首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
对非球形冰晶94 GHz云雷达后向散射和衰减的研究   总被引:1,自引:0,他引:1  
针对94 GHz毫米波云雷达的数据处理,基于离散偶极子近似法(DDA)计算了几种非球形冰晶的后向散射及衰减效率,探讨了不同冰云模型下冰云的雷达反射率因子(Z_e)和衰减系数(k)及冰水含量(IWC,记作W)的关系。结果表明:(1)形状对冰晶的散射及衰减效率与粒子大小有关。(2)在实际的冰云中,将六角形冰晶和椭圆冰晶看做同体积的球形粒子将低估其衰减和后向散射。将聚合物冰晶看做等体积球形,将高估其后向散射及衰减,子弹花冰晶的后向散射与同体积的球形相比有减小也有增大,但是衰减比同体积球形的小。(3)冰云模型对Z_e-k、Z_e-W关系具有较大影响,假设滴谱相同的条件下,得到了具体冰云模型下对应Z_e-k、Z_e-W关系的系数。这些探讨为我国W波段云雷达的数据处理提供了参考。  相似文献   

2.
The Water vapour Strong Lines at 183 GHz (183-WSL) fast retrieval method retrieves rain rates and classifies precipitation types for applications in nowcasting and weather monitoring. The retrieval scheme consists of two fast algorithms, over land and over ocean, that use the water vapour absorption lines at 183.31 GHz corresponding to the channels 3 (183.31 ± 1 GHz), 4 (183.31 ± 3 GHz) and 5 (183.31 ± 7 GHz) of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and Metop-A satellite series, respectively.The method retrieves rain rates by exploiting the extinction of radiation due to rain drops following four subsequent steps. After ingesting the satellite data stream, the window channels at 89 and 150 GHz are used to compute scattering-based thresholds and the 183-WSLW module for rainfall area discrimination and precipitation type classification as stratiform or convective on the basis of the thresholds calculated for land/mixed and sea surfaces. The thresholds are based on the brightness temperature difference Δwin = TB89 ? TB150 and are different over land (L) and over sea (S): cloud droplets and water vapour (Δwin < 3 K L; Δwin < 0 K S), stratiform rain (3 K < Δwin < 10 K L; 0 K < Δwin < 10 K S), and convective rain (Δwin > 10 K L and S). The thresholds, initially empirically derived from observations, are corroborated by the simulations of the RTTOV radiative transfer model applied to 20000 ECMWF atmospheric profiles at midlatitudes and the use of data from the Nimrod radar network. A snow cover mask and a digital elevation model are used to eliminate false rain area attribution, especially over elevated terrain. A probability of detection logistic function is also applied in the transition region from no-rain to rain adjacent to the clouds to ensure continuity of the rainfall field. Finally, the last step is dedicated to the rain rate retrieval with the modules 183-WSLS (stratiform) and 183WSLC (convective), and the module 183-WSL for total rainfall intensity derivation.A comparison with rainfall retrievals from the Goddard Profiling (GPROF) TRMM 2A12 algorithm is done with good results on a stratiform and hurricane case studies. A comparison is also conducted with the MSG-based Precipitation Index (PI) and the Scattering Index (SI) for a convective-stratiform event showing good agreement with the 183-WSLC retrieval. A complete validation of the product is the subject of Part II of the paper.  相似文献   

3.
Mixing states of cloud interstitial particles between water-soluble and insoluble materials apparently differ under various cloud-forming conditions. To study the mixing states of cloud interstitial particles, we made observations at Mt. Tateyama, Japan (2300 m a.s.l.) during June 2007 using fog (> 10 μm)-cut inlets. Number concentrations of dried particles (0.3–0.5 μm diameter) selected for less-grown (LG) particles (particles smaller than 0.56 μm diameter at 88% relative humidity) were used to quantify tendencies of the growth characteristics of cloud interstitial particles. Size-segregated soot mass concentrations (< 0.4 and < 1.1 μm) were also measured for cloud interstitial particles. Three samples of cloud interstitial LG particles at 88% RH were investigated for water-soluble and insoluble components using dialysis (extraction) of water-soluble materials with transmission electron microscopy (TEM). For one TEM sample with high fractions of the LG particles and high soot mass concentrations under high precipitation (2–6 mm/h), most particles (0.1–0.5 μm) were found to be water insoluble. More than half of the water-insoluble particles were considered to be soot particles showing chain aggregations of electron-opaque spherules. Regarding the other two TEM samples with low fractions of the LG particles under less intense precipitation (ca. 1 mm/h), most particles were partly water soluble. The scavenging process in the precipitating cloud can change the population of particles left behind, preferentially leaving insoluble particles according to cloud formation conditions.  相似文献   

4.
In this study, total suspended particles (TSP) and size-segregated atmospheric aerosol samples were measured on Qianliyan Island in the Yellow Sea in spring (April–May), summer (July–August) and fall (October–November) of 2006 and in water (January–February) of 2007. The mass concentration of the TSP varied from 75.6 to 132.0 μg/m3. The average concentration were 9.37 ± 7.56 μg/m3 and 5.32 ± 4.25 μg/m3 for nitrate and ammonium in the TSP, respectively. TSP concentration showed a significant correlation with those of nitrate (n = 27, r = 0.73) and ammonium (n = 27, r = 0.60). The mass-size distribution of atmospheric particles exhibited two modes with an accumulation mode at 0.43–1.1 μm and a coarse mode at 3.3–4.7 μm throughout the sampling months. A bi-modal size distribution of nitrate in concentration occurred in the April–May, October–November and January–February, but a uni-modal size distribution occurred in the August. The uni-modal size distribution of ammonium at 0.43–0.65 μm was observed throughout the sampling months. The average of inorganic nitrogen in mass concentration accounted for 4.0% of the total mass of aerosol particles while ammonium-N was the dominant fraction of TIN (Total Inorganic Nitrogen), contributing to 62–71% of the TIN.  相似文献   

5.
Below-cloud aerosol scavenging is generally estimated from field measurements using advanced instruments that measure changes in aerosol distributions with respect to rainfall. In this study, we discuss various scavenging mechanisms and scavenging coefficients from past laboratory and field measurements. Scavenging coefficients derived from field measurements (representing natural aerosols scavenging) are two orders higher than that of theoretical ones for smaller particles (Dp < 2 μm). Measured size-resolved scavenging coefficients can be served as a better option to the default scavenging coefficient (e.g. a constant of 10?4 s?1 for all size of aerosols, as used in the CALPUFF model) for representing below-cloud aerosol scavenging. We propose scavenging correction parameter (CR) as an exponential function of size-resolved scavenging coefficients, winds and width in the downwind of the source–receptor system. For a wind speed of 3 m s?1, CR decrease with the width in the downwind for particles of diameters Dp < 0.1 μm but CR does not vary much for particles in the accumulation mode (0.1 < Dp < 2 μm). For a typical urban aerosol distribution, assuming 3 m s?1 air-flow in the source–receptor system, 10 km downwind width, 2.84 mm h?1 of rainfall and using aerosol size dependent scavenging coefficients in the CR, scavenging of aerosols is found to be 16% in number and 24% in volume of total aerosols. Using the default scavenging coefficient (10?4 s?1) in the CALPUFF model, it is found to be 64% in both number and volume of total aerosols.  相似文献   

6.
《Atmospheric Research》2009,91(2-4):195-202
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

7.
Cloud/fog samples were collected during spring of 2007 in the highly polluted North China Plain in order to examine the impact of pollution and dust particles on cloud water chemistry. The volume weighted mean pH of cloud water was 3.68. The cloud acidity was shown to be associated with air mass origins. Cloud water with its air mass trajectories originating from the southern part of China was more acidic than those from northern China. Anthropogenic source and dust had obvious impact on cloud water composition as indicated by the very high mean concentrations of SO42? (1331.65 μeq L? 1), NO3? (772.44 μeq L? 1), NH4+ (1375.92 μeq L? 1) and Ca2+ (625.81 μeq L? 1) in the observation periods. During sandstorm days, cloud pH values were relatively high, and the concentrations of all the ions in cloud water reached unusual high levels. Significant decreases in the mass concentrations of PM2.5 and PM10 were observed during cloud events. The average scavenging ratio for PM2.5 and PM10 was 52.0% and 55.7%, respectively. Among the soluble ions in fine particles, NO3?, K+ and NH4+ tend to be more easily scavenged than Ca2+ and Na+.  相似文献   

8.
A mooring equipped with 200 high-resolution temperature sensors between 6 and 404 m above the bottom was moored in 1890 m water depth above a steep, about 10° slope of Mount Josephine, NE-Atlantic. The sensors have a precision of less than 0.5 mK. They are synchronized via induction every 4 h so that the 400 m range is measured to within 0.02 s, every 1 s. Thin cables and elliptical buoyancy assured vertical mooring motions to be smaller than 0.1 m under maximum 0.2 m s−1 current speeds. The local bottom slope is supercritical for semidiurnal internal tides by a factor of two. Exploring a one-month record in detail, the observations show: 1/semidiurnal tidal dominance in variations of dissipation rate ε, eddy diffusivity Kz and temperature, but no significant correlation between the records of ε and total kinetic energy, 2/a variation with time over four orders of magnitude of 100-m vertically averaged ε, 3/a local minimum in density stratification between 50 and 100 m above the bottom, 4/a gradual decrease in daily or longer averaged ε and Kz by one order of magnitude over a vertical distance of 250 m, upwards from 150 m above the bottom, 5/monthly mean values of <[ε]> = 2 ± 0.5 × 10−7 m2 s−3, <[Kz]> = 8 ± 3 × 10−3 m2 s−1 averaged over the lower 150 m above the bottom.  相似文献   

9.
In this study, 24-h PM2.5 samples were collected using Harvard Honeycomb denuder/filter-pack system during different seasons in 2006 and 2007 at an urban site in Guangzhou, China. The particles collected in this study were generally acidic (average strong acidity ([H+]) ~ 70 nmol m? 3). Interestingly, aerosol sulfate was not fully neutralized in the ammonia-rich atmosphere (NH3 ~ 30 ppb) and even when NH4+]/[SO42?] was larger than 2. Consequently, strong acidity ([H+]) as high as 170 nmol m? 3 was observed in these samples. The kinetic rate of neutralization of acidity (acidic sulfate) by ambient ammonia was significantly higher than the rate of formation of ammonium nitrate involving HNO3 and NH3 for [NH4+]/[SO42?]  1.5 and much lower for NH4+]/[SO42?] > 1.5. Therefore, higher nitrate principally formed via homogeneous gas phase reactions involving ammonia and nitric acid were observed for [NH4+]/[SO42?] > 1.5. However, little nitrate, probably formed via heterogeneous processes e.g. reaction of HNO3 with sea salt or crustal species, was observed for [NH4+]/[SO42?]  1.5. These demonstrate a clear transition in the pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42?] = 1.5 and evidently explain the observed high acidity due to the unneutralized sulfate in the ammonium-rich aerosol (NH4+]/[SO42?] > 1.5). In fact, the measured acidity was almost similar to the excess acid defined as the acid that remains at [NH4+]/[SO42?] = 1.5 due to the un-neutralized fraction of sulfate ([H+] = 0.5[SO42?]). The presence of high excess acid and ammonium nitrate significantly lowered the deliquescence relative humidity of ammonium sulfate (from 80% to 40%) in the ammonium-rich samples.  相似文献   

10.
Concentrations and flux densities of methane were determined during a Lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L−1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100–350 m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 μmol m−2 d−1 to a maximum of 22.6 μmol m−2 d−1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange.  相似文献   

11.
This study incorporates observations from Array of Real-time Geostrophic Oceanography (ARGO) floats and surface drifters to identify seasonal circulation patterns at the surface, 1000 m, 1500 m, and 2000 m in the northwest Indian Ocean, and quantify velocities associated with them. A skill comparison of the Simple Ocean Data Assimilation (SODA) reanalysis output was also performed to contribute to the understanding of the circulation dynamics in this region.Subsurface currents were quantified and validated using the ARGO float data. Surface currents were identified using surface drifter data and compared to the subsurface observations to enhance our previous understanding of surface circulations. Quantified Southwest Monsoon surface currents include the Somali Current (vmax = 179.5 cm/s), the East Arabian Current (vmax = 52.3 cm/s), and the Southwest Monsoon Current (vmax = 51.2 cm/s). Northeastward flow along the Somali coast is also observed at 1000 m (vmax = 26.1 cm/s) and 1500 m (vmax = 12.7 cm/s). Currents associated with the Great Whirl are observed at the surface (vmax = 161.4 cm/s) and at 1000 m (vmax = 16.2 cm/s). In contrast to previous studies, both ARGO and surface drifter data show the Great Whirl can form as early as the boreal Spring intermonsoon, lasting until the boreal Fall intermonsoon. The Arabian Sea exhibits eastward/southeastward flow at the surface, 1000 m, 1500 m, and 2000 m. Quantified Northeast Monsoon surface currents include the Somali Current (vmax = 97.3 cm/s), Northeast Monsoon Current (vmax = 30.0 cm/s), and the North Equatorial Current (vmax = 28.5 cm/s). Southwestward flow along the Somali coast extends as deep as 1500 m.Point-by-point vector and scalar correlations of SODA output to ARGO and surface drifter data showed that surface SODA output and surface drifter data generally produced a strong correlation attributed to surface currents strongly controlled by the monsoons, while subsurface correlations of SODA output and ARGO were mostly insignificant due to variability associated with intermonsoonal transitions. SODA output produced overall smaller velocities than both observational datasets. Assimilating ARGO velocities into the SODA reanalysis could improve subsurface velocity assimilation, especially during the boreal fall and spring when ARGO observations suggest that flow is highly variable.  相似文献   

12.
Identifying the sources of reactive nitrogen (N) and quantifying their contributions to groundwater nitrate concentrations are critical to understanding the dynamics of groundwater nitrate contamination. Here we assessed groundwater nitrate contamination in China using literature analysis and N balance calculation in coupled human and natural systems. The source appointment via N balance was well validated by field data via literature analysis. Nitrate was detected in 96% of groundwater samples based on a common detection threshold of 0.2 mg N L?1, and 28% of groundwater samples exceeded WHO's maximum contaminant level (10 mg N L?1). Groundwater nitrate concentrations were the highest beneath industrial land (median: 34.6 mg N L?1), followed by urban land (10.2 mg N L?1), cropland (4.8 mg N L?1), and rural human settlement (4.0 mg N L?1), with the lowest found beneath natural land (0.8 mg N L?1). During the period 1980–2008, total reactive N leakage to groundwater increased about 1.5 times, from 2.0 to 5.0 Tg N year?1, in China. Despite that the contribution of cropland to the total amount of reactive N leakage to groundwater was reduced from 50 to 40% during the past three decades, cropland still was the single largest source, while the contribution from landfill rapidly increased from 10 to 34%. High reactive N leakage mainly occurred in relatively developed agricultural or urbanized regions with a large population. The amount of reactive N leakage to groundwater was mainly driven by anthropogenic factors (population, gross domestic product, urbanization rate and land use type). We constructed a high resolution map of reactive N source appointment and this could be the basis for future modeling of groundwater nitrate dynamics and for policy development on mitigation of groundwater contamination.  相似文献   

13.
The chemical mass balance model was applied to atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Istanbul, Turkey. A total of 326 airborne samples were collected and analyzed for 16 PAHs and Total Suspended Particles (TSP) in the September 2006–December 2007 period at three monitoring stations: Yildiz, DMO (urban sites) and Kilyos (rural site). The total average PAH concentrations were 100.66 ± 61.26, 84.63 ± 46.66 and 25.12 ± 13.34 ng m?3 and the TSP concentrations were 101.16 ± 53.22, 152.31 ± 99.12, 49.84 ± 18.58 μg m?3 for Yildiz, DMO and Kilyos stations respectively. At all the sites, the lighter compounds were the most abundant, notably Nap, AcPy and PA. The average correlation values between TSP and total heavier PAH were greater than 0.5 for Yildiz and DMO stations. The patterns of PAH and TSP concentrations showed spatial and temporal variations. PAH concentrations were evaluated for the PAH contribution from four sources (diesel engines, gasoline engines, natural gas combustion, and coal + wood burning). Vehicle emissions appear to be the major source with contributions of 61.2%, 63.3% and 54.1% for Yildiz, DMO and Kilyos stations respectively. Seasonal and yearly variations had different trends for all sites.  相似文献   

14.
《Atmospheric Research》2008,87(3-4):297-314
This paper addresses the sensitivity of the relationships between radar reflectivity (Z) and liquid water content (M) for liquid water clouds to microphysical drizzle parameters by means of simulated radar observation at a frequency of 3 GHz of modeled cumulus clouds. A power law relationship for non drizzling clouds with water content as high as 3 gm 3: Zc = 0.026 Mc1.61 is numerically derived and agreed with previous empirical relationships relative to cumulus and stratocumulus. This relationship is then used to explore the influence of drizzle on the correlation between radar reflectively and water content. Due to their large diameters with respect to cloud droplets, drizzle sized drops dominate radar reflectivity but do not carry the cloud water content so that reflectivity and liquid water content are expected to be not correlated in clouds containing drizzle. It is shown that for congestus or extreme congestus cumuli, microphysical conditions for which the ZcMc relationship can be used with a tolerance of 5 and 10% are provided whereas for humilis or mediocris cumuli, the presence of drizzle breaks down the ZcMc relationship whatever the situations.  相似文献   

15.
利用不同形状冰晶的散射特性,获得了非球形冰晶云的94/220 GHz测云雷达双波长比,探讨了非球形冰晶云的双波长比与云内微物理参数的关系,分析了衰减前后的星载雷达反射率因子及双波长比的垂直廓线。结果表明:(1)双波长比可以反映小到0.1 mm中值尺度的冰粒子,对粒子总数、谱的形状参数不敏感,对粒子大小、形状、云衰减较敏感。(2)雷达灵敏度一定时,星载雷达可测云厚与雷达波长、冰含水量(IWC)的垂直分布、云厚及衰减有关;没有进行衰减订正时,双波长比和衰减有关,冰含水量越大,波长越短,衰减越大,双波长比最大值与可探测云厚有关。两部雷达可探测冰含水量为0.001—0.1 g/m3、厚2 km的冰云;当云厚5 km、冰含水量垂直分布在0.001—0.2 g/m3时,云厚的94%基本可以被220 GHz云雷达探测到。(3)如果两部雷达气象方程中用水的介电因子,测量回波强度应进行介电因子的订正后再计算双波长比。   相似文献   

16.
通过冰雹云模式模拟的一次冰雹云降水过程中降水粒子廓线和微波辐射传输模式结合,分析了冰雹云发展的不同阶段的微物理含量垂直结构变化及其对微波亮温的影响,得到以下几点结论:1)如果微波通道受到降水粒子散射和辐射的共同作用,如降水云早期的85 GHz亮温,成熟期的19 GHz亮温及消散期的37 GHz亮温,由于辐射和散射信息互相抵消,致使亮温随雨强的变化较复杂,这些通道亮温和雨强的相关性明显降低,不宜被用来反演地面雨强。2)根据19 GHz亮温随地面雨强或冰相粒子柱含量的改变,可以大致确定降雨云的不同阶段:在发展阶段,主要是降雨层以上的冰相粒子,尤其霰粒影响19 GHz亮温,致使其亮温与冰相粒子柱含量具有较好的负相关,而与地面雨强相关性较差;在成熟阶段,主要受雨水上层逐渐增加的辐射和冰相粒子散射共同作用,使得19GHz亮温与地面雨强和冰相粒子柱含量的相关性都不太好;在消散阶段,19 GHz亮温主要受较强的雨水辐射影响,与地面雨强和冰相粒子柱含量均有着较高的正相关。3)37 GHz是相对比较稳定的通道,其亮温与地面雨强有较好的线性关系,尤其与冰相粒子柱含量相关性更好,因此是反演地面雨强和冰相粒子柱含量的最佳通道。85 GHz亮温对降雨云体的中高层结构较为敏感,使得其亮温随地面雨强增加而降低的变化比较离散,不如37 GHz的集中。  相似文献   

17.
Simultaneous measurements of the M-component current (surges superimposed on lightning continuing currents) and the corresponding electromagnetic fields at 60 m and 550 m from the lightning channel are analyzed and simulated with a two-wave model. The measured results reveal that the M-component current at the bottom of the channel exhibits a V-shape character with a leading edge of 78 μs and a trailing edge of 194 μs, while the electric field pulses at 60 m and 550 m have trailing edges faster than leading edges. The peak of the M-component current lags behind the electric field peak by tens of microseconds, when the distance increases to 550 m, the disparity of the time shift increases as well. However, the waveshape of the M-component current is similar to that of the magnetic field pulse. The M-component electric fields at 60 m and 550 m are 1.16 kV/m and 0.17 kV/m, respectively, and exhibit a logarithmic distance dependence which implies that the M-component charge density increases with height. Additionally, a two-wave model is used to examine the sensitivity of the predicted electric and magnetic fields to the speed and current reflection coefficient variations of the M-component. The simulated results show that the effects are different for the electric and magnetic fields. The M-component speed essentially controls the electric field, but has little effect on the magnetic field. Larger reflection coefficient results in a larger magnetic field, but a smaller electric field.  相似文献   

18.
We analyzed a 20-year time series (January 1st, 1993 through December 31st, 2012) of Loop Current (LC) surface area derived from satellite altimetry in the eastern Gulf of Mexico to estimate kinematical metrics of this potent flow. On average the LC intrudes to its maximum northward position about 216 ± 126 days after the previous eddy separation; and ∼30 ± 31 days later sheds a large anticyclonic eddy. When the northern extent of the LC intrusion following the previous eddy separation is greater than 27°N, the current retreats very quickly until it sheds another eddy with the entire separation process occurring on the order of 30 days. To first order the change in areal extent of the LC during intrusion into the Gulf occurs at an average rate of 225 km2 day−1, which corresponds to an intrusion velocity of 1.7 cm s−1 of the LC front, and adds Caribbean water to the Gulf at a rate of 2.6 ± 0.7 Sv.  相似文献   

19.
The results of the first large scale chemical characterization of PM10 and PM2.5 at three different sites in the urban city of Beirut, Lebanon, are presented. Between May 2009 and April 2010 a total of 304 PM10 and PM2.5 samples were collected by sampling every sixth day at three different sites in Beirut. Observed mass concentrations varied between 19.7 and 521.2 μg m? 3 for PM10 and between 8.4 and 72.2 μg m? 3 for PM2.5, respectively. Inorganic concentrations accounted for 29.7–35.6 μg m? 3 and 46.0–53.5 μg m? 3 of the total mass of PM10 and PM2.5, respectively. Intra-city temporal and spatial variations were assessed based on the study of three factors: correlation coefficients (R) for PM and chemical components, coefficient of divergence (CODs), and source apportionment using positive matrix factorization (PMF). Based on R and COD of PM concentrations, the three sites appear homogeneous. However, when individual elements were compared, heterogeneity among sites was found. This latter was attributed to the variability in the percent contribution of biogenic and local anthropogenic source factors such as traffic related sources and dust resuspension. Other factors included the proximity to the Mediterranean sea, the population density and the topographical structure of the city. Hence, despite its small size (20.8 km2), one PM monitoring site does not reflect an accurate PM level in Beirut.  相似文献   

20.
The character of turbulent overturns in a weakly stratified deep-sea is investigated in some detail using 144 high-resolution temperature sensors at 0.7 m intervals, starting 5 m above the bottom. A 9-day, 1 Hz sampled record from the 912 m depth flat-bottom (<0.5% bottom-slope) mooring site in the central-north Alboran Sea (W-Mediterranean) demonstrates an overall conservative temperature range of only 0.05 °C, a typical mean buoyancy period as large as 3 h and a 1 Hz-profile-vertically-averaged turbulence dissipation rate maximum of only 10−8 m2 s−3. Nonetheless, this ‘boundary layer’ varies in height between <6 and >104 m above the bottom and is thus not homogeneous throughout; the temperature variations are seldom quiescent and are generally turbulent in appearance, well exceeding noise levels. The turbulence character is associated with small-scale internal waves; examples are found of both shear- and convection-driven turbulence; particular association, although not phase-locked, is found between turbulence variations and tidal rather than with inertial motions; the mean buoyancy frequency of a few times the inertial frequency implies the importance of ‘slantwise convection’ in the direction of the earth rotational vector rather than in the direction of gravity. Such convection is observed both in near-homogeneous and weakly stratified form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号