首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The vector physics of wind‐driven rain (WDR) differs from that of wind‐free rain, and the interrill soil detachment equations in the Water Erosion Prediction Project (WEPP) model were not originally developed to deal with this phenomenon. This article provides an evaluation of the performance of the interrill component of the WEPP model for WDR events. The interrill delivery rates were measured in the wind tunnel facility of the International Center for Eremology (ICE), Ghent University, Belgium with an experimental setup to study different raindrop impact velocity vectors. Synchronized wind and rain simulations with wind velocities of 6, 10 and 14 m s–1 were applied to a test surface placed on windward and leeward slopes of 7, 15 and 20%. Since both rainfall intensity and raindrop impact velocity varied greatly depending on differences in the horizontal wind velocity under WDRs, the resultant kinetic energy flux (KEr, in J m–2 s–1) was initially used in place of the WEPP model intensity term in order to incorporate the effect of wind on impact velocity and frequency of raindrops. However, our results showed only minor improvement in the model predictions. For all research data, the model Coefficients of Determination (r2) were 0·63 and 0·71, when using the WEPP and the KEr approaches, respectively. Alternately, integrating the angle of rain incidence into the model by vectorally partitioning normal kinetic energy flux (KErn, in J m–2 s–1) from the KEr greatly improved the model's ability to estimate the interrill sediment delivery rates (r2 = 0·91). This finding suggested that along with the fall trajectory of wind‐driven raindrops with a given frequency, raindrop velocity and direction at the point of impact onto the soil surface provided sufficient physical information to improve WEPP sediment delivery rate predictions under WDR. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Impact of rainfall pattern on interrill erosion process   总被引:3,自引:0,他引:3       下载免费PDF全文
The impact of rainfall pattern on the interrill erosion process is not fully understood despite its importance. Systematic rainfall simulation experiments involving various rainfall intensities, stages, intensity sequences, and surface cover conditions were conducted in this study to investigate their effects on the interrill erosion process. Five rainfall patterns designed with the same total kinetic energy/precipitation (increasing, decreasing, rising–falling, falling–rising and constant patterns) were randomly delivered to a pre‐wet clay loam soil surface at a 10° slope gradient. Significant differences in soil losses were observed among the different rainfall patterns and stages, but there was no obvious difference in runoff. Kinetic energy flux (KEr) was a governing factor for interrill erosion, and constant rainfall pattern (CST) produced nine times greater soil loss than runs with no KEr. Varied‐intensity patterns had a profound effect on raindrop‐induced sediment transport processes; path analysis results indicated that said effect was complex, interactive and intensity‐dependent. Low hydraulic parameter thresholds further indicated that KEr was the dominant factor in detaching soil particles, while overland flow mainly contributed to transporting the pre‐detached particles. This study not only sheds light on the mechanism of interrill sediment transport capacity and detachability, but also may provide a useful database for developing event‐based interrill erosion prediction models. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Hydrological processes of lowland watersheds of the southern USA are not well understood compared to a hilly landscape due to their unique topography, soil compositions, and climate. This study describes the seasonal relationships between rainfall patterns and runoff (sum of storm flow and base flow) using 13 years (1964–1976) of rainfall and stream flow data for a low‐gradient, third‐order forested watershed. It was hypothesized that runoff–rainfall ratios (R/P) are smaller during the dry periods (summer and fall) and greater during the wet periods (winter and spring). We found a large seasonal variability in event R/P potentially due to differences in forest evapotranspiration that affected seasonal soil moisture conditions. Linear regression analysis results revealed a significant relationship between rainfall and runoff for wet (r2 = 0·68; p < 0·01) and dry (r2 = 0·19; p = 0·02) periods. Rainfall‐runoff relationships based on a 5‐day antecedent precipitation index (API) showed significant (r2 = 0·39; p < 0·01) correspondence for wet but not (r2 = 0·02; p = 0·56) for dry conditions. The same was true for rainfall‐runoff relationships based on 30‐day API (r2 = 0·39; p < 0·01 for wet and r2 = 0·00; p = 0·79 for dry). Stepwise regression analyses suggested that runoff was controlled mainly by rainfall amount and initial soil moisture conditions as represented by the initial flow rate of a storm event. Mean event R/P were higher for the wet period (R/P = 0·33), and the wet antecedent soil moisture condition based on 5‐day (R/P = 0·25) and 30‐day (R/P = 0·26) prior API than those for the dry period conditions. This study suggests that soil water status, i.e. antecedent soil moisture and groundwater table level, is important besides the rainfall to seasonal runoff generation in the coastal plain region with shallow soil argillic horizons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean–continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable—at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill‐sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Field and laboratory studies have indicated that rock fragments in the topsoil may have a large impact on soil properties, soil quality, hydraulic, hydrological and erosion processes. In most studies, the rock fragments investigated still remain visible at the soil surface and only properties of these visible rock fragments are used for predicting runoff and soil loss. However, there are indications that rock fragments completely incorporated in the topsoil could also significantly influence the percolation and water distribution in stony soils and therefore, also infiltration, runoff and soil loss rates. Therefore, in this study interrill laboratory experiments with simulated rainfall for 60 min were conducted to assess the influence of subsurface rock fragments incorporated in a disturbed silt loam soil at different depths below the soil surface (i.e. 0.001, 0.01, 0.05 and 0.10 m), on infiltration, surface runoff and interrill erosion processes for small and large rock fragment sizes (i.e. mean diameter 0.04 and 0.20 m, respectively). Although only small differences in infiltration rate and runoff volume are observed between the soil without rock fragments (control) and the one with subsurface rock fragments, considerable differences in total interrill soil loss are observed between the control treatment and both contrasting rock fragments sizes. This is explained by a rapid increase in soil moisture in the areas above the rock fragments and therefore a decrease in topsoil cohesion compared with the control soil profile. The observed differences in runoff volume and interrill soil loss between the control plots and those with subsurface rock fragments is largest after a cumulative rainfall (Pcum) of 11 mm and progressively decreases with increasing Pcum. The results highlight the impacts and complexity of subsurface rock fragments on the production of runoff volume and soil loss and requires their inclusion in process‐based runoff and erosion models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In wind‐driven rains, wind velocity and direction are expected to affect not only energy input of rains but also shallow ?ow hydraulics by changing roughness induced by raindrop impacts with an angle on ?ow and the unidirectional splashes in the wind direction. A wind‐tunnel study under wind‐driven rains was conducted to determine the effects of horizontal wind velocity and direction on sediment transport by the raindrop‐impacted shallow ?ow. Windless rains and the rains driven by horizontal wind velocities of 6 m s?1, 10 m s?1, and 14 m s?1 were applied to three agricultural soils packed into a 20 by 55 cm soil pan placed on both windward and leeward slopes of 7 per cent, 15 per cent, and 20 per cent. During each rainfall application, sediment and runoff samples were collected at 5‐min intervals at the bottom edge of the soil pan with wide‐mouth bottles and were determined gravimetrically. Based on the interrill erosion mechanics, kinetic energy ?ux (Ern) as a rainfall parameter and product of unit discharge and slope in the form of qbSco as a ?ow parameter were used to explain the interactions between impact and ?ow parameters and sediment transport (qs). The differential sediment transport rates occurred depending on the variation in raindrop trajectory and rain intensity with the wind velocity and direction. Flux of rain energy computed by combining the effects of wind on the velocity, frequency, and angle of raindrop impact reasonably explained the characteristics of wind‐driven rains and acceptably accounted for the differences in sediment delivery rates to the shallow ?ow transport (R2 ≥ 0·78). Further analysis of the Pearson correlation coef?cients between Ern and qSo and qs also showed that wind velocity and direction signi?cantly affected the hydraulics of the shallow ?ow. Ern had a smaller correlation coef?cient with the qs in windward slopes where not only reverse splashes but also reverse lateral raindrop stress with respect to the shallow ?ow direction occurred. However, Ern was as much effective as qSo in the sediment transport in the leeward slopes where advance splashes and advance lateral raindrop stress on the ?ow occurred. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Phosphorus (P) export from agricultural lands above known threshold levels can result in adverse impacts to receiving water quality. Phosphorus loss occurs in dissolved and sediment‐bound, or particulate phosphorous (PP), forms, with the latter often dominating losses from row‐cropped systems. To target practices, land managers need good computer models and model developers need good monitoring data. Sediment monitoring data (e.g. radiometric finger printing and sediment P sorption capacity) can help identify sediment source areas and improve models, but require more sediment mass than is typically obtained by automatic sampling. This study compares a simple suspended sediment sampler developed at the University of Exeter (UE) with automatic sampling in intermittent channels draining corn and alfalfa fields. The corn field had a greater runoff coefficient (27%) than alfalfa (11%). No differences were found in enrichment ratios (sediment constituent/soil constituent) in PP (PPER) or percent loss on ignition (LOIER) between paired UE samplers on corn. The median LOIER for the UE samplers (1·9%) did not differ significantly (p > 0·13) from the automatic sampler (2·0%). The PPER from the UE samplers was on average 20% lower than the automatic samplers. A correlation (r2 = 0·75) was found between sediment PP and % LOI from automatic samplers and UE samplers for particles < 50 µm, while for > 50 µm PP concentration did not change with changes in % LOI. Sediment ammonium‐oxalate extractable metals were similarly related to LOI, with the strongest correlation for iron (r2 = 0·71) and magnesium (r2 = 0·70). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Rainfall erosivity represents the primary driver for particle detachment in splash soil erosion. Several raindrop erosivity indices have been developed in order to quantify the potential of rainfall to cause soil erosion. Different types of rainfall simulators have been used to relate rainfall characteristics to soil detachment. However, rainfall produced by different rainfall simulators has different characteristics, specifically different relationships between rainfall intensity and rainfall erosivity. For this reason, the effect of rainfall characteristics produced by a dripper‐type rainfall simulator on splash soil erosion (Ds) has been investigated. The simulated rainfall kinetic energy (KE) and drop size distribution (DSD) were measured using piezoelectric transducers, modified from the Vaisala RAINCAP® rain sensor. The soil splash was evaluated under various simulated rainfall intensities ranging from 10 to 100 mm h?1 using the splash‐cup method. The simulated rainfall intensity (I) and kinetic energy relationship (IKE) was found to be different from natural rainfall. The simulated rainfall intensity and splash soil erosion relationship (IDs) also followed this same trend. The IKE relationship was found to follow the natural rainfall trend until the rainfall intensity reached 30 mm h?1 and above this limit the KE started to decrease. This emphasizes the importance of the IKE relationship in determining the IDs relationship, which can differ from one rainfall simulator to another. Ds was found to be highly correlated with KE (r = 0·85, P < 0·001), when data produced by the rainfall intensity ranged from 10 to 100 mm h?1. However, when the threshold rainfall intensity (30 mm h?1) was considered, the correlation coefficient further improved (r = 0·89, P = 0·001). Accordingly, to improve the soil splash estimation of simulated rainfall under various rainfall intensities the I–KE characterization relationship for rainfall simulators has to be taken into account. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
To elucidate splash erosion processes under natural rainfall conditions, temporal variations in splash detachment were observed using a piezoelectric saltation sensor (H11B; Sensit Co., Portland, ND, USA). Preliminary laboratory tests of Sensit suggested that they were suitable for field observations. Field observations were conducted between July and September 2006 in 21‐ and 36‐year‐old Japanese cypress (Chamaecyparis obtusa) plantations with mean stand heights of 9·2 m and 17·4 m, respectively. Splash detachment (in g m?2) was measured seven times using splash cups, and raindrop kinetic energy (in J m?2 mm?1) in both stands was measured using laser drop‐sizing (LD) gauges. Sensit was installed to record saltation counts, which were converted to temporal data of splash detachment (splash rate; in g m?2 10 min?1) using the relationship between splash detachment and saltation counts. Surface runoff was monitored using runoff plots of 0·5 m width and 2·0 m length to obtain temporal data of flow depth (in millimeters). Both total splash detachment and raindrop kinetic energy were larger in the older stand. Increased splash rates per unit throughfall were found in both stands after rainless durations longer than approximately one day in both stands. However, a lower splash rate was found in the 21‐year stand after rainfall events. During extreme rainstorms, the 21‐year stand showed a low runoff rate and a decline in the splash rate, while the 36‐year stand showed a higher splash rate and increased flow depth. The piezoelectric sensor proved to be a useful means to elucidate splash erosion processes in field conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Ashok Mishra  S. Kar  V. P. Singh 《水文研究》2007,21(22):3035-3045
The Hydrologic Simulation Programme‐Fortran (HSPF), a hydrologic and water quality computer model, was employed for simulating runoff and sediment yield during the monsoon months (June–October) from a small watershed situated in a sub‐humid subtropical region of India. The model was calibrated using measured runoff and sediment yield data for the monsoon months of 1996 and was validated for the monsoon months of 2000 and 2001. During the calibration period, daily‐calibrated runoff had a Nash‐Sutcliffe efficiency (ENS) value of 0·68 and during the validation period it ranged from 0·44 to 0·67. For daily sediment yield ENS was 0·71 for the calibration period and it ranged from 0·68 to 0·90 for the validation period. Sensitivity analysis was performed to assess the impact of important watershed characteristics. The model parameters obtained in this study could serve as reference values for model application in similar climatic regions, with practical implications in watershed planning and management and designing best management practices. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Measurements of sap flow, meteorological parameters, soil water content and tension were made for 4 months in a young cashew (Anacardium occidentale L.) plantation during the 2002 rainy season in Ejura, Ghana. This experiment was part of a sustainable water management project in West Africa. The Granier system was used to measure half‐hourly whole‐tree sap flow. Weather variables were observed with an automatic weather station, whereas soil moisture and tension were measured with a Delta‐T profile probe and tensiometers respectively. Clearness index (CI), a measure of the sky condition, was significantly correlated with tree transpiration (r2 = 0·73) and potential evaporation (r2 = 0·86). Both diurnal and daily stomata conductance were poorly correlated with the climatic variables. Estimated daily canopy conductance gc ranged from 4·0 to 21·2 mm s−1, with a mean value of 8·0 ± 3·3 mm s−1. Water flux variation was related to a range of environmental variables: soil water content, air temperature, solar radiation, relative humidity and vapour pressure deficit. Linear and non‐linear regression models, as well as a modified Priestley–Taylor formula, were fitted with transpiration, and the well‐correlated variables, using half‐hourly measurements. Measured and predicted transpiration using these regression models were in good agreement, with r2 ranging from 0·71 to 0·84. The computed measure of accuracy δ indicated that a non‐linear model is better than its corresponding linear one. Furthermore, solar radiation, CI, clouds and rain were found to influence tree water flux. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Physically based soil erosion simulation models require input parameters of soil detachment and sediment transport owing to the action and interactions of both raindrops and overland flow. A simple interrill soil water transport model is applied to a laboratory catchment to investigate the application of raindrop detachment and transport in interrill areas explicitly. A controlled laboratory rainfall simulation study with slope length simulation by flow addition was used to assess the raindrop detachment and transport of detached soil by overland flow in interrill areas. Artificial rainfall of moderate to high intensity was used to simulate intense rain storms. However, experiments were restricted to conditions where rilling and channelling did not occur and where overland flow covered most of the surface. A simple equation with a rainfall intensity term for raindrop detachment, and a simple sediment transport equation with unit discharge and a slope term were found to be applicable to the situation where clear water is added at the upper end of a small plot to simulate increased slope length. The proposed generic relationships can be used to predict raindrop detachment and the sediment transport capacity of interrill flow and can therefore contribute to the development of physically‐based erosion models. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
The decay of roughness is an important factor governing surface processes such as infiltration and soil erosion. Thus the decay of surface roughness under different surface conditions was investigated and related to quantitative amounts of soil loss, runoff and sediment concentration in a laboratory experiment. Rainfall with an intensity of 128 mm/h was applied to a bare or mulched surfaces of a sandy loam soil with known surface roughness at specified time intervals. The decay of roughness as expressed by roughness ratio, in this experiment, was better predicted when related to an exponential function of the square root of cumulative kinetic energy of rainfall rather than with the cumulative rainfall. The roughness decay equations in literature did not predict breakdown under mulched surfaces accurately. Thus the exponent parameters of the roughness decay equations were adjusted to reflect the reduced decay occurring under mulched surfaces. In a bare soil, regression equations expressing the dependent variables as a function of initial roughness index were significant, but with low coefficients of determination, being 0·39 for soil loss, 0·12 for runoff and 0·36 for sediment concentration. In addition to initial roughness index, cumulative kinetic energy of rainfall was further included in the regressions. This led to an increase in coefficients of determination, which was 0·81 for soil loss, 0·74 for runoff and 0·49 for sediment concentration. The coefficients of determination (0·87 for soil loss, 0·85 for runoff and 0·51 for sediment concentration) were further increased when the final roughness index was included in addition to initial roughness index and cumulative kinetic energy in the regressions. This work shows that soil loss and runoff could be predicted from bare soil surface provided the initial roughness and the energy of rainfall is known. However, field verifications of these relationships are needed under different tillage tools and under natural rainfall. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Laboratory experiments to determine the maximum size of sediment transported in shallow, rain-impacted flow were conducted in a recirculating flume 4·80 m long and 0·50 m wide. Rainfall intensities were varied between 51 and 138 mm h−1, flow was introduced from a header tank into the flume at rates ranging from 0 to 0·64 l s−1, and experiments were conducted on gradients between 3·5 and 10°. The following equation was developed: ML = (REFE)1·6363 in which M is particle mass, L is distance moved in unit time (cm min−1), RE is rainfall energy (J m−2 s−1) and FE is flow energy (J m−2 s−1). This equation can be used to predict sediment-transport competence of interrill overland flow. The equation is limited in its utility insofar as it has been developed using quartz grains and takes no account of variations in absorption of rain energy by natural ground surfaces. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
IINTRODUCTIONTheinterrillerosiononafieldplotisaffectedbythekineticenergyoftherainfall,wind,topographyfactors,propertiesofsoilandthecanopy.Theinterrillerosionoccursasthefirstdropimpactsthehillslopes.Theinterrillerosionoccursinallkindsofrainfallandtheamountofthesplasherosion,whichisthemainpartofinterrillerosion,canaccountforagreatpanofthetotalerosionamountinaheavystorm(Baner1990,Glymph1957,QianandWan1986,Zhou1981).Therefore,itisveryimportanttorevealthemechanismtoestimatetheamountofinterri…  相似文献   

17.
In this study our main objective was to quantify water interrill erosion in the sloping lands of Southeast Asia, one of the most bio‐geochemically active regions of the world. Investigations were performed on a typical hillslope of Northern Laos subjected to slash and burn agriculture practiced as shifting cultivation. Situations with different periods of the shifting cultivation cycle (secondary forest, upland rice cultivation following a four‐year fallow period and three‐year continuous upland rice cultivation) and soil orders (Ultisols, Alfisols, Inceptisols) were selected. One metre square micro‐plots were installed to quantify the soil material removed by either detachment of entire soil aggregate or aggregate destruction, and the detached material transported by thin sheet flow, the main mechanisms of interrill erosion. In addition, laboratory tests were carried out to quantify the aggregate destruction in the process of water erosion by slaking, dispersion and mechanical breakdown. The average runoff coefficient (R) evaluated throughout the 2002 rainy season was 30·1 per cent and the interrill erosion was 1413 g m?2 yr?1 for sediments and 68 g C m?2 yr?1 for soil organic carbon, which was relatively high. Among the mechanisms of interrill water erosion, aggregate destruction was low and mostly caused by mechanical breakdown due to raindrops, thus leading to the conclusion that detachment and further transport by the shallow runoff of macro‐aggregates predominates. R ranged from 23·1 to 35·8 per cent. It decreased with the proportion of mosses on the soil surface and soil surface coverage, and increased with increasing proportion of structural crust, thus confirming previous results. Water erosion varied from 621 to 2433 g m?2 yr?1 for sediments and from 31 to 146 g C m?2 yr?1 for soil organic carbon, and significantly increased with increasing clay content of the surface horizon, probably due to the formation of easily detachable and transportable sand‐size aggregates, and proportion of macro‐aggregates not embedded in the soil matrix and prone to transport. In addition, water erosion decreased with increasing proportion of structural crusts, probably due to their higher hardness, and when cultivation follows a fallow period rather than after a long period of cultivation due to the greater occurrence of algae on the soil surface, which affords physical protection and greater aggregate stability through binding and gluing. This study based on simultaneous field and laboratory investigations allowed successful identification and quantification of the main erosion mechanisms and controlling factors of interrill erosion, which will give arguments to further set up optimal strategies for sustainable use of the sloping lands of Southeast Asia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Ten representative research sites were selected in eastern Spain to assess soil erosion rates and processes in new citrus orchards on sloping soils. The experimental plots were located at representatives sites on limestone, in areas with 498 to 715 mm year?1 mean annual rainfall, north‐facing slopes, herbicide treated, and new (less than 3 years old) plantations. Ten rainfall simulation experiments (1 h at 55 mm h?1 on 0·25 m2 plots) were carried out at each of the 10 selected study sites to determine the interill soil erosion and runoff rates. The 100 rainfall simulation tests (10 × 10 m) showed that ponding and runoff occurred in all the plots, and quickly: 121 and 195 s, respectively, following rainfall initiation. Runoff discharge was one third of the rainfall, and sediment concentration reached 10·4 g L?1. The soil erosion rates were 2·4 Mg ha?1 h?1 under 5‐year return period rainfall thunderstorms. These are among the highest soil erosion rates measured in the western Mediterranean basin, similar to badland, mine spoil and road embankment land surfaces. The positive relationship between runoff discharge and sediment concentration (r2 = 0·83) shows that the sediment availability is very high. Soil erosion rates on new citrus orchards growing on sloped soils are neither tolerable nor sustainable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Runoff and sediment lost due to water erosion were recorded for 36 (1 m2) plots with varying types of vegetative cover located on sloping gypsiferous fields in the South of Madrid. 75% of the events had maximum 30‐minute intensity (I30) less than 10 mm h?1 in the period studied (1994–2005). As for the vegetative cover, maximum correlation between runoff and soil loss was found in the least protected plots (0–40% cover) during the most intense rainfall events; however, a significant positive correlation was also observed in plots with greater coverage (40–60%). If coverage exceeded 60%, rainfall erosivity declined. The average amount of sediment produced in high‐intensity events was significantly greater (approximately 7 g m?2 per I30 event >10 mm h?1) than that produced in the rest of the moderate‐intensity events (approximately 3 g m?2 per I30 event <10 mm h?1), but due to the high rate of occurrence of the latter throughout the year sediment loss during the period studied totaled 128 g m?2. By comparison, only 40 g m?2 was produced by the I30 events greater than 10 mm h?1. Even though the amount of soil lost is relatively insignificant from a quantitative standpoint, the organic matter content lost in the sediment (six times more than in the soil) is a permanent loss that threatens the development of the surface of the soil in this area when the vegetative cover is less than 40%. The soil here experiences a chronic loss of 0·02 mm annually as a consequence of frequent, moderate events, in addition to any loss produced by extraordinary events, which, though less frequent, are much more erosive. If moderate events are ignored, an important part of soil loss will be lost in the long run. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号