首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
菲律宾海沉积物中石英的来源及其搬运方式   总被引:1,自引:0,他引:1  
为了识别菲律宾海沉积物中风尘信号和源区,以及沉积物的搬运方式,取菲律宾海沉积物中的石英,系统研究了石英的粒度组成、形貌特征、氧同位素特征和结晶度指数。菲律宾海中远离岛弧和海脊的石英粒度较细,西菲律宾海中石英主要由EM1(众数粒径平均为2.9μm)、EM2(众数粒径平均8.17μm)和EM3(众数粒径平均为21.67μm)三个端元组成,东菲律宾海中主要由EM1和EM2两个端元组成。靠近岛弧和海脊的石英粒度较粗,吕宋岛附近的石英具有众数粒径平均为103μm的EM4端元。EM1端元石英表面有明显的碰撞凹坑, EM2端元石英有溶蚀孔洞, EM3端元石英呈棱角状,表面相对光滑。包含EM1端元的石英的δ18O值和结晶度指数与塔克拉玛干沙漠中相同粒级石英的特征相近,不包含EM1端元的石英的δ18O值和结晶度指数与火山岛弧来源的石英特征相近。综合分析表明,EM1端元的石英为主要来自于塔克拉玛干沙漠的风尘石英,经由盛行西风搬运至太平洋,并由南向或西南向的风搬运,最终在菲律宾海沉积。EM2和EM3端元石英主要来源于太平洋火山岛弧,其中, EM2端元的石英经历了强烈的化学风化,经河流或洋流输送到研究区; EM3端元的石英没有经历长距离运输,可能是附近岩石风化的产物。  相似文献   

2.
人类对海岸带的开发利用活动改造了岸线形态,严重改变海洋区域性流场、水下地形形态及沉积物分布。利用单波束测深、沉积物采样分析等手段,查明研究区海底地形地貌和沉积物分布特征,探讨其沉积物来源。结果显示:①钦州湾水下地形复杂多变,水深为0~20 m,分为中部钦州湾外湾水下地形区、东部三娘湾水下地形区、西部防城港东侧水下地形区及南部湾外水下地形区等4个区域;②地貌分为潮控三角洲、潮流沙脊群、潮流冲刷槽和水下岸坡4个主要海底地貌单元以及潮滩、海蚀平台等潮间带地貌单元;③钦州湾砂质沉积分布广泛,占70%,自茅尾海口门向外海沉积物粒径逐渐变粗,由砂质泥变为泥质砂,再过渡为细砂和中粗砂。沉积物碎屑矿物主要由石英、长石、岩屑、钛铁矿、白钛石和电气石组成,粘土矿物以高岭石为主,其次为伊利石、蒙脱石,沉积物来源为近源河流的陆源输入为主。随着围填海和堤坝建设,钦州湾外湾海岸形态变化巨大,伴随着落潮流速大于涨潮流速的峡道效应,水下地形呈现出槽脊规模和高差加剧,近岸淤积加重的特点。  相似文献   

3.
海底沉积物中稀土元素的分布特征受很多影响因子的影响,很难定量分析。北部湾沉积物稀土元素(ΣREE)与物源、水动力、沉积物粒度和粘土矿物百分比等关系定性分析显示,本区的ΣREE的物源主要由陆源岩石控制,弱水动力和细粒度都对应较高含量的ΣREE。结合北部湾海底沉积物的位置、砾石含量、砂含量、粉砂含量、粘土含量和粘土矿物含量训练出来的BP神经在控制变量的情况下定量分析它们与ΣREE的关系,获得单个影响因子与ΣREE的关系曲线。这些关系曲线揭示了北部湾沉积物中稀土元素与各影响因子的联系,所获得的结果与定性分析的结果基本一致,该方法能够通过自主学习,自动判断并定量计算,有助于识别每一个因子对稀土元素含量影响的大小,是如何控制ΣREE的分布,从而根据曲线的变化规律结合实际情况去推断区域的环境变化及地质演变,对稀土元素的富集和分散提供有益的理论指导。  相似文献   

4.
对取自海南岛东南部的X2站柱状样品进行了粒度、全岩稀土元素和重矿物分析,探讨了7.8 kaBP以来海南岛东南陆架陆源碎屑来源及其环境响应。粒度端元模拟识别出了两个端元,EM1端元对应的是海洋流系搬运的近源与远源细粒物质的混合沉积,EM2对应的主要是近源海南岛河流输入的粗粒物质,两个端元代表着两个不同的输运机制。物源分析结果表明,7.8 kaBP以来X2站陆源碎屑来源较为稳定,主要来源于海南岛。4 kaBP以来,X2站粒度、稀土元素和重矿物特征参数发生了显著改变,与El Nino-Southern Oscillation (ENSO)事件开始增强有很好的对应关系,推测频繁的ENSO事件导致降雨量增加是研究区风化程度增强的主要原因。与全岩稀土元素特征指标相比,X2站重矿物组合受源区风化剥蚀的影响更为显著,后期在环境演化研究中,应适当关注重矿物这一指标。  相似文献   

5.
通过对取自渤海湾唐山港海域的161个站位的表层沉积物进行粒度和黏土矿物组成及分布特征分析,探讨不同区域沉积物物质来源及其控制因素。研究结果表明,唐山港海域表层沉积物平均粒径(Mz)为1.4~7.7Φ,主要由粉砂质砂、砂质粉砂以及少量的砂和黏土组成。根据粒度参数特征和端元模型分析,研究区沉积物可以分为3个区和EM1—EM4四个端元:东北部以EM3端元砂和粉砂质砂为主,分选较差、正偏态,沉积环境动力强;中部曹妃甸深槽区以EM4端元砂质粉砂和粉砂质砂为主,分选差、正偏态,沉积环境动力强;南部和北部唐山港附近区域以EM1和EM2端元粉砂为主,分选中等—较差,沉积动力环境较弱。黏土矿物组成主要是伊利石(72%)和蒙脱石(12%),其次是绿泥石(8%)和高岭石(8%)。物源分析表明,渤海湾唐山港海域表层沉积物中细颗粒组分来源主要是黄河-海河混合来源的陆源碎屑物质,研究区东北部和曹妃甸深槽区可能有部分古滦河三角洲粗颗粒物质的加入。渤海环流和潮余流控制着本区细颗粒沉积物主要向南部和唐山港附近运移,粗颗粒物质向东北部和中部曹妃甸区搬运沉积。  相似文献   

6.
海洋沉积物的来源、输运过程及其归宿一直是海洋沉积学的重要研究课题。浙闽沿岸泥区的沉积物主要来自长江及浙闽沿岸的中小河流,对后者的贡献量进行定量化分析是相关研究比较薄弱的环节,这个问题的难点可能是缺乏同时指示"物源"和"供应量"两个指标的示踪物。本文以椒江和瓯江这两条河流对浙闽沿岸泥区的贡献为切入点,运用了粒度端元和黏土矿物两种示踪指标进行研究,目的有两个:一是综合评价两种示踪指标的效率,二是定量化地了解中小河流对浙闽沿岸泥区的贡献。借助端元粒度分析模型对浙闽沿岸泥区的表层样粒度数据进行分解,划分出4个不同的端元,结果显示,EM1端元表现出长江来源的属性,EM2端元表现出椒江和瓯江等沿岸中小河流来源的属性,EM3端元可能来源于研究区南部并有向北输送的趋势,EM4端元可能来源于陆架中部的残留砂沉积区。基于特征粒级的进一步分析表明,研究区6个站位的柱样沉积物中都出现了第一特征粒级,在3.91~9.29 μm之间,推测与长江口外悬浮颗粒物有关,并认为柱样所在的区域都会受到长江入海泥沙的影响。黏土矿物由于具有粒度依赖性,在定量探讨椒江与瓯江的泥沙贡献量时,只能指示小于2 μm的细颗粒物的贡献量,而粒度端元作为一种"全粒度"的指标,在相对封闭的系统内,可以同时解答"从哪里来"和"有多少"这两个示踪问题,是受限比较小的示踪物指标,未来在定量研究物源方面可能会有较大的作用。  相似文献   

7.
苟富刚 《海洋学报》2023,(4):95-108
为了研究长江古河谷地区早中全新世沉积物的碳埋藏速率及来源,进行了ZK1孔沉积物总有机碳(TOC)、总氮(TN)及δ13C的测定,结合AMS14C(植物碎屑、贝壳)测年、有孔虫及粒度数据,分析了长江古河谷碳埋藏的时空分布特征与TOC来源。采用历史地理学、沉积地质学结合测年数据进行了年代地层划分,自下而上分别为U1潮汐河道、U2河口湾、U3潮流砂脊和U4前三角洲。沉积物受到水深、径流、河口余环流、潮流、波浪、风暴与再矿化等作用或因素影响,TOC平均值为0.41%,低于长江河口表层沉积物基准值0.46%。ZK1碳埋藏通量(TOCBF)介于7.4~110.5 g/(m2·a)之间,差异较大。TOCBF数值主要受控于沉积速率。δ13C与TOC/TN(C/N)投影点结果表明,TOC来源表现为多源特征,且整体表现为偏陆源特征。C/N与δ13C线性拟合相关性高,适合采用C/N与δ13C进行TOC来源的定量分析。基于C/N与δ  相似文献   

8.
连云港近岸海域沉积物粒度空间分布特征及其分析   总被引:4,自引:1,他引:3       下载免费PDF全文
张存勇  冯秀丽 《海洋学报》2009,31(4):120-127
连云港近岸海域沉积物的粒度在空间上具有"近岸细、远岸粗"的分布特征.为了探讨粒度的这种空间分布特征,利用端元分析模型和多变量分析方法对108个底质样品粒度特征进行了分析,结果表明,可以把连云港近岸海域沉积物划分为具有一定动力意义的3个粒级组,它们代表不同能量环境下形成的沉积物:潮流沉积、潮流-波浪混合沉积和波浪沉积,这些沉积物对应于前三角洲沉积物、动力改造沉积物以及原地海滩沉积物.  相似文献   

9.
本文测定了海南儋州湾南岸柱状沉积物的粒度、总有机质参数(TOC、C/N和δ13C)和类脂生物标志物含量,并通过端元混合模型使用红树植物特征标志物蒲公英萜醇含量、长链正构烷烃含量和δ13C值半定量区分了海南儋州湾南岸沉积有机质来源,尤其是红树林的贡献。另外,通过估算沉积物的有机碳储量来评估儋州湾红树林区域的储碳能力。在沉积有机质中,陆源、水源和红树植物有机质所占平均比例分别为47%,36%和17%。沉积物柱状样中单位厘米深度沉积物的碳储量范围在0.12~2.90 t/ha。本研究表明,儋州湾地区沉积物中来自于红树林的有机质比例较低,且其碳埋藏量可能低于全球平均水平。修复和保护儋州湾红树林,能够有效提升湿地的碳埋藏效率,从而减缓大气CO2上升对环境的负面影响。本文应用生物标志物和碳同位素方法,半定量区分了红树林生态系统各种来源有机碳的贡献,将蒲公英萜醇作为红树林特征生物标志物应用在计算模型中,能够量化红树植物来源有机碳的贡献,加深对红树林系统有机碳埋藏情况的了解。  相似文献   

10.
福建木兰溪是我国东南沿海一条比较典型的潮控山地小河,从其流域风化剖面到河漫滩及邻近海域表层沉积物的粒度、化学风化程度及稀土元素(REEs)组成特征进行了研究。研究海区沉积物以黏土质粉砂为主,仅在木兰溪注入兴化湾口门处附近,沉积物较粗。沉积物REE的上陆壳(UCC)标准化模式具有相似性,轻重稀土元素分异不明显,稀土元素总量(ΣREE)及Eu异常的变化与平均粒径值、化学风化程度均有一定相关性。运用(La/Yb)N-ΣREE/Al图解较可靠判别了近海海域沉积物来源:(1)浙闽河流与长江细颗粒沉积物具有明显不同的REE组成;(2)兴化湾邻近海域主要受到内陆架泥质区沉积物物源的影响;(3)浙闽沿岸流携带的长江细颗粒物质影响可达泉州湾一带。由于泉州湾海域沉积物相对较粗,受石英"稀释作用"的影响,沉积物REE组成不均一性较强。  相似文献   

11.
山东半岛南部近岸海域表层沉积物稀土元素的物源指示   总被引:1,自引:0,他引:1  
通过对山东半岛南部海域147个表层沉积物样品和周边入海河流46个表层沉积物样品粒度与稀土元素(REE)测试分析,系统地研究了该区稀土元素分布、δEu和δCe异常以及稀土元素的球粒陨石标准化和上陆壳标准化配分曲线特征等。结果表明,研究区沉积物REE呈现轻稀土元素(LREE)富集、重稀土元素(HREE)平坦以及中等程度的Eu异常等特征。对代表站位与长江、黄河及周边中小入海河流沉积物的稀土元素分析对比,利用以Ce/La和Sm/Nd作为对比元素的FD判别函数分析,以及对一些在地球化学环境中比较稳定元素的比值进行了验证比较,初步判别研究海区的表层沉积物物质来源以现代黄河沉积物质为主,周边中小河流也对其物源产生一定的影响。  相似文献   

12.
本文以渤海中部BZ01与B62两根柱状样沉积物为研究对象,通过沉积物的粘土矿物组成和黏土粒级(﹤2μ)元素地球化学特征,探讨了柱状样中沉积记录的变化规律,揭示了渤海中部沉积物的主要物质来源。通过对沉积物的研究发现,BZ01与B62柱状样中的粘土矿物组合为伊利石-绿泥石-高岭石-蒙脱石,蒙脱石含量与蒙脱石-伊利石-(高岭石+绿泥石)三角端元图解表明沉积物与黄河沉积物有较大的亲缘性;BZ01与B62柱状样沉积物的稀土元素分异明显,轻稀土元素富集,重稀土元素亏损,两根柱状样沉积物的δEu和δCe值近似,均表现出明显的Eu异常和不明显的Ce异常的特点;物源判别结果表明渤海中部BZ01柱状样的0~155cm段与B62柱状样0~140cm段沉积物与黄河沉积物相接近。根据沉积物的地球化学特征和前人的研究结果,推测1855年的黄河改道是造成BZ01与B62柱状样沉积记录在155和140cm处发生变化的主要原因。  相似文献   

13.
对渤海东部DLC70-1孔157个沉积物样品进行了稀土元素(REE)测定,结合有孔虫丰度和粒度参数研究,探讨了该孔稀土元素地球化学特征与晚第四纪环境变化关系。DLC70-1孔沉积物物源分析表明,该孔沉积物物质来源比较稳定,其沉积物主要来源于黄河。渤海东部DLC70-1孔REE的分布特征与晚第四纪沉积环境变化密切相关,约100 ka BP以前,研究区发育浅海环境,ΣREE含量较高,且HREE相对富集。100~75 ka BP期间,ΣREE含量受沉积物粒度的影响,明显低于前一阶段,LREE相对富集,稀土元素分布表现为河口半咸水环境特征。75~60 ka BP期间,研究区发育以细颗粒沉积物为主,ΣREE含量达到高值。60~35 ka BP期间为晚更新世玉木冰期中间冰阶(暖期)沉积,研究区发育滨海沉积环境,其ΣREE含量总体较低,并显示LREE相对富集;随着水体深度和盐度条件发生多次波动,稀土元素分布特征也表现出小幅度变化。35~30 ka BP期间,研究区发育滨岸和滨海沉积环境,其ΣREE含量总体较高。30~10 ka BP期间,研究区表现为河流环境,受矿物组成和沉积物粒度的影响,ΣREE含量总体较低,显示向上HREE相对富集。10 ka BP以来为全新世海侵期,研究区持续发育滨海-浅海沉积环境,其ΣREE含量总体较高,显示LREE富集。  相似文献   

14.
钦州湾由于湾内外特殊的海洋动力、泥沙来源和地形地貌条件,导致海湾悬浮泥沙特性存在较大差异。通过2007年和2010年钦州湾13个站位的实测悬浮泥沙含沙量数据,总结了钦州湾的泥沙来源,分析了钦州湾悬浮泥沙的空间分布特征、运移趋势和输沙能力。研究结果表明,钦州湾泥沙主要来自河流输沙、海向来沙及岸滩侵蚀;水体含沙量最大值空间分布整体表现出"外湾内湾湾颈"的特点,平均值由内湾到外湾逐渐减小;水体垂向平均含沙量最大值出现层位不同,内湾表底层平均含沙量趋于一致,但中层略大,而外湾由表层至底层存在渐进变化;潮流强度、地形特征及泥沙来源是影响悬浮泥沙空间分布的主要因素;悬浮泥沙输运主要受潮流控制,输沙强度呈"湾颈外湾内湾"特点,总体输沙趋势由湾顶向湾外、沿落潮流由北向南输运。  相似文献   

15.
钦州湾由于湾内外特殊的海洋动力、泥沙来源和地形地貌条件,导致海湾悬浮泥沙特性存在较大差异。通过2007年和2010年钦州湾13个站位的实测悬浮泥沙含沙量数据,总结了钦州湾的泥沙来源,分析了钦州湾悬浮泥沙的空间分布特征、运移趋势和输沙能力。研究结果表明,钦州湾泥沙主要来自河流输沙、海向来沙及岸滩侵蚀;水体含沙量最大值空间分布整体表现出"外湾>内湾>湾颈"的特点,平均值由内湾到外湾逐渐减小;水体垂向平均含沙量最大值出现层位不同,内湾表底层平均含沙量趋于一致,但中层略大,而外湾由表层至底层存在渐进变化;潮流强度、地形特征及泥沙来源是影响悬浮泥沙空间分布的主要因素;悬浮泥沙输运主要受潮流控制,输沙强度呈"湾颈>外湾>内湾"特点,总体输沙趋势由湾顶向湾外、沿落潮流由北向南输运。  相似文献   

16.
神狐海域水合物沉积层稀土元素地球化学特征   总被引:1,自引:0,他引:1  
利用ICP-MS对神狐海域天然气水合物SHW2和SHW7两钻孔柱状样品含水合物层沉积物中的稀土元素进行了分析和研究,结果表明:SHW2及SHW7两钻孔各12个样品的ΣREE丰度平均值与上陆壳的平均值接近;沉积物中轻稀土和重稀土存在显著分异,两钻孔稀土元素配分模式相近,与上陆壳和代表上地壳平均值的澳大利亚后太古代页岩(PAAS)的稀土元素分布形态相似,并继承了源区母岩性质,显示出物源主体为陆源岩。两钻孔稀土参数剖面图显示,稀土总量(ΣREE)和轻稀土总量(LREE)、重稀土总量(HREE)具有很好的正相关性,δCe与δEu基本显示负相关,推测其沉积物源具有相似性。  相似文献   

17.
随着工业化进程的加快,湛江湾的生态环境承载力受到了极大的考验。为了解湛江湾生态环境的变化过程,文中利用湛江湾表层柱状沉积物样品中总有机碳含量(TOC)及其稳定同位素、总氮含量(TN)和C/N值的测定,结合端元混合模型,分析了湛江湾沉积物中有机质的来源,探讨了沉积物有机碳同位素的主要影响因素。结果表明,湛江湾沉积物中有机质主要来源为自生藻类,同时也受一定程度陆源输入的影响。沉积序列的元素地球化学参数表明,沉积物δ13C值呈现短暂的负偏随后长期正偏的趋势。底部的负偏可能与大气CO2浓度增加有关,随后δ13C主体正偏的趋势主要受控于气候转暖、生产力增加以及富营养化程度增加的共同影响,暗示了人类活动对湛江湾的生态环境的影响逐渐加剧。其中,人类活动相关的工业、农业有机污染物排放可能是不断加剧海水富营养化的主要原因。  相似文献   

18.
根据2006年5月获得的海底表层沉积物和柱状样品测试资料,分析了钦州湾海底沉积物中有害元素Hg的平面分布和垂向分布特征。结果显示:平面分布上,钦州湾口门附近Hg含量较高,Hg影响较大,湾内的Hg含量则较小,湾外向外海方向Hg含量逐渐降低;垂向分布上,海底表层的Hg含量高,向下则逐渐降低,至海底表层70cm以下,Hg值趋于稳定。根据沉积速率,确认约700年前开始,钦州湾受人类活动的影响逐渐增加,至约130年前,人类活动影响加剧。对比历史事件,认为钦州湾海底沉积物Hg含量变化与人类活动相关。总体上,钦州湾海底沉积物Hg测量值均低于标准值,说明其环境目前尚好。  相似文献   

19.
湄州湾强劲的潮流导致外海泥沙输入,但受一定程度的限制,海湾周围的陆源碎屑成为沉积物质的主要来源。水动力,特别是潮流作用控制现代沉积的格局,潮流冲刷槽为粗粒沉积属海底冲刷产物,两侧的斜坡及潮坪,从湾中央向岸,从粗细混合沉积物过渡为细粒沉积,属淤积产物。  相似文献   

20.
西沙海槽是我国南海北部重要的天然气水合物勘探远景区。然而,目前对西沙海槽区沉积物的物源分析仍然存在众多争议。对西沙海槽XH-CL16柱状沉积物的稀土元素地球化学分析,显示该柱状沉积物的ΣREE介于131~171×10-6之间,表现为轻稀土相对富集,(La/Yb)N为9.5,具有明显的Eu负异常,δEu值在0.66~0.79之间。其稀土元素配分模式显著区别于大洋玄武岩,具有明显的陆壳特征,并且该沉积物具有相似于珠江口沉积物、红河沉积物以及黄土的稀土元素配分形态,暗示西沙海槽区沉积物主要为陆源沉积,而且可能是多物源多方式传输的结果。此外,通过该柱状沉积物中CaCO3含量变化特征与同海域标准碳酸盐地层学时标的对比,显示该柱状沉积物主要为MIS3期以来的沉积。而其中MIS2期沉积物表现为较MIS1和MIS3期沉积物更高的ΣREE和Ti含量,暗示西沙海槽在MIS2期时有更多陆源组分的输入。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号