首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
张伟  曲占庆  郭天魁  孙江 《岩土力学》2019,40(5):2001-2008
干热岩水压致裂过程中低温诱导热应力与注入水压共同影响裂缝的萌生与扩展。首先通过THM耦合分析了低温压裂液注入过程中注入水压与热应力的相互作用及其对裂缝萌生的影响,随后建立描述岩石细观结构的THMD耦合模型对热应力影响下高温岩石水压致裂过程进行初探。结果表明:低温压裂液注入高温岩石产生的热应力包括岩石自身温度梯度形成的热应力与岩石颗粒非均匀膨胀导致的热应力,并在井筒周围呈现为拉应力。高注入压力将抑制热应力导致的多裂缝萌生,井筒附近热应力的存在对注入压力也具有削弱作用。基岩温度升高,裂缝萌生阶段更多裂缝在井筒附近起裂,缝网沿最大地应力方向的扩展速度减慢,但改造规模增加,同时多裂缝的存在也使得裂缝延伸压力增加。  相似文献   

2.
为了探索煤层顶板中水平井向目标层穿层压裂的裂缝扩展规律,以华北石炭-二叠纪煤田为例,运用断裂力学、损伤力学以及流体力学等经典理论并结合现场实测资料,开展了压裂缝延伸距离与压裂时间时空演化规律的建模与验证。首先,基于原生裂缝特性、渗透特性以及压裂射孔段附加应力等因素,提出了顶板水平井垂向造缝的起裂压力计算公式;其次,在考虑裂缝性煤岩体损伤效应的基础上,引入Dougill损伤因子,将该计算模型拓展为延伸压力计算模型;最后,基于改进的经典PKN裂缝模型和压裂液滤失理论,建立了连续穿层工况下压裂缝延伸距离与压裂施工时间的函数关系。实践验证表明,根据理论模型合理调配时间参数,可以控制穿层裂缝的延伸距离。   相似文献   

3.
裂隙岩体介质THM耦合问题中的渗透特性研究   总被引:4,自引:0,他引:4  
在前人就热、液、力三因素各自影响裂隙岩体渗透特性的研究和本文所进行的温度及附加应力作用下单裂隙岩样实验的基础上.综合分析了裂隙岩体THM耦合过程,以裂隙结构面的开度、岩体裂隙数(包括受温度影响开通裂隙数)、裂隙连通率、附加应力、剪切膨胀为研究对象.建立具有THM耦合特性的裂隙岩体渗流系数张量。  相似文献   

4.
A procedure based on the finite element method is suggested for modeling of 3D hydraulic fracturing in the subsurface. The proposed formulation partitions the stress field into the initial stress state and an additional stress state caused by pressure buildup. The additional stress is obtained as a solution of the Biot equations for coupled fluid flow and deformations in the rock. The fluid flow in the fracture is represented on a regular finite element grid by means of “fracture” porosity, which is the volume fraction of the fracture. The use of the fracture porosity allows for a uniform finite element formulation for the fracture and the rock, both with respect to fluid pressure and displacement. It is demonstrated how the fracture aperture is obtained from the displacement field. The model has a fracture criterion by means of a strain limit in each element. It is shown how this criterion scales with the element size. Fracturing becomes an intermittent process, and each event is followed by a pressure drop. A procedure is suggested for the computation of the pressure drop. Two examples of hydraulic fracturing are given, when the pressure buildup is from fluid injection by a well. One case is of a homogeneous rock, and the other case is an inhomogeneous rock. The fracture geometry, well pressure, new fracture area, and elastic energy released in each event are computed. The fracture geometry is three orthogonal fracture planes in the homogeneous case, and it is a branched fracture in the inhomogeneous case.  相似文献   

5.
王伟  付豪  邢林啸  柴波  刘波  施星宇 《地球科学》2021,46(10):3509-3519
水力压裂作为一种主要的地热能开采手段,其压裂效果除与岩体基本物理力学性质有关外,还与裂隙分布、地应力状态、压裂工程参数等密切相关.为了探究以上因素对水力压裂过程中裂缝扩展行为的影响,以冀中坳陷碳酸盐岩储层岩体为研究对象,基于扩展有限元法,建立裂缝扩展流固耦合模型,分析了水平应力差、射孔方位角、注入液排量和压裂液黏度等参数对裂缝扩展行为的影响.结果表明:单裂缝扩展时,射孔方位角越小、注入量越大、越有利于裂缝扩展;双裂缝扩展时,水平应力差增大,裂缝偏转程度变小;水力裂缝与天然裂缝相交时,较小水平应力差有利于天然裂缝开启.   相似文献   

6.
A hydro-mechanical coupled model that can simultaneously consider the pore seepage of a rock matrix and the fracture seepage is proposed to simulate three-dimensional hydraulic fracturing. This model appropriately takes into account the fluid leak-off into the surrounding rock matrix from the fracture. Several examples are given to validate the seepage algorithms and the coupled model. The results suggest that this model can solve problems involving pore seepage and fracture seepage through simple pure fracture seepage. Moreover, it can reproduce the fluid pressure distribution and the crack initiation and propagation and consider the fluid loss during hydraulic fracturing.  相似文献   

7.
程万  蒋国盛  周治东  魏子俊  张宇  王炳红  赵林 《岩土力学》2018,39(12):4448-4456
水平井中多条水力裂缝间的应力干扰行为,造成了压裂液排量的非均匀分配,影响了水力裂缝的几何形态。采用边界元法研究岩体在压裂液作用下的变形程度,以幂律流体泊肃叶平板流动方程来研究水力裂缝内部的压裂液流场,考虑了多条裂缝间应力干扰和压裂液流量分配,建立了流-固耦合的水平井多条水力裂缝同步扩展模型。模型可模拟水平井多条水力裂缝几何形态、应力干扰情况和压裂液排量的分配情况,可解释水力裂缝之间的竞争机制。多条裂缝同步扩展时,压裂液排量并非均等地分配到各个裂缝之中,进入到内部裂缝的压裂液流量最小,内部裂缝宽度最小;内部的水力裂缝增长一定长度后,停止增长,并且在应力干扰下逐渐闭合。  相似文献   

8.
Two-DimensionalModelofHydraulicFracturinginGeosciences:Effects of Fluid BuoyancyYoshitoNakashima;MitsuhiroToriumi(GeologicalI...  相似文献   

9.
岩石损伤过程中的热-流-力耦合模型及其应用初探   总被引:3,自引:0,他引:3  
朱万成  魏晨慧  田军  杨天鸿  唐春安 《岩土力学》2009,30(12):3851-3857
岩石损伤过程热-流-力(THM)耦合问题的研究对于深部采矿等许多工程领域都具有重要的理论意义。以岩石的损伤为主线,在多场耦合分析方程中引入损伤变量,基于质量守恒和能量守恒原理,提出岩体损伤过程中的THM耦合模型。通过把均匀弹性介质THM耦合响应的模拟结果与理论分析结果进行对比,验证了程序及有限元实施的正确性。然后,用该耦合模型进行了不同地应力条件下流固耦合过程的数值模拟,探讨了水压力对于岩石损伤过程的作用机制。数值模拟表明,水压力导致了拉伸损伤范围的扩大和损伤程度的加剧,同时亦对剪切损伤具有抑制作用。  相似文献   

10.
The failure mechanism of hydraulic fractures in heterogeneous geological materials is an important topic in mining and petroleum engineering. A three-dimensional (3D) finite element model that considers the coupled effects of seepage, damage, and the stress field is introduced. This model is based on a previously developed two-dimensional (2D) version of the model (RFPA2D-Rock Failure Process Analysis). The RFPA3D-Parallel model is developed using a parallel finite element method with a message-passing interface library. The constitutive law of this model considers strength and stiffness degradation, stress-dependent permeability for the pre-peak stage, and deformation-dependent permeability for the post-peak stage. Using this model, 3D modelling of progressive failure and associated fluid flow in rock are conducted and used to investigate the hydro-mechanical response of rock samples at laboratory scale. The responses investigated are the axial stress–axial strain together with permeability evolution and fracture patterns at various stages of loading. Then, the hydraulic fracturing process inside a rock specimen is numerically simulated. Three coupled processes are considered: (1) mechanical deformation of the solid medium induced by the fluid pressure acting on the fracture surfaces and the rock skeleton, (2) fluid flow within the fracture, and (3) propagation of the fracture. The numerically simulated results show that the fractures from a vertical wellbore propagate in the maximum principal stress direction without branching, turning, and twisting in the case of a large difference in the magnitude of the far-field stresses. Otherwise, the fracture initiates in a non-preferred direction and plane then turns and twists during propagation to become aligned with the preferred direction and plane. This pattern of fracturing is common when the rock formation contains multiple layers with different material properties. In addition, local heterogeneity of the rock matrix and macro-scale stress fluctuations due to the variability of material properties can cause the branching, turning, and twisting of fractures.  相似文献   

11.
随着扩展有限元理论的深入研究,利用扩展有限元方法模拟水力压裂具有了一定的可操作性。相比于常规有限元方法,XFEM方法具有计算结果精度高和计算量小的优点。但是,如何模拟射孔孔眼、如何模拟流体与岩石相互作用以及分析水力裂缝的扩展规律仍然是难题。以研究水力压裂裂缝扩展规律为目的,建立了岩石多孔介质应力平衡方程、流体渗流连续性方程和边界条件。通过有限元离散化方法对耦合方程矩阵进行处理。通过富集函数定义初始裂缝(射孔孔眼),选择最大主应力及损伤变量D分别作为裂缝起裂和扩展判定准则,利用水平集方法模拟水力裂缝扩展过程。数值模拟结果显示:增加射孔方位角、压裂液排量和减小水平地应力差,起裂压力上升;黏度对起裂压力无明显影响。增加射孔方位角、压裂液排量、黏度和减小水平地应力差值有助于裂缝宽度的增加。增加水平地应力差值、压裂液排量和减小射孔方位角以及压裂液黏度有助于裂缝长度增加,反之亦然。基于ABAQUS的水力裂缝扩展有限元法可对不同井型和诸多储层物性参数及压裂施工参数进行分析,且裂缝形态逼真,裂缝面凹凸程度清晰,结果准确。此研究可作为一种简便有效研究水力压裂裂缝扩展规律的方法为油田水力压裂设计与施工提供参考与依据。  相似文献   

12.
Yan  Chengzeng  Jiao  Yu-Yong  Yang  Shengqi 《Acta Geotechnica》2019,14(2):403-416

Based on the combined finite-discrete element method (FDEM), a two-dimensional coupled hydro-thermal model is proposed. This model can simulate fluid flow and heat transfer in rock masses with arbitrary complex fracture networks. The model consists of three parts: a heat conduction model of the rock matrix, a heat-transfer model of the fluid in the fracture (including the heat conduction and convection of fluid), and a heat exchange model between the fluid and rock at the fracture surface. Three examples with analytical solutions are given to verify the correctness of the coupled model. Finally, the coupled model is applied to hydro-thermal coupling simulations of a rock mass with a fracture network. The temperature field evolution, the effect of thermal conductivity of the rock matrix thermal conductivity and the fracture aperture on the outlet temperature are studied. The coupled model presented in this paper will enable the application of FDEM to study rock rupture driven by the effect of hydro-thermo-mechanical coupling in geomaterials such as in geothermal systems, petroleum engineering, environmental engineering and nuclear waste geological storage.

  相似文献   

13.
刘泉声  刘学伟 《岩土力学》2014,299(2):305-321
裂隙岩体热-水-应力(THM)耦合是目前研究的热点和难点。首先总结了裂隙岩体多场耦合的机制、模型、方法及研究内容,并通过分析裂隙对THM耦合的重要控制作用,提出了在THM耦合中考虑裂隙网络扩展演化及模拟的关键问题,同时指出了研究的3个关键点:(1)建立考虑裂隙网络演化的耦合模型;(2)裂隙扩展的数值模拟方法;(3)THM耦合及岩体变形、失稳全过程的数值模拟算法。随后通过对模拟多场耦合和裂隙扩展数值方法的归类比较,重点论述了目前适用于模拟多场耦合下裂隙扩展模拟的各种数值方法(包括有限单元法、无单元法、单位分解法、离散单元法、岩石破裂过程分析方法和数值流形方法)的优缺点,并通过对比研究,推荐采用数值流形方法(NMM)来实现对关键问题的模拟研究。最后,对研究思路和难点进行了初步探讨。  相似文献   

14.
Krzaczek  M.  Nitka  M.  Kozicki  J.  Tejchman  J. 《Acta Geotechnica》2020,15(2):297-324

The paper deals with two-dimensional (2D) numerical modelling of hydro-fracking (hydraulic fracturing) in rocks at the meso-scale. A numerical model was developed to characterize the properties of fluid-driven fractures in rocks by combining the discrete element method (DEM) with computational fluid dynamics (CFD). The mechanical behaviour of the rock matrix was simulated with DEM and the behaviour of the fracturing fluid flow in newly developed and pre-existing fractures with CFD. The changes in the void geometry in the rock matrix were taken into account. The initial 2D hydro-fracking simulation tests were carried out for a rock segment under biaxial compression with one injection slot in order to validate the numerical model. The qualitative effect of several parameters on the propagation of a hydraulic fracture was studied: initial porosity of the rock matrix, dynamic viscosity of the fracking fluid, rock strength and pre-existing fracture. The characteristic features of a fractured rock mass due to a high-pressure injection of fluid were realistically modelled by the proposed coupled approach.

  相似文献   

15.
In this paper, a fully coupled thermo-hydro-mechanical model is presented for two-phase fluid flow and heat transfer in fractured/fracturing porous media using the extended finite element method. In the fractured porous medium, the traction, heat, and mass transfer between the fracture space and the surrounding media are coupled. The wetting and nonwetting fluid phases are water and gas, which are assumed to be immiscible, and no phase-change is considered. The system of coupled equations consists of the linear momentum balance of solid phase, wetting and nonwetting fluid continuities, and thermal energy conservation. The main variables used to solve the system of equations are solid phase displacement, wetting fluid pressure, capillary pressure, and temperature. The fracture is assumed to impose the strong discontinuity in the displacement field and weak discontinuities in the fluid pressure, capillary pressure, and temperature fields. The mode I fracture propagation is employed using a cohesive fracture model. Finally, several numerical examples are solved to illustrate the capability of the proposed computational algorithm. It is shown that the effect of thermal expansion on the effective stress can influence the rate of fracture propagation and the injection pressure in hydraulic fracturing process. Moreover, the effect of thermal loading is investigated properly on fracture opening and fluids flow in unsaturated porous media, and the convective heat transfer within the fracture is captured successfully. It is shown how the proposed computational model is capable of modeling the fully coupled thermal fracture propagation in unsaturated porous media.  相似文献   

16.
Preexisting flaws and rock heterogeneity have important ramifications on the process of rock fracturing and on rock stability in many applications. Therefore, there is great interest in numerical modelling of rock fracture and the underlying mechanisms. We simulated damage evolution and fracture propagation in sandstone specimens containing a preexisting 3-D surface flaw under uniaxial compression. We applied the linear elastic damage model based on the unified strength theory following the rock failure process analysis code. However, in contrast to the rock failure process analysis code, we used the finite element method with tetrahedron elements on unstructured meshes. It provided higher geometrical flexibility and allowed for a more accurate representation of the disk-shaped flaw with various flaw depths, angles, and lengths through locally adapted meshes. The rock heterogeneity was modelled by sampling the initial local Young's modulus from a Weibull distribution over a cubic grid. The values were then interpolated to the computational finite element method mesh. This method introduced an additional length scale for the rock heterogeneity represented by the cell size in the sampling grid. The generation of three typical surface cracking patterns, called wing cracks, anti-wing cracks, and far-field cracks, were identified in the simulation results. These depend on the geometry of the preexisting surface flaw. The simulated fracture propagation, coalescence types, and failure modes for the specimens with preexisting surface flaw show good agreement with recent experimental studies.  相似文献   

17.
高水压下岩体裂纹扩展的渗流-断裂耦合机制与数值实现   总被引:1,自引:0,他引:1  
赵延林  彭青阳  万文 《岩土力学》2014,299(2):556-564
采用渗流力学、断裂力学理论结合Monte Carlo方法描述岩体裂纹的随机分布,研究高水压作用下岩体原生裂纹的变形和翼形裂纹的萌生、扩展、贯通的渗流-断裂耦合作用机制,建立高水压作用下岩体裂纹的渗流-断裂耦合数学模型,给出该数学模型的求解策略与方法,在Fortran95平台下开发高水压下岩体裂纹扩展的渗流-断裂耦合分析程序HWFSC.for。高水压下岩体裂纹扩展的渗流-断裂耦合体现在岩体裂纹网络和渗流初始条件都随渗流时步变化。对高压注水岩体裂纹扩展过程进行渗流-断裂耦合分析。结果表明,高压注水条件下,岩体裂纹扩展存在起动水压力,当水压力大于起动水压力时,裂纹尖端开始萌生翼形裂纹,随着裂纹水压力的增加,翼形裂纹扩展,进而与其他裂纹搭接贯通,停止扩展。渗流-断裂耦合分析考虑了裂纹动、静水压力对裂纹产生的法向扩张效应及翼形裂纹的扩展而形成新的渗流通道两方面的影响,连通裂纹数随渗流的发展而增加。岩体裂纹的渗流-断裂耦合分析,能较真实地再现岩体裂纹的水力劈裂现象,描述岩体裂纹的扩展、贯通过程及与之相耦合的渗流响应。  相似文献   

18.
Within the framework of our discontinuous deformation analysis for rock failure algorithm, this paper presents a two‐dimensional coupled hydromechanical discontinuum model for simulating the rock hydraulic fracturing process. In the proposed approach, based on the generated joint network, the calculation of fluid mechanics is performed first to obtain the seepage pressure near the tips of existing cracks, and then the fluid pressure is treated as linearly distributed loads on corresponding block boundaries. The contribution of the hydraulic pressure to the initiation/propagation of the cracks is considered by adding the components of these blocks into the force matrix of the global equilibrium equation. Finally, failure criteria are applied at the crack tips to determine the occurrence of cracking events. Several verification examples are simulated, and the results show that this newly proposed numerical model can simulate the hydraulic fracturing process correctly and effectively. Although the numerical and experimental verifications focus on one unique preexisting crack, because of the capability of discontinuous deformation analysis in simulating block‐like structures, the proposed approach is capable of modeling rock hydraulic fracturing processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of the study involves examining the effect of heavy oil viscosity on fracture geometry in detail by establishing a heavy oil fracturing model and conventional fracturing model based on thermal–hydraulic–mechanical (THM) coupled theory, Walther viscosity model, and K–D–R temperature model. We consider viscosity and density within the heavy oil fracturing model as functions of pressure and temperature while that as constants within the conventional fracturing model. A heavy oil production well is set as an example to analyze the differences between the two models to account for the thermo-poro-elastic effect. The results show that temperature exhibits the most significant influence on the heavy oil viscosity while the influence of pressure is the least. In addition, a cooling area with a width of 0–1 m and varied length is generated near the fracture. The heavy oil viscosity increases sharply in this area, thereby indicating an area of viscosity increment. The heavy oil viscosity increases faster and is closer to wellbore, and a high viscosity increment reduces the mobility of the heavy oil and prevents the fracturing fluid from entering into the reservoir. The special viscosity distribution results in significant differences in pore pressure, oil saturation, and changing trends between these two models. In the heavy oil reservoir fracturing model, the thermal effect completely exceeds the influence of pore elasticity, and the values of the fracture length, width, and static pressure exceed those calculated in the conventional fracturing model. Thus, a comparison of the measured values indicates that the results obtained by considering viscosity as a function of temperature and pressure are more accurate. Therefore, the results of this study are expected to provide good guidelines for the design of heavy oil fracturing.  相似文献   

20.
新疆油田某地区油藏的储隔层岩性组合复杂,呈现突出的薄互层产状特征,研究合、分压判断条件有利于提高压裂效率,增强储层动用程度与压后改造效果。水力裂缝在薄互层中的穿层与裂缝扩展行为受薄互层地质特征与压裂施工参数的影响。基于此,开展了薄互层物理模型压裂试验,研究界面胶结、岩层分布、岩层厚度、压裂液黏度与注液排量对薄互层中水力裂缝垂向扩展的影响分析。试验结果表明:薄互层的地层特征界面胶结与岩层分布是水力裂缝垂向扩展的主要控制因素,界面胶结强度对裂缝垂向扩展行为的影响强于岩层分布;由于弱胶结界面的存在,水力裂缝垂向扩展穿层时可发生方向偏转,抑制裂缝垂向扩展;提高压裂液黏度与注液排量有利于薄互层中水力裂缝的穿层垂向扩展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号