>5 to 6). Although solution data suggested the formation of surface precipitates only at elevated solution concentrations, surface precipitates were identified using X-ray absorption spectroscopy (XAS) at all coverages. Sorbed As was coordinated to both sulfur [d(As-S) = 2.35 Å] and iron [d(As-Fe) = 2.40 Å], characteristic of As coordination in arsenopyrite (FeAsS). The absorption edge of sorbed As was also shifted relative to arsenite and orpiment (As2S3), revealing As(III) reduction and a complete change in As local structure. Arsenic reduction was accompanied by oxidation of both surface S and Fe(II); the FeAsS-like surface precipitate was also susceptible to oxidation, possibly influencing the stability of As sorbed to sulfide minerals in the environment. Sulfide additions inhibit sorption despite the formation of a sulfide phase, suggesting that precipitation of arsenic sulfide is not occurring. Surface precipitation of As on FeS and FeS2 supports the observed correlation of arsenic and pyrite and other iron sulfides in anoxic sediments.  相似文献   

2.
This paper reports specific mineralogical and geochemical characteristics of deposits from the local depressions of the Derugin Basin. They were formed in an environment with periodic changes from oxic to anoxic conditions and show evidence for the presence of hydrogen sulfide in bottom waters. The deposits of this type can be considered as a modern model for ancient ore-bearing black shale associations. Compared with typical metalliferous black shale sequences, which are characterized by high contents of organic matter, the sediments described here are depleted in the elements of the organophilic association (Mo, Ni, Cu, Zn, V, and U) but have higher Mn contents.  相似文献   

3.
Kinetics of arsenopyrite oxidative dissolution by oxygen   总被引:1,自引:0,他引:1  
We used a mixed flow reactor system to determine the rate and infer a mechanism for arsenopyrite (FeAsS) oxidation by dissolved oxygen (DO) at 25 °C and circumneutral pH. Results indicate that under circumneutral pH (6.3-6.7), the rate of arsenopyrite oxidation, 10−10.14±0.03 mol m−2 s−1, is essentially independent of DO over the geologically significant range of 0.3-17 mg L−1. Arsenic and sulfur are released from arsenopyrite in an approximate 1:1 molar ratio, suggesting that oxidative dissolution by oxygen under circumneutral pH is congruent. Slower rates of iron release from the reactor indicate that some of the iron is lost from the effluent by oxidation to Fe(III) which subsequently hydrolyzes and precipitates. Using the electrochemical cell model for understanding sulfide oxidation, our results suggest that the rate-determining step in arsenopyrite oxidation is the reduction of water at the anodic site rather than the transfer of electrons from the cathodic site to oxygen as has been suggested for other sulfide minerals such as pyrite.  相似文献   

4.
Oxidation of mackinawite (FeS) and concurrent mobilization of arsenic were investigated as a function of pH under oxidizing conditions. At acidic pH, FeS oxidation is mainly initiated by the proton-promoted dissolution, which results in the release of Fe(II) and sulfide in the solution. While most of dissolved sulfide is volatilized before being oxidized, dissolved Fe(II) is oxidized into green rust-like precipitates and goethite (α-FeOOH). At basic pH, the development of Fe(III) (oxyhydr)oxide coating on the FeS surface inhibits the solution-phase oxidation following FeS dissolution. Instead, FeS is mostly oxidized into lepidocrocite (γ-FeOOH) via the surface-mediated oxidation without dissolution. At neutral pH, FeS is oxidized via both the solution-phase oxidation following FeS dissolution and the surface-mediated oxidation mechanisms. The mobilization of arsenic during FeS oxidation is strongly affected by FeS oxidation mechanisms. At acidic pH (and to some extent at neutral pH), the rapid FeS dissolution and the slow precipitation of Fe (oxyhydr)oxides results in arsenic accumulation in water. In contrast, the surface-mediated oxidation of FeS at basic pH leads to the direct formation of Fe (oxyhydr)oxides, which provides effective adsorbents for As under oxic conditions. At acidic and neutral pH, the solution-phase oxidation of dissolved Fe(II) accelerates the oxidation of the less adsorbing As(III) to the more adsorbing As(V). This study reveals that the oxidative mobilization of As may be a significant pathway for arsenic enrichment of porewaters in sulfidic sediments.  相似文献   

5.
Hydrogeochemical evaluation of groundwater in the lower Offin basin,Ghana   总被引:3,自引:0,他引:3  
Alumino-silicate mineral dissolution, cation exchange, reductive dissolution of hematite and goethite, oxidation of pyrite and arsenopyrite are processes that influence groundwater quality in the Offin Basin. The main aim of this study was to characterise groundwater and delineate relevant water–rock interactions that control the evolution of water quality in Offin Basin, a major gold mining area in Ghana. Boreholes, dug wells, springs and mine drainage samples were analysed for major ions, minor and trace elements. Major ion study results show that the groundwater is, principally, Ca–Mg–HCO3 or Na–Mg–Ca–HCO3 in character, mildly acidic and low in conductivity. Groundwater acidification is principally due to natural biogeochemical processes. Though acidic, the groundwater has positive acid neutralising potential provided by the dissolution of alumino-silicates and mafic rocks. Trace elements’ loading (except arsenic and iron) of groundwater is generally low. Reductive dissolution of iron minerals in the presence of organic matter is responsible for high-iron concentration in areas underlain by granitoids. Elsewhere pyrite and arsenopyrite oxidation is the plausible process for iron and arsenic mobilisation. Approximately 19 and 46% of the boreholes have arsenic and iron concentrations exceeding the WHO’s (Guidelines for drinking water quality. Final task group meeting. WHO Press, World Health Organization, Geneva, 2004) maximum acceptable limits of 10 μg l−1 and 0.3 mg l−1, for drinking water.  相似文献   

6.
Interplay of S and As in Mekong Delta sediments during redox oscillations   总被引:1,自引:1,他引:0  
The cumulative effects of periodic redox cycling on the mobility of As,Fe,and S from alluvial sediment to groundwater were investigated in bioreactor experiments.Two particular sediments from the alluvial floodplain of the Mekong Delta River were investigated:Matrix A(14 m deep)had a higher pyrite concentration than matrix B(7 m deep)sediments.Gypsum was present in matrix B but absent in matrix A.In the reactors,the sediment suspensions were supplemented with As(Ⅲ)and SO_4~(2-),and were subjected to three full-redox cycles entailing phases of nitrogen/CO_2,compressed air sparging,and cellobiose addition.Major differences in As concentration and speciation were observed upon redox cycling.Evidences support the fact that initial sediment composition is the main factor controlling arsenic release and its speciation during the redox cycles.Indeed,a high pyrite content associated with a low SO_4~(2-)content resulted in an increase in dissolved As concentrations,mainly in the form of As(Ⅲ),after anoxic half-cycles;whereas a decrease in As concentrations mainly in the form of As(Ⅴ),was instead observed after oxic half-cycles.In addition,oxic conditions were found to be responsible for pyrite and arsenian pyrite oxidation,increasing the As pool available for mobilization.The same processes seem to occur in sediment with the presence of gypsum,but,in this case,dissolved As were sequestered by biotic or abiotic redox reactions occurring in the Fe—S system,and by specific physico-chemical condition(e.g.pH).The contrasting results obtained for two sediments sampled from the same core show that many complexes and entangled factors are at work,and further refinement is needed to explain the spatial and temporal variability of As release to groundwater of the Mekong River Delta(Vietnam).  相似文献   

7.
Stability and solubility of arsenopyrite, FeAsS, in crustal fluids   总被引:3,自引:0,他引:3  
The stability and solubility of natural arsenopyrite (FeAsS) in pure water and moderately acid to slightly basic aqueous solutions buffered or not with H2 and/or H2S were studied at temperatures from 300 to 450°C and pressures from 100 to 1000 bar. The solubilities of FeAsS in pure water and dilute HCl/NaOH solutions without buffering are consistent with the formation of the As(OH)30(aq) species and precipitation of magnetite. At more acid pH (pH ≤2), arsenopyrite dissolves either stoichiometrically or with formation of the As-FeAsS assemblage. In H2S-rich and H2-rich aqueous solutions, arsenopyrite dissolution results in the formation of pyrrhotite (±pyrite) and iron arsenide(s), respectively, which form stable assemblages with arsenopyrite.Arsenic concentrations measured in equilibrium with FeAsS in slightly acid to neutral aqueous solutions with H2 and H2S fugacities buffered by the pyrite-pyrrhotite-magnetite assemblage are 0.0006 ± 0.0002, 0.0055 ± 0.0010, 0.07 ± 0.01, and 0.32 ± 0.03 mol/kg H2O at 300°C/400 bar, 350°C/500 bar, 400°C/500 bar, and 450°C/500 bar, respectively. These values were combined with the available thermodynamic data on As(OH)30(aq) (Pokrovski et al., 1996) to derive the Gibbs free energy of FeAsS at each corresponding temperature and pressure. Extrapolation of these values to 25°C and 1 bar, using the available heat capacity and entropy data for FeAsS (Pashinkin et al., 1989), yields a value of −141.6 ± 6.0 kJ/mol for the standard Gibbs free energy of formation of arsenopyrite. This value implies a higher stability of FeAsS in hydrothermal environments than was widely assumed.Calculations carried out using the new thermodynamic properties of FeAsS demonstrate that this mineral controls As transport and deposition by high-temperature (>∼300°C) crustal fluids during the formation of magmatic-hydrothermal Sn-W-Cu-(Au) deposits. The equilibrium between As-bearing pyrite and the fluid is likely to account for the As concentrations measured in modern high- and moderate-temperature (150 ≤ T ≤ 350°C) hydrothermal systems. Calculations indicate that the local dissolution of arsenopyrite creates more reducing conditions than in the bulk fluid, which is likely to be an effective mechanism for precipitating gold from hydrothermal solutions. This could be a possible explanation for the gold-arsenopyrite association commonly observed in many hydrothermal gold deposits.  相似文献   

8.
The mobility of subsurface arsenic is controlled by sorption, precipitation, and dissolution processes that are tied directly to coupled redox reactions with more abundant, but spatially and temporally variable, iron and sulfur species. Adjacent to the site of a former pesticide manufacturing facility near San Francisco Bay (California, USA), soil and groundwater arsenic concentrations are elevated in sediments near the prior source, but decrease to background levels downgradient where shallow groundwater mixes with infiltrating tidal waters at the plume periphery, which has not migrated appreciably in over two decades of monitoring. We used synchrotron X-ray absorption spectroscopy, together with supporting characterizations and sequential chemical extractions, to directly determine the oxidation state of arsenic and iron as a function of depth in sediments from cores recovered from the unsaturated and saturated zones of a shallow aquifer (to 3.5 m below the surface). Arsenic oxidation state and local bonding in sediments, as As-sulfide, As(III)-oxide, or As(V)-oxide, were related to lithologic redox horizons and depth to groundwater. Based on arsenic and iron speciation, three subsurface zones were identified: (i) a shallow reduced zone in which sulfide phases were found in either the arsenic spectra (realgar-like or orpiment-like local structure), the iron spectra (presence of pyrite), or both, with and without As(III) or As(V) coordinated by oxygen; (ii) a middle transitional zone with mixed arsenic oxidation states (As(III)–O and As(V)–O) but no evidence for sulfide phases in either the arsenic or iron spectra; and (iii) a lower oxidized zone in the saturated freshwater aquifer in which sediments contained only oxidized As(V) and Fe(III) in labile (non-detrital) phases. The zone of transition between the presence and absence of sulfide phases corresponded to the approximate seasonal fluctuation in water level associated with shallow groundwater in the sand-dominated, lower oxic zone. Total sediment arsenic concentrations showed a minimum in the transition zone and an increase in the oxic zone, particularly in core samples nearest the former source. Equilibrium and reaction progress modeling of aqueous-sediment reactions in response to decreasing oxidation potential were used to illustrate the dynamics of arsenic uptake and release in the shallow subsurface. Arsenic attenuation was controlled by two mechanisms, precipitation as sulfide phases under sulfate-reducing conditions in the unsaturated zone, and adsorption of oxidized arsenic to iron hydroxide phases under oxidizing conditions in saturated groundwaters. This study demonstrates that both realgar-type and orpiment-type phases can form in sulfate-reducing sediments at ambient temperatures, with realgar predicted as the thermodynamically stable phase in the presence of pyrite and As(III) under more reduced conditions than orpiment. Field and modeling results indicate that the potential for release of arsenite to solution is maximized in the transition between sulfate-reduced and iron-oxidized conditions when concentrations of labile iron are low relative to arsenic, pH-controlled arsenic sorption is the primary attenuation mechanism, and mixed Fe(II,III)-oxide phases do not form and generate new sorption sites.  相似文献   

9.
Abstract. Chemical and sulfur isotopic compositions were obtained for a series of rocks within the chert‐clastic sequence surrounding the Kajika massive sulfide ore horizon at Shibukawasawa in the Ashio copper‐mining district, Ashio Terrane, central Japan. The sequence is lithologically classified into three units: chert, siliceous shale with basic volcanics, and sandstone‐shale, in ascending stratigraphic order. The Kajika ore horizon corresponds to the lowermost part of the unit that contains siliceous shale with basic volcanics. The rocks around the Kajika ore horizon are enriched in P2O5 (max. 0.22 %), Ba (max. 2400 ppm), Cu (595 ppm), V (323 ppm), Pb (168 ppm), Zn (124 ppm), and Mo (24 ppm) in siliceous shale; and Ba (4220 ppm), Zr (974 ppm), Cr (718 ppm), Ni (492 ppm), V (362 ppm), Zn (232 ppm), Nb (231 ppm), and Co (71 ppm) in the basic volcanics. The siliceous shale is enriched in a number of redox‐sensitive elements such as Cu, V, Pb, Zn, and Mo, which are known to be enriched in black shale and anoxic and hydrothermal sediments. The δ34S values of sulfides in the chert and sandstone‐shale lie in the range of 0±2 %, and those in the siliceous shale range from ‐5 to ‐14 %. The measured δ34S values in the basic volcanics are ‐0.3, ‐2.7, and ‐31.5 %. These heavier δ34S signatures (around 0 %) recorded throughout the sequence indicate that the rocks formed under anoxic bottom‐water conditions. Slightly lighter δ34S values recorded in siliceous shale might reflect significant mixing of sulfides that formed by sulfate‐reducing bacteria in an overlying oxic environment. The long‐term duration of anoxic conditions indicated by the heavier δ34S signature is considered to have played an important role in protecting the Kajika sulfide ores from oxidative decomposition and preserving the ores in sedimentary accumulations.  相似文献   

10.
Development of unconventional shale gas wells can generate significant quantities of drilling waste, including trace metal-rich black shale from the lateral portion of the drillhole. We carried out sequential extractions on 15 samples of dry-drilled cuttings and core material from the gas-producing Middle Devonian Marcellus Shale and surrounding units to identify the host phases and evaluate the mobility of selected trace elements during cuttings disposal. Maximum whole rock concentrations of uranium (U), arsenic (As), and barium (Ba) were 47, 90, and 3333 mg kg−1, respectively. Sequential chemical extractions suggest that although silicate minerals are the primary host for U, as much as 20% can be present in carbonate minerals. Up to 74% of the Ba in shale was extracted from exchangeable sites in the shale, while As is primarily associated with organic matter and sulfide minerals that could be mobilized by oxidation. For comparison, U and As concentrations were also measured in 43 produced water samples returned from Marcellus Shale gas wells. Low U concentrations in produced water (<0.084–3.26 μg L−1) are consistent with low-oxygen conditions in the wellbore, in which U would be in its reduced, immobile form. Arsenic was below detection in all produced water samples, which is also consistent with reducing conditions in the wellbore minimizing oxidation of As-bearing sulfide minerals.Geochemical modeling to determine mobility under surface storage and disposal conditions indicates that oxidation and/or dissolution of U-bearing minerals in drill cuttings would likely be followed by immobilization of U in secondary minerals such as schoepite, uranophane, and soddyite, or uraninite as conditions become more reducing. Oxidative dissolution of arsenic containing sulfides could release soluble As in arsenate form under oxic acidic conditions. The degree to which the As is subsequently immobilized depends on the redox conditions along the landfill flow path. The results suggest that proper management of drill cuttings can minimize mobilization of these metals by monitoring and controlling Eh, pH and dissolved constituents in landfill leachates.  相似文献   

11.
塔里木盆地北部下寒武统底部黑色页岩形成的次氧化条件   总被引:3,自引:0,他引:3  
富有机质黑色页岩的形成长期以来被认为是缺氧沉积环境的证据,并被作为全球缺氧事件的标志。塔里木盆地下寒武统底部黑色页岩的岩石学特征说明其沉积在受陆源有一定影响的陆棚环境中。矿物学研究表明,硫均以硫酸盐状态存在,没有见到黄铁矿,说明其形成在硫酸盐还原带以上。黑色页岩中结核状氟磷灰石的存在以及剖面底部结核状磷块岩的出现,表明了一种与现代热带太平洋东海岸和阿拉伯海相类似的广泛发育上升洋流的大陆边缘沉积环境。黑色页岩的地球化学特征中,Re和Mo的高度富集、高的Re/Mo比以及含有一定量的Mn,Cd和U的相对富集以及低的Cd/U比等,这些特点均支持了黑色页岩沉积于次氧化条件的认识。  相似文献   

12.
A waste rock pile with initial high sulfide (10–20 wt.%) and low carbonate content (1–2 wt.%) located at Dlouhá Ves in the Czech Republic has been investigated in two profiles (excavation and outcrop) using powder X-ray diffraction, electron microprobe analysis, bulk composition analysis and Mössbauer spectroscopy. The mobility of arsenic and other contaminants was evaluated by leaching experiments. The primary source of the arsenic was arsenopyrite, which was significantly oxidized in both profiles. The principal As-bearing phase at the excavation profile was goethite, located at the top of the profile, and minerals of the jarosite group which were found down to its base. Melanterite, rich in copper and zinc, was found in a sulfide-rich, lower part of the profile together with anglesite. At the outcrop profile, minerals of the jarosite–beudantite group, scorodite and kaňkite prevail and no Fe(II)-minerals were found. The paste pH was lower at the excavation profile (minimum about 1.9) than at the outcrop profile (minimum of about 2.8). Processes in the pile are affected by the pyrite/arsenopyrite ratio, where high pyrite content decreases the As/S ratio and results in the formation of jarosite group minerals and low pH conditions. Where arsenopyrite predominates, sulphides are coated by scorodite and other Fe–As phases like schwertmannite, which limit their further oxidation.  相似文献   

13.
The effects of water residence time and anoxic conditions on the mobilization and speciation of As in a calcite- and pyrite-bearing altered rock excavated during a road-tunnel project has been evaluated using batch and column laboratory experiments. Higher infiltration rates (i.e., shorter water residence times) enhanced the leaching of As due to the higher pH values of the effluents and more rapid transport of dissolved As through the columns. The concentration of As in the effluent also increased under anoxic conditions regardless of the water residence time. This enhanced leaching of As under anoxic conditions could be attributed to a significant pH increase and decreased Fe oxyhydroxide/oxide precipitation compared to similar experiments done under ambient conditions. Processes that controlled the evolution of pH and the temporal release mechanisms of As under anoxic conditions were identical to those previously observed under ambient conditions: the dissolution of soluble phases, pyrite oxidation, co-precipitation and/or adsorption/desorption reactions. Speciation of As in the column experiments could partly be attributed to the pH-dependent adsorption of As species onto Fe oxyhydroxide/oxide precipitates. Moreover, apparent equilibrium of the total As and As[III] concentrations was delayed under anoxic conditions in both batch and column experiments.  相似文献   

14.
The biogeochemistry of iron sulfide minerals in the water column of the Cariaco Basin was investigated in November 2007 (non-upwelling season) and May 2008 (upwelling season) as part of the on-going CARIACO (CArbon Retention In A Colored Ocean) time series project. The concentrations of particulate sulfur species, specifically acid volatile sulfur (AVS), greigite, pyrite, and particulate elemental sulfur, were determined at high resolution near the O2/H2S interface. In November 2007, AVS was low throughout the water column, with the highest concentration at the depth where sulfide was first detected (260 m) and with a second peak at 500 m. Greigite, pyrite, and particulate elemental sulfur showed distinct concentration maxima near the interface. In May 2008, AVS was not detected in the water column. Maxima for greigite, pyrite, and particulate elemental sulfur were again observed near the interface. We also studied the iron sulfide flux using sediment trap materials collected at the Cariaco station. Pyrite comprised 0.2-0.4% of the total particulate flux in the anoxic water column, with a flux of 0.5-1.6 mg S m−2 d−1.Consistent with the water column concentration profiles for iron sulfide minerals, the sulfur isotope composition of particulate sulfur found in deep anoxic traps was similar to that of dissolved sulfide near the O2/H2S interface. We conclude that pyrite is formed mainly within the redoxcline where sulfur cycling imparts a distinct isotopic signature compared to dissolved sulfide in the deep anoxic water. This conclusion is consistent with our previous study of sulfur species and chemoautotrophic production, which suggests that reaction of sulfide with reactive iron is an important pathway for sulfide oxidation and sulfur intermediate formation near the interface. Pyrite and elemental sulfur distributions favor a pathway of pyrite formation via the reaction of FeS with polysulfides or particulate elemental sulfur near the interface. A comparison of thermodynamic predictions with actual concentration profiles for iron sulfides leads us to argue that microbes may mediate this precipitation.  相似文献   

15.
Arsenopyrite (FeAsS) and enargite (Cu3AsS4) fractured in a nitrogen atmosphere were characterised after acidic (pH 1.8), oxidative dissolution in both the presence and absence of the acidophilic microorganism Leptospirillum ferrooxidans. Dissolution was monitored through analysis of the coexisting aqueous solution using inductively coupled plasma atomic emission spectroscopy and coupled ion chromatography-inductively coupled plasma mass spectrometry, and chemical changes at the mineral surface observed using X-ray photoelectron spectroscopy and environmental scanning electron microscopy (ESEM). Biologically mediated oxidation of arsenopyrite and enargite (2.5 g in 25 ml) was seen to proceed to a greater extent than abiotic oxidation, although arsenopyrite oxidation was significantly greater than enargite oxidation. These dissolution reactions were associated with the release of ∼917 and ∼180 ppm of arsenic into solution. The formation of Fe(III)-oxyhydroxides, ferric sulphate and arsenate was observed for arsenopyrite, thiosulphate and an unknown arsenic oxide for enargite. ESEM revealed an extensive coating of an extracellular polymeric substance associated with the L. ferrooxidans cells on the arsenopyrite surface and bacterial leach pits suggest a direct biological oxidation mechanism, although a combination of indirect and direct bioleaching cannot be ruled out. Although the relative oxidation rates of enargite were greater in the presence of L. ferrooxidans, cells were not in contact with the surface suggesting an indirect biological oxidation mechanism. Cells of L. ferrooxidans appear able to withstand several hundreds of ppm of As(III) and As(V).  相似文献   

16.
Black shales and massive sulfides represent reduced lithofacies that require isolation from oxic environments to be preserved. This, together with the sedimentary affinity of both lithofacies, can explain their common concurrence in the geologic record. The present study is based on the comparison of Rammelsberg in Germany, Tharsis in Spain, and Draa Sfar in Morocco, three massive sulfide deposits closely associated with black shales that are distributed along the European and North African Variscan orogen. The study entails geochemical, biostratigraphic, and stratigraphic analyses of the black shale sequences hosting the three deposits and mineralogical and textural analyses of the sulfides. All three deposits were formed in immature, tectonically unstable basins within an active continental margin or continental magmatic arc. Their stratigraphic records consist of a sequence of black shales enclosing massive sulfides and variable proportions of bimodal volcanic and subvolcanic rocks. The major differences among the three deposits concern the size, composition, and mineralogy. Regarding age, they are diachronous and younger southward: Rammelsberg is middle Eifelian, Tharsis latest Famennian, and Draa Sfar late Viséan. The study of redox conditions of the paleoenvironment using organic and inorganic proxies highlights similarities and significant differences among the three ore-hosting basins during massive sulfide and black shale deposition. The black shales generally display low Corg and high Stot contents. At Rammelsberg, the Stot/Ctot ratios provide values typical for normal Middle Devonian marine environments, which suggests that the original reactive organic C is now fixed in carbonates. At Tharsis, most of the samples have Corg >1 and Stot/Corg values equivalent to those of Devonian?CCarboniferous normal marine sediments. However, some pyritic hanging-wall samples have Corg <1 and Stot up to 5?wt.%, suggesting the epigenetic addition of HS?. The Stot/Corg ratio for the Draa Sfar samples resembles that of Middle Carboniferous normal marine environments. Geochemical inorganic proxies used to define the environmental conditions include the enrichment factors of U (UEF) and Mo (MoEF) together with V/Cr and V/(V?+?Ni) ratios. Footwall shales at Filón Norte (Tharsis) show positive and eventually elevated UEF and MoEF values, which suggests anoxic conditions, whereas at Rammelsberg and Draa Sfar oxic bottom water is indicated. The relations V/Cr and V/(V + Ni) in all three cases point to a redox boundary near the sediment?Cwater interface, although at Tharsis some samples indicate anoxic/euxinic conditions (i.e., V/(V + Ni) >0.9). Regarding the environmental conditions of the source areas, feldspar illitization and selective depletion in Na and Ca occurred at the three studies sites. Available sulfur isotopic data from the Rammelsberg and Tharsis sulfide ore indicate that biogenic reduction of marine sulfate was a major sulfur source during massive sulfide generation. Nevertheless, a hydrothermal sulfur source has also been detected. At Rammelsberg, this is indicated from the polymetallic sulfides that replace sedimentary and diagenetic pyrite. At Tharsis, the bacteriogenic sulfur signature is also restricted to sulfide with less evolved textures, whereas a hydrothermal source is more evident in sulfides showing evidence of recrystallization. Both geochemical and isotopic data suggest that the bacteriogenic reduction process was inhibited by rapid burial. The sedimentation rates calculated for Rammelsberg, Tharsis, and Draa Sfar were in the range 7?C13, 8?C14, and 19?C27?cm/ka, respectively. Continuous sedimentation of black shale favored the isolation of the massive sulfides and organic material from bottom waters and hence favored their preservation. Accordingly, the relationships between black shales and massive sulfides are considered to be casual. Nevertheless, the tectono-sedimentary evolution of each basin controlled the deposition of both black shales and massive sulfides and the parameters that favored their coeval deposition.  相似文献   

17.
To understand the impact of Selenium (Se) into the biogeochemical cycle and implications for palaeo-redox environment, a sequential extraction method was utilized for samples including black shales, cherts, a Ni-Mo-Se sulfide layer, K-bentonite and phosphorite from Lower Cambrian Se-enriched strata in southern China. Seven species (water-soluble, phosphate exchangeable, base-soluble, acetic acid-soluble, sulfide/selenide associated, residual Se) and different oxidation states (selenate Se(VI), selenite Se(IV), organic Se, Se (0) and mineral Se(-II)) were determinated in this study. We found that the Ni-Mo-Se sulfide layer contained a significantly greater amount of Se(-II) associated with sulfides/selenides than those in host black shales and cherts. Furthermore, a positive correlation between the degree of sulfidation of iron (DOS) and the percentage of the sulfide/selenide-associated Se(-II) was observed for samples, which suggests the proportion of sulfide/selenide-associated Se(-II) could serve as a proxy for palaeo-redox conditions. In addition, the higher percentage of Se(IV) in K-bentonite and phosphorite was found and possibly attributed to the adsorption of Se by clay minerals, iron hydroxide surfaces and organic particles. Based on the negative correlations between the percentage of Se(IV) and that of Se(-II) in samples, we propose that the K-bentonite has been altered under the acid oxic conditions, and the most of black shale (and cherts) and the Ni-Mo-Se sulfide layer formed under the anoxic and euxinic environments, respectively. Concerning Se accumulation in the Ni-Mo-Se sulfide layer, the major mechanism can be described by (1) biotic and abiotic adsorption and further dissimilatory reduction from oxidized Se(VI) and Se(IV) to Se(-II), through elemental Se, (2) contribution of hydrothermal fluid with mineral Se(-II).  相似文献   

18.
We observed the initial release rate of metals from four fresh (i.e., without long time exposure to the atmosphere) hydrothermal sulfide cores into artificial seawater. The sulfide samples were collected by seafloor drilling from the Okinawa Trough by D/V Chikyu, powdered under inert gas, and immediately subjected to onboard metal-leaching experiments at different temperatures (5 °C and 20 °C), and under different redox conditions (oxic and anoxic), for 1–30 h. Zinc and Pb were preferentially released from sulfide samples containing various metals (i.e., Mn, Fe, Cu, Zn, Cd, and Pb) into seawater. Under oxic experimental conditions, Zn and Pb dissolution rates from two sulfide samples composed mainly of iron disulfide minerals (pyrite and marcasite) were higher than those from two other sulfide samples with abundant sphalerite, galena, and/or silicate minerals. Scanning electron microscopy confirmed that the high metal-releasing sample contained several galvanic couples of iron disulfide with other sulfide minerals, whereas the low metal-releasing sample contained fewer galvanic couples or were coated by a silicate mineral. The experiments overall confirmed that the galvanic effects with iron disulfide minerals greatly induce the initial release of Zn and Pb from hydrothermal sulfides into seawater, especially under warm oxic conditions.  相似文献   

19.
The galvanic effect between the main associated mineralogical phases in a mineral sphalerite concentrate was evaluated using an alternative methodology. Comparative voltammetric studies were performed between high purity galena mineral (94.65%) and sphalerite concentrate (content of 78.11% sphalerite, ZnS; 13.64% galena, PbS; 0.57% chalcopyrite, CuFeS2; 0.41% cadmium sulfide, CdS; and 0.11% arsenopyrite, FeAsS) using carbon paste electrodes (CPE) in order to identify galvanic interactions that affect their reactivity. The electrolyte was an aqueous solution of 0.1 M NaNO3 (pH 6.5). The results showed that, in sphalerite concentrate, the electrochemical reactivity of the galena was diminished and displaced to more positive potentials with respect to the high purity galena mineral response. This behavior can be attributed to the galvanic protection offered by the sphalerite on the galena, thereby avoiding its free oxidation. On the other hand, sphalerite oxidation was diminished by the formation of a passive products film that is dissolved to more positive potentials which provokes oxidation of other minerals like CuFeS2, (Zn,Cd)S and FeAsS present in a minor proportion in the sphalerite concentrate.  相似文献   

20.
With a half-life of 15.7 Ma, a high mobility and the potential to accumulate in the biosphere, 129I is considered, in safety assessment calculations for radioactive waste repositories, to be one of the main contributors to the radiological dose. Several authors have reported that, at low concentration, I is weakly retained on argillaceous rocks. This process is not yet well-understood and different hypotheses have been put forward as to whether reactive phases or experimental artifacts (e.g. pyrite oxidation) could be the reason for the retention of I observed at low concentration. The aim of this study was to investigate the effect on I mobility of (i) the redox conditions and (ii) the amount of pyrite and natural organic matter (NOM) contents of the rock. These questions were addressed by performing batch sorption, through-diffusion and out-diffusion experiments on rock samples of Toarcian argillaceous rock from Tournemire (Aveyron, France). One of the challenges faced during this study was to distinguish actual transport properties from experimental artifacts. A especially elaborate experimental set-up allowed limiting the (i) oxidation of both argillaceous rock and I, and (ii) carbonate precipitation. A comparison of the batch sorption results obtained for two Toarcian clay specimens, that differed in their amount of pyrite and NOM, allowed relating I sorption to pyrite oxidation. However, no evidence was found to associate the I behavior to the NOM amounts. While the through-diffusion experiments showed a very slight sorption (distribution ratio (Rd) = 0.016 mL g−1) for the lowest I concentration under oxic conditions, the out-diffusion tests performed after the through-diffusion experiments on the same cells showed significant sorption under both oxic and anoxic conditions, resulting in Rd ranging from 0.02 mL g−1 to 1.25 mL g−1. The range of Rd values was higher for the upstream reservoir under oxic conditions. The discrepancies observed between the through-diffusion and the out-diffusion experiments suggest a kinetic control of the I uptake by argillaceous rocks under oxic and anoxic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号