首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
For the first time after the finalisation of the European Norm for seismic design of buildings (Eurocode 8 – EC8),the performance of RC buildings designed with this code is evaluated through systematic nonlinear analyses. Regular 4-, 8- or 12-storey RC frames are designed for a PGA of 0.2 or 0.4 g and to one of the three alternative ductility classes in EC8. As the Eurocodes are meant to replace soon existing national codes, design and performance is also compared to that of similar frames designed with the 2000 Greek national codes. The performance of alternative designs under the life-safety (475 years) and the damage limitation (95 years) earthquakes is evaluated through nonlinear seismic response analyses. The large difference in material quantities and detailing of the alternative designs does not translate into large differences in performance. Design for either Ductility Class High (H) or Medium (M) of EC8 is much more cost-effective than design for Ductility Class Low (L), even in moderate seismicity. It is also much more cost-effective than design to the 2000 Greek national codes.  相似文献   

2.
The assessment of seismic design codes has been the subject of intensive research work in an effort to reveal weak points that originated from the limitations in predicting with acceptable precision the response of the structures under moderate or severe earthquakes. The objective of this work is to evaluate the European seismic design code, i.e. the Eurocode 8 (EC8), when used for the design of 3D reinforced concrete buildings, versus a performance‐based design (PBD) procedure, in the framework of a multi‐objective optimization concept. The initial construction cost and the maximum interstorey drift for the 10/50 hazard level are the two objectives considered for the formulation of the multi‐objective optimization problem. The solution of such optimization problems is represented by the Pareto front curve which is the geometric locus of all Pareto optimum solutions. Limit‐state fragility curves for selected designs, taken from the Pareto front curves of the EC8 and PBD formulations, are developed for assessing the two seismic design procedures. Through this comparison it was found that a linear analysis in conjunction with the behaviour factor q of EC8 cannot capture the nonlinear behaviour of an RC structure. Consequently the corrected EC8 Pareto front curve, using the nonlinear static procedure, differs significantly with regard to the corresponding Pareto front obtained according to EC8. Furthermore, similar designs, with respect to the initial construction cost, obtained through the EC8 and PBD formulations were found to exhibit different maximum interstorey drift and limit‐state fragility curves. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Past earthquake experiences indicate that most buildings designed in accordance with modern seismic design codes could survive moderate‐to‐strong earthquakes; however, the financial loss due to repairing cost and the subsequent business interruption can be unacceptable. Designing building structures to meet desired performance targets has become a clear direction in future seismic design practice. As a matter of fact, the performance of buildings is affected by structural as well as non‐structural components, and involves numerous uncertainties. Therefore, appropriate probabilistic approach taking into account structural and non‐structural damages is required. This paper presents a fuzzy–random model for the performance reliability analysis of RC framed structures considering both structural and non‐structural damages. The limit state for each performance level is defined as an interval of inter‐storey drift ratios concerning, respectively, the non‐structural and structural damage with a membership function, while the relative importance of the two aspects is reflected through the use of an appropriate cost function. To illustrate the methodology, herein the non‐structural damage is represented by infill masonry walls. The probabilistic drift limits for RC components and masonry walls from the associated studies are employed to facilitate the demonstration of the proposed model in an example case study. The results are compared with those obtained using classical reliability model based on single‐threshold performance definition. The proposed model provides a good basis for incorporating different aspects into the performance assessment of a building system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The reinforced concrete (RC) shear wall serves as one of the most important components sustaining lateral seismic forces. Although they allow advanced seismic performance to be achieved, RC shear walls are rather difficult to repair once the physical plastic hinge at the bottom part has been formed. To overcome this, a damage‐controllable plastic hinge with a large energy dissipation capacity is developed herein, in which the sectional forces are decoupled and sustained separately by different components. The components sustaining the axial and the shear forces all remain elastic even under a rarely occurred earthquake, while the bending components yield and dissipate seismic energy during a design‐level earthquake. This design makes the behavior of the system more predictable and thus more easily customizable to different performance demands. Moreover, the energy dissipation components can be conveniently replaced to fully restore the occupancy function of a building. To examine the seismic behavior of the newly developed component, 3 one third‐scale specimens were tested quasi‐statically, including 1 RC wall complying with the current design codes of China and 2 installed with the damage‐controllable plastic hinges. Each wall was designed to have the same strength. The experimental results demonstrated that the plastic‐hinge‐supported walls had a better energy dissipation capacity and damage controllability than the RC specimen. Both achieved drift ratios greater than 3% under a steadily increasing lateral force.  相似文献   

5.
In this paper, a practical method is developed for performance‐based design of RC structures subjected to seismic excitations. More efficient design is obtained by redistributing material from strong to weak parts of a structure until a state of uniform deformation or damage prevails. By applying the design algorithm on 5, 10 and 15‐storey RC frames, the efficiency of the proposed method is initially demonstrated for specific synthetic and real seismic excitations. The results indicate that, for similar structural weight, designed structures experience up to 30% less global damage compared with code‐based design frames. The method is then developed to consider multiple performance objectives and deal with seismic design of RC structures for a design spectrum. The results show that the proposed method is very efficient at controlling performance parameters and improving structural behaviour of RC frames. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A procedure for displacement‐based seismic design (DBD) of reinforced concrete buildings is described and applied to a 4‐storey test structure. The essential elements of the design procedure are: (a) proportioning of members for gravity loads; (b) estimation of peak inelastic member deformation demands in the so‐designed structure due to the design (‘life‐safety’) earthquake; (c) revision of reinforcement and final detailing of members to meet these inelastic deformation demands; (d) capacity design of members and joints in shear. Additional but non‐essential steps between (a) and (b) are: (i) proportioning of members for the ULS against lateral loads, such as wind or a serviceability (‘immediate occupancy’) earthquake; and (ii) capacity design of columns in flexure at joints. Inelastic deformation demands in step (b) are estimated from an elastic analysis using secant‐to‐yield member stiffnesses. Empirical expressions for the deformation capacity of RC elements are used for the final proportioning of elements to meet the inelastic deformation demands. The procedure is applied to one side of a 4‐storey test structure that includes a coupled wall and a two‐bay frame. The other side is designed and detailed according to Eurocode 8. Major differences result in the reinforcement of the two sides, with significant savings on the DBD‐side. Pre‐test calculations show no major difference in the seismic performance of the two sides of the test structure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
梁丹  梁兴文 《地震工程学报》2015,37(4):1060-1065,1072
选取按照现行规范设计的既有建筑进行有限元建模,考虑地震动的不确定性对其进行大量增量动力分析(IDA),得到模型的IDA曲线簇。在此基础上对其进行地震需求概率分析和概率抗震能力分析,拟合得到结构的易损性曲线,据此对结构的倒塌概率进行定量评估,并比较基于非线性分析与性能评估软件PERFORM-3D的纤维模型和塑性铰模型的分析结果。结果表明:按照我国现行规范设计的钢筋混凝土(RC)框架结构,在预期的罕遇地震作用下倒塌概率较小,可满足"大震不倒"的要求;基于PERFORM-3D的截面纤维模型所得的RC框架结构,经非线性分析所得的倒塌概率相对保守,安全储备更高。  相似文献   

8.
The seismic design provisions of most building codes in the United States specify ground motion parameters for various regions of the country and provide simple formulae to determine a distribution of lateral forces for which the structure should be designed. Although the code provisions are very simple to use, they oversimplify a complex problem and are based on many implicit assumptions which many designers may not appreciate. Furthermore, the reliability of the final design is not easily determined. This paper describes a reliability-based seismic design procedure for building structures. It is a performance-based design procedure which requires the designer to verify that a particular structural design satisfies displacement-based performance criteria. An equivalent system methodology and uniform hazard spectra are used to evaluate structural performance. The performance criteria are expressed in probabilistic terms, and deterministic design-checking equations are derived from these criteria. The design-checking equations incorporate design factors (analogous to load and resistance factors) which account for the uncertainty in the seismic hazard, the uncertainty in predicting site soil effects, and the approximate nature of the simplified models of the structure. The alternative procedure should enable designers to achieve code-specified target performance objectives for moderate and severe levels of earthquake excitation.  相似文献   

9.
Existing design procedures for determining the separation distance between adjacent buildings subjected to seismic pounding risk are based on approximations of the buildings' peak relative displacement. These procedures are characterized by unknown safety levels and thus are not suitable for use within a performance‐based earthquake engineering framework. This paper introduces an innovative reliability‐based methodology for the design of the separation distance between adjacent buildings. The proposed methodology, which is naturally integrated into modern performance‐based design procedures, provides the value of the separation distance corresponding to a target probability of pounding during the design life of the buildings. It recasts the inverse reliability problem of the determination of the design separation distance as a zero‐finding problem and involves the use of analytical techniques in order to evaluate the statistics of the dynamic response of the buildings. Both uncertainty in the seismic intensity and record‐to‐record variability are taken into account. The proposed methodology is applied to several different buildings modeled as linear elastic single‐degree‐of‐freedom (SDOF) and multi‐degree‐of‐freedom (MDOF) systems, as well as SDOF nonlinear hysteretic systems. The design separation distances obtained are compared with the corresponding estimates that are based on several response combination rules suggested in the seismic design codes and in the literature. In contrast to current seismic code design procedures, the newly proposed methodology provides consistent safety levels for different building properties and different seismic hazard conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Passive energy dissipation devices are increasingly implemented in frame structures to improve their performance under seismic loading. Most guidelines for designing this type of system retain the requirements applicable to frames without dampers, and this hinders taking full advantage of the benefits of implementing dampers. Further, assessing the extent of damage suffered by the frame and by the dampers for different levels of seismic hazard is of paramount importance in the framework of performance‐based design. This paper presents an experimental investigation whose objectives are to provide empirical data on the response of reinforced concrete (RC) frames equipped with hysteretic dampers (dynamic response and damage) and to evaluate the need for the frame to form a strong column‐weak beam mechanism and dissipate large amounts of plastic strain energy. To this end, shake‐table tests were conducted on a 2/5‐scale RC frame with hysteretic dampers. The frame was designed only for gravitational loads. The dampers provided lateral strength and stiffness, respectively, three and 12 times greater than those of the frame. The test structure was subjected to a sequence of seismic simulations that represented different levels of seismic hazard. The RC frame showed a performance level of ‘immediate occupancy’, with maximum rotation demands below 20% of the ultimate capacity. The dampers dissipated most of the energy input by the earthquake. It is shown that combining hysteretic dampers with flexible reinforced concrete frames leads to structures with improved seismic performance and that requirements of conventional RC frames (without dampers) can be relieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
钢筋混凝土剪力墙结构通过设置可更换连梁,在地震作用下集中损伤,保护主体结构不受或只受微小破坏,震后更换损伤构件即可恢复结构功能。参照现行规范和已有试验分析结果,在普通钢筋混凝土结构设计基础上,提出带有可更换连梁的钢筋混凝土结构实用设计方法,设定性能目标,总结设计流程。采用提出的设计方法对1个50层钢筋混凝土结构进行设计,并采用大型有限元分析软件ABAQUS建立数值模型,验证结构性能目标和提出的设计方法。结果表明:按该方法设计的带有可更换连梁的钢筋混凝土结构能满足所设定的性能目标,设计方法合理实用,为该新型结构的工程应用提供了参考。  相似文献   

12.
A fully automated design methodology based on nonlinear response history analysis is proposed for the optimum seismic design of reinforced concrete (RC) structures. The conventional trial‐and‐error process is replaced by a structural optimization algorithm that serves as a search engine capable of locating the most efficient design in terms of cost and performance. Two variations of the proposed design methodology are introduced. The first approach treats the optimum design problem in a deterministic manner, while in the second variation the optimum design is sought in the framework of a reliability‐based optimization problem. The reliability‐based approach seems to be a more rational procedure since more meaningful design criteria that correlate better with the performance‐based design concept can be adopted. Thus, the practice of using the mean annual frequency of a limit‐state being exceeded to assess the candidate designs is compared with the use of deterministic criteria. Both formulations take into consideration the structural response for a number of limit‐states, from serviceability to collapse prevention. The proposed design procedure is specifically tailored to the design of RC structures, where a preliminary design step of generating tables of concrete sections is introduced. In order to handle the large size of the tables, the concept of multi‐database cascade optimization is implemented. The final design has to comply with the provisions of European design codes. The proposed methodology allows for a significant reduction of the direct construction cost combined with improved control of the seismic performance under earthquake loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The seismic design of an eight‐story reinforced concrete space frame building is undertaken using a yield frequency spectra (YFS) performance‐based approach. YFS offer a visual representation of the entire range of a system's performance in terms of the mean annual frequency (MAF) of exceeding arbitrary global ductility or displacement levels versus the base shear strength. As such, the YFS framework can establish the required base shear and corresponding first‐mode period to satisfy arbitrary performance objectives for any structure that may be approximated by a single‐degree‐of‐freedom system with given yield displacement and capacity curve shape. For the eight‐story case study building, deformation checking is the governing limit state. A conventional code‐based design was performed using seismic intensities tied to the desired MAF for safety checking. Then, the YFS‐based approach was employed to redesign the resulting structure working backwards from the desired MAF of response (rather than intensity) to estimate an appropriate value of seismic intensity for use within a typical engineering design process. For this high‐seismicity and high‐importance midrise building, a stiffer system with higher base shear strength was thus derived. Moreover, performance assessment via incremental dynamic analysis showed that while the code‐design did not meet the required performance objective, the YFS‐based redesign needed only pushover analysis results to offer a near‐optimal design outcome. The rapid convergence of the method in a single design/analysis iteration emphasized its efficiency and practicability as a design aid for practical application. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Performance-Based Seismic Design is now widely recognized as the pre-eminent seismic design and assessment methodology for building structures. In recognition of this, seismic codes may require that buildings achieve multiple performance objectives such as withstanding moderate, yet frequently occurring earthquakes with minimal structural and non-structural damage, while withstanding severe, but rare earthquakes without collapse and loss of life. These objectives are presumed to be satisfied by some codes if the force-based design procedures are followed. This paper investigates the efficacy of the Eurocode 8 force-based design provisions with respect to RC frame building design and expected seismic performance. Four, eight, and 16-storey moment frame buildings were designed and analyzed using the code modal response spectrum analysis provisions. Non-linear time-history analyses were subsequently performed to determine the simulated seismic response of the structures and to validate the Eurocode 8 force-based designs. The results indicate the design of flexural members in medium-to-long period structures is not significantly influenced by the choice of effective member stiffness; however, calculated interstorey drift demands are significantly affected. This finding was primarily attributed to the code’s enforcement of a minimum spectral ordinate on the design spectrum. Furthermore, design storey forces and interstorey drift demand estimates (and therefore damage), obtained by application of the code force-based design procedure varied substantially from those found through non-linear time-history analysis. Overall, the results suggest that though the Eurocode 8 may yield life-safe designs, the seismic performance of frame buildings of the same type and ductility class can be highly non-uniform.  相似文献   

15.
增大柱端抗弯承载力是抗震"能力设计"措施中引导钢筋混凝土框架结构形成梁铰型有利耗能机构的关键措施。本文以6层确定性钢筋混凝土框架结构为分析对象,通过结构易损性分析评估了不同强柱系数取值对钢筋混凝土框架结构抗震性能的影响。结构易损性分析表明增大柱端抗弯承载力是改善结构抗震性能的有效措施,增大强柱系数提高了结构的变形能力,使不同破坏极限状态之间形成较大的"梯度",对防止强烈地震作用下结构的突然倒塌提供了预示。结构易损性曲线对评估结构抗震性能、选用合适的目标强柱系数提供了量化标准。  相似文献   

16.
Seismic performance of structures is related to the damage inflicted on the structure by the earthquake, which means that formulation of performance‐based design is inherently coupled with damage assessment of the structure. Although the potential for cumulative damage during a long‐duration earthquake is generally recognized, most design codes do not explicitly take into account the damage potential of such events. In this paper, the classical low‐cycle fatigue model commonly used for seismic damage assessment is cast in a framework suitable for incorporating cumulative damage into seismic design. The model, in conjunction with a seismic input energy spectrum, may be used to establish an energy‐based seismic design. In order to ensure satisfactory performance in a structure, the cyclic plastic strain energy capacity of the structure is designed to be larger than or equal to the portion of seismic input energy contributing to cumulative damage. The resulting design spectrum, which depends on the duration of the ground motion, indicates that the lateral strength of the structure must be increased in order to compensate for the increased damage due to an increased number of inelastic cycles that occur in a long‐duration ground motion. Examples of duration‐dependent inelastic design spectra are developed using parameters currently available for the low‐cycle fatigue model. The resulting spectra are also compared with spectra developed using a different cumulative damage model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
A multi‐objective optimization procedure is presented for designing steel moment resisting frame buildings within a performance‐based seismic design framework. Life cycle costs are considered by treating the initial material costs and lifetime seismic damage costs as two separate objectives. Practical design/construction complexity, important but difficult to be included in initial cost analysis, is taken into due account by a proposed diversity index as another objective. Structural members are selected from a database of commercially available wide flange steel sections. Current seismic design criteria (AISC‐LRFD seismic provisions and 1997 NEHRP provisions) are used to check the validity of any design alternative. Seismic performance, in terms of the maximum inter‐storey drift ratio, of a code‐verified design is evaluated using an equivalent single‐degree‐of‐freedom system obtained through a static pushover analysis of the original multi‐degree‐of‐freedom frame building. A simple genetic algorithm code is used to find a Pareto optimal design set. A numerical example of designing a five‐storey perimeter steel frame building is provided using the proposed procedure. It is found that a wide range of valid design alternatives exists, from which a decision maker selects the one that balances different objectives in the most preferred way. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The performance‐based seismic design of steel special moment‐resisting frame (SMRF) structures is formulated as a multiobjective optimization problem, in which conflicting design criteria that respectively reflect the present capital investment and the future seismic risk are treated simultaneously as separate objectives other than stringent constraints. Specifically, the initial construction expenses are accounted for by the steel material weight as well as by the number of different standard steel section types, the latter roughly quantifying the degree of design complexity related additional construction cost; the seismic risk is considered in terms of maximum interstory drift demands at two hazard levels with exceedance probabilities being 50% and 2% in 50 years, respectively. The present formulation allows structural engineers to find an optimized design solution by explicitly striving for a desirable compromise between the initial investment and seismic performance. Member sizing for code‐compliant design of a planar five‐story four‐bay SMRF is presented as an application example using the proposed procedure that is automated by a multiobjective genetic algorithm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The seismic design of multi‐story buildings asymmetric in plan yet regular in elevation and stiffened with ductile RC structural walls is addressed. A realistic modeling of the non‐linear ductile behavior of the RC walls is considered in combination with the characteristics of the dynamic torsional response of asymmetric buildings. Design criteria such as the determination of the system ductility, taking into account the location and ductility demand of the RC walls, the story‐drift demand at the softer (most displaced) edge of the building under the design earthquake, the allowable ductility (ultimate limit state) and the allowable story‐drift (performance goals) are discussed. The definition of an eccentricity of the earthquake‐equivalent lateral force is proposed and used to determine the effective displacement profile of the building yet not the strength distribution under the design earthquake. Furthermore, an appropriate procedure is proposed to calculate the fundamental frequency and the earthquake‐equivalent lateral force. A new deformation‐based seismic design method taking into account the characteristics of the dynamic torsional response, the ductility of the RC walls, the system ductility and the story‐drift at the softer (most displaced) edge of the building is presented and illustrated with an example of seismic design of a multi‐story asymmetric RC wall building. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
历次地震震害表明,底框砌体结构在遭遇大地震时破坏严重.本文比较了《GBJ11-89建筑抗震设计规范》和《GB50011-2001建筑抗震设计规范》中关于该类结构的抗震设计要求.参考某地一个实际底框砌体结构建筑设计资料,分别按上述两版本规范设计了2个具有代表性的底框砌体结构.采用层间剪切模型基于IDA方法对结构进行了地震...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号