首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The model of Paillard and Parrenin (Earth Planet Sci Lett 227:263–271, 2004) was modified to obtain a closer fit to δ18O and CO2 time series for the last 800 kyr. The model performance can be improved if its CO2 sensitivity to I65 insolation is eliminated and if different response times are assumed for ablation/accumulation of ice. Correlations between simulated and experimental time series for CO2 and ice volume V increase from 0.59 and 0.63 to 0.79 and 0.88, respectively. According to these models, terminations are produced by I65 amplification through CO2-T and T-CO2 feedbacks, in synergy with an extra CO2 contribution from the deep ocean. This contribution is strongly dependent on ice-sheet extent and ice volume (or alternatively, CO2 concentration, which is a good proxy of Antarctic temperature) but is insensitive to Southern Ocean (SO) insolation on 21 February (I60). Change of deep SO state may be the “order parameter” for nonlinear deglacial changes. According to these models, 100 kyr periodicity of glacial cycles arises from the characteristic time of Antarctic ice sheet advance to the continental slope.  相似文献   

2.
Various experiments have been conducted using theLouvain-la-Neuve two-dimensional Northern Hemisphereclimate model (LLN 2-D NH) to simulate climate for thenext 130 kyr into the future. Simulations start withvalues representing the present-day NorthernHemisphere ice sheet, using different scenarios forfuture CO2 concentrations. The sensitivity of themodel to the initial size of the Greenland ice sheet,and to possible impacts of human activities, has alsobeen tested. Most of the natural scenarios indicatethat: (i) the climate is likely to experience a longlasting (50 kyr) interglacial; (ii) the next glacialmaximum is expected to be most intense at around 100kyr after present (AP), with a likely interstadial at60 kyr AP; and (iii) after 100 kyr AP continentalice rapidly melts, leading to an ice volume minimum 20kyr later. However, the amplitude and, to a lesserextent, the timing of future climatic changes dependon the CO2 scenario and on the initial conditionsrelated to the assumed present-day ice volume.According to our modelling experiments, man'sactivities over the next centuries may significantlyaffect the ice-sheet's behaviour for approximately thenext 50 kyr. Finally, the existence of thresholds inCO2 and insolation, earlier shown to besignificant for the past, is confirmed to be alsoimportant for the future.  相似文献   

3.
The multi-component “green” McGill Paleoclimate Model (MPM), which includes interactive vegetation, is used to simulate the next glacial inception under orbital and prescribed atmospheric CO2 forcing. This intermediate complexity model is first run for short-term periods with an increasing atmospheric CO2 concentration; the model's response is in general agreement with the results of GCMs for CO2 doubling. The green MPM is then used to derive projections of the climate for the next 100 kyr. Under a constant CO2 level, the model produces three types of evolution for the ice volume: an imminent glacial inception (low CO2 levels), a glacial inception in 50 kyr (CO2 levels of 280 or 290 ppm), or no glacial inception during the next 100 kyr (CO2 levels of 300 ppm and higher). This high sensitivity to the CO2 level is due to the exceptionally weak future variations of the summer insolation at high northern latitudes. The changes in vegetation re-inforce the buildup of ice sheets after glacial inception. Finally, if an initial global warming episode of finite duration is included, after which the atmospheric CO2 level is assumed to stabilize at 280, 290 or 300 ppm, the impact of this warming is seen only in the first 5 kyr of the run; after this time the response is insensitive to the early warming perturbation.  相似文献   

4.
We study the mechanisms of glacial inception by using the Earth system model of intermediate complexity, CLIMBER-2, which encompasses dynamic modules of the atmosphere, ocean, biosphere and ice sheets. Ice-sheet dynamics are described by the three-dimensional polythermal ice-sheet model SICOPOLIS. We have performed transient experiments starting at the Eemiam interglacial, at 126 ky BP (126,000 years before present). The model runs for 26 kyr with time-dependent orbital and CO2 forcings. The model simulates a rapid expansion of the area covered by inland ice in the Northern Hemisphere, predominantly over Northern America, starting at about 117 kyr BP. During the next 7 kyr, the ice volume grows gradually in the model at a rate which corresponds to a change in sea level of 10 m per millennium. We have shown that the simulated glacial inception represents a bifurcation transition in the climate system from an interglacial to a glacial state caused by the strong snow-albedo feedback. This transition occurs when summer insolation at high latitudes of the Northern Hemisphere drops below a threshold value, which is only slightly lower than modern summer insolation. By performing long-term equilibrium runs, we find that for the present-day orbital parameters at least two different equilibrium states of the climate system exist—the glacial and the interglacial; however, for the low summer insolation corresponding to 115 kyr BP, we find only one, glacial, equilibrium state, while for the high summer insolation corresponding to 126 kyr BP only an interglacial state exists in the model.
Reinhard CalovEmail:
  相似文献   

5.
The sensitivity of the last glacial-inception (around 115 kyr BP, 115,000 years before present) to different feedback mechanisms has been analysed by using the Earth system model of intermediate complexity CLIMBER-2. CLIMBER-2 includes dynamic modules of the atmosphere, ocean, terrestrial biosphere and inland ice, the last of which was added recently by utilising the three-dimensonal polythermal ice-sheet model SICOPOLIS. We performed a set of transient experiments starting at the middle of the Eemiam interglacial and ran the model for 26,000 years with time-dependent orbital forcing and observed changes in atmospheric CO2 concentration (CO2 forcing). The role of vegetation and ocean feedback, CO2 forcing, mineral dust, thermohaline circulation and orbital insolation were closely investigated. In our model, glacial inception, as a bifurcation in the climate system, appears in nearly all sensitivity runs including a run with constant atmospheric CO2 concentration of 280 ppmv, a typical interglacial value, and simulations with prescribed present-day sea-surface temperatures or vegetation cover—although the rate of the growth of ice-sheets growth is smaller than in the case of the fully interactive model. Only if we run the fully interactive model with constant present-day insolation and apply present-day CO2 forcing does no glacial inception appear at all. This implies that, within our model, the orbital forcing alone is sufficient to trigger the interglacial–glacial transition, while vegetation, ocean and atmospheric CO2 concentration only provide additional, although important, positive feedbacks. In addition, we found that possible reorganisations of the thermohaline circulation influence the distribution of inland ice.  相似文献   

6.
 The atmospheric CO2 concentrations have been reconstructed over the past 600 ka based on regression between the Vostok CO2 data and the SPECMAP oxygen isotope values. A lag of 4.5 ka (CO2 preceding δ18O) gives the best results. A polynomial of order 5 explains 66% of the Vostok CO2 variance over the last 220 ka. The Northern Hemisphere ice-sheet volume was simulated over the past 575 ka using the LLN 2-D model, forced by insolation and these statistically reconstructed atmospheric CO2 concentrations. The simulated ice volume fluctuations resemble the deep-sea oxygen isotope variations. CO2 of interglacial level is necessary for explaining both the interglacial at oxygen isotopic stage 11 and our present-day interglacial.  相似文献   

7.
8.
A regional atmospheric climate model with multi-layer snow module (RACMO2) is forced at the lateral boundaries by global climate model (GCM) data to assess the future climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS). Two different GCMs (ECHAM5 until 2100 and HadCM3 until 2200) and two different emission scenarios (A1B and E1) are used as forcing to capture a realistic range in future climate states. Simulated ice sheet averaged 2 m air temperature (T2m) increases (1.8–3.0 K in 2100 and 2.4–5.3 K in 2200), simultaneously and with the same magnitude as GCM simulated T2m. The SMB and its components increase in magnitude, as they are directly influenced by the temperature increase. Changes in atmospheric circulation around Antarctica play a minor role in future SMB changes. During the next two centuries, the projected increase in liquid water flux from rainfall and snowmelt, together 60–200 Gt year?1, will mostly refreeze in the snow pack, so runoff remains small (10–40 Gt year?1). Sublimation increases by 25–50 %, but remains an order of magnitude smaller than snowfall. The increase in snowfall mainly determines future changes in SMB on the AIS: 6–16 % in 2100 and 8–25 % in 2200. Without any ice dynamical response, this would result in an eustatic sea level drop of 20–43 mm in 2100 and 73–163 mm in 2200, compared to the twentieth century. Averaged over the AIS, a strong relation between $\Updelta$ SMB and $\Updelta\hbox{T}_{2{\rm m}}$ of 98 ± 5 Gt w.e. year?1 K?1 is found.  相似文献   

9.
Cr, Fe, Rb, Ba and U were determined by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in various sections of the 3,270 m deep ice core recently drilled at Dome C on the high East Antarctic plateau as part of the EPICA program. The sections were dated from 263 kyr bp (depth of 2,368 m) to 672 kyr bp (depth of 3,062 m). When combined with the data previously obtained by Gabrielli and co-workers for the upper 2,193 m of the core, it gives a detailed record for these elements during a 672-kyr period from the Holocene back to Marine Isotopic Stage (MIS) 16.2. Concentrations and fallout fluxes of all elements are found to be highly variable with low values during the successive interglacial periods and much higher values during the coldest periods of the last eight climatic cycles. Crustal enrichment factors indicates that rock and soil dust is the dominant source for Fe, Rb, Ba and U whatever the period and for Cr during the glacial maxima. The relationship between Cr, Fe, Rb, Ba and U concentrations and the deuterium content of the ice appears to be similar before and after the Mid-Brunhes Event (MBE, around 430 kyr bp). Mean concentration values observed during the successive interglacials from the Holocene to MIS 15.5 appear to vary from one interglacial to another at least for part of the elements. Concentrations observed during the successive glacial maxima suggest a decreasing trend from the most recent glacial maxima (MIS 2.2 and 4.2) to the oldest glacial maxima such as MIS 14.2, 14.4 and 16.2, which could be linked with changes in the size distribution of dust particles transported from mid-latitude areas to the East Antarctic ice cap.  相似文献   

10.
We present further steps in our analysis of the early anthropogenic hypothesis (Ruddiman, Clim Change 61:261–293, 2003) that increased levels of greenhouse gases in the current interglacial, compared to lower levels in previous interglacials, were initiated by early agricultural activities, and that these increases caused a warming of climate long before the industrial era (~1750). These steps include updating observations of greenhouse gas and climate trends from earlier interglacials, reviewing recent estimates of greenhouse gas emissions from early agriculture, and describing a simulation by a climate model with a dynamic ocean forced by the low levels of greenhouse gases typical of previous interglacials in order to gauge the magnitude of the climate change for an inferred (natural) low greenhouse gas level relative to a high present day level. We conduct two time slice (equilibrium) simulations using present day orbital forcing and two levels of greenhouse gas forcing: the estimated low (natural) levels of previous interglacials, and the high levels of the present (control). By comparing the former to the latter, we estimate how much colder the climate would be without the combined greenhouse gas forcing of the early agriculture era (inferred from differences between this interglacial and previous interglacials) and the industrial era (the period since ~1750). With the low greenhouse gas levels, the global average surface temperature is 2.7 K lower than present day—ranging from ~2 K lower in the tropics to 4–8 K lower in polar regions. These changes are large, and larger than those reported in a pre-industrial (~1750) simulation with this model, because the imposed low greenhouse gas levels (CH4 = 450 ppb, CO2 = 240 ppm) are lower than both pre-industrial (CH4 = 760 ppb, CO2 = 280 ppm) and modern control (CH4 = 1,714 ppb, CO2 = 355 ppm) values. The area of year-round snowcover is larger, as found in our previous simulations and some other modeling studies, indicating that a state of incipient glaciation would exist given the current configuration of earth’s orbit (reduced insolation in northern hemisphere summer) and the imposed low levels of greenhouse gases. We include comparisons of these snowcover maps with known locations of earlier glacial inception and with locations of twentieth century glaciers and ice caps. In two earlier studies, we used climate models consisting of atmosphere, land surface, and a shallow mixed-layer ocean (Ruddiman et al., Quat Sci Rev 25:1–10, 2005; Vavrus et al., Quat Sci Rev 27:1410–1425, 2008). Here, we replaced the mixed-layer ocean with a complete dynamic ocean. While the simulated climate of the atmosphere and the surface with this improved model configuration is similar to our earlier results (Vavrus et al., Quat Sci Rev 27:1410–1425, 2008), the added information from the full dynamical ocean is of particular interest. The global and vertically-averaged ocean temperature is 1.25 K lower, the area of sea ice is larger, and there is less upwelling in the Southern Ocean. From these results, we infer that natural ocean feedbacks could have amplified the greenhouse gas changes initiated by early agriculture and possibly account for an additional increment of CO2 increase beyond that attributed directly to early agricultural, as proposed by Ruddiman (Rev Geophys 45:RG4001, 2007). However, a full test of the early anthropogenic hypothesis will require additional observations and simulations with models that include ocean and land carbon cycles and other refinements elaborated herein.  相似文献   

11.
A coupled global atmosphere-ocean model is used to study the influence of the Antarctica ice sheet in a configuration that mimics that of the early Miocene on the atmospheric and oceanic circulations. Based on different climate simulations of the present day (CTR) and conducted with distinct Antarctic ice sheet topography (AIS-EXP), it is found that the reduction of the Antarctic ice sheet topography (AIS) induces warming of the Southern Hemisphere and reduces the meridional thermal gradient. Consequently, the atmospheric transient low level eddy heat flux $[(\overline{v^{\prime}T^{\prime}})]$ and the eddy momentum flux $[(\overline{u^{\prime}v^{\prime}})]$ are reduced causing the reduced transport of heat from the mid-latitudes to the pole. The stationary flow and transient wave anomalies generate changes in the SSTs which modify the rate of deep water formation, strengthening the formation of the Antarctic Bottom Water. Substantial changes are predicted to occur in the atmospheric and oceanic heat transport and a comparison between the total heat transport of the atmosphere-ocean system, as simulated by the AIS-EXP and the CTR runs, shows that the reduction of the AIS height leads to reduced Southern Hemisphere poleward and increased equatorward heat transport. These results are in agreement with reduced storm track activities and baroclinicity.  相似文献   

12.
Glacial geologic studies in the Southern Hemisphere (SH) mid-latitudes (40–54°S) indicate renewed glacial activity in southern South America (Patagonia) and New Zealand’s (NZ) South Island starting at ~7 kyr, the so-called neoglaciation. Available data indicate that neoglacial advances in these regions occurred during a rising trend in atmospheric CO2 and CH4 concentrations, lower-than-present but increasing summer insolation and seasonality contrasts. In this paper we examine the climatological context in which neoglaciations occurred through analysis of the complete Paleoclimate Modelling Inter-comparison Project (PMIP2) database of simulations at 6 kyr for the SH. We observe that the amplitude of the annual insolation cycle in the SH did not change significantly at 6 kyr compared to the pre-industrial values, the largest difference occurring in autumn (MAM, negative anomalies) and spring (SON, positive anomalies). The simulated changes in temperatures over the SH respond to the insolation changes, with a 1–2 month delay over the oceans. This results in a reduced amplitude of the annual cycle of temperature and precipitation over most continental regions, except over Patagonia and NZ, that show a slight increase. In contrast, large-scale circulation features, such as the low and upper level winds and the subtropical anticyclones show an amplified annual cycle, as a direct response to the increased/decreased insolation during the transitional seasons SON/MAM. In the annual mean, there is a small but consistent equatorward shift of the latitude of maximum wind speed of 1–3° over the entire SH, which results in a small increase of wind speed over the South Pacific and Atlantic Oceans north of ~50°S and a widespread decline south of 50°S. PMIP2 simulations for 6 kyr, indicate that in the annual mean, the SH mid-latitudes were colder, wetter and with stronger winds north of about 50°S. These conditions are consistent with the observed neoglacial advances in the region, as well as with terrestrial paleoclimate records from Patagonia that indicate cooling and a multi-millennial rising trend in Southern Westerly Wind intensity starting at ~7.8 kyr.  相似文献   

13.
As a first qualitative assessment tool, LOVECLIM has been used to investigate the interactions between insolation, ice sheets and the East Asian Monsoon at the Marine Isotopic Stage 13 (MIS–13) in work by Yin et?al. (Clim Past 4:79–90, 2008, Clim Past 5:229–243, 2009). The results are in need of validation with a more sophisticated model, which is done in this work with the ARPEGE atmospheric general circulation model. As in the Earth system Model of Intermediate Complexity, LOVECLIM, ARPEGE shows that the northern hemispheric high insolation in summer leads to strong MIS–13 monsoon precipitation. Data from the Chinese Loess Plateau indicate that MIS–13 was locally a warm and humid period (Guo et?al. in Clim Past 5:21–31, 2009; Yin and Guo in Chin Sci Bull 51(2):213–220, 2006). This is confirmed by these General Circulation Model (GCM) results, where the MIS–13 climate is found to be hotter and more humid both in the presence and absence of any added ice sheets. LOVECLIM found that the combined effects of the ice sheets and their accompanying SSTs contribute to more precipitation in eastern China, whilst in ARPEGE the impact is significant in northeastern China. Nonetheless the results of ARPEGE confirm the counter-intuitive results of LOVECLIM where ice sheets contribute to enhance monsoon precipitation. This happens through a topography induced wave propagating through Eurasia with an ascending branch over northeastern China. A feature which is also seen in LOVECLIM. The SST forcing in ARPEGE results in a strong zonal temperature gradient between the North Atlantic and east Eurasia, which in turn triggers an atmospheric gravity wave. This wave induces a blocking Okhotskian high, preventing the northwards penetration of the Meiyu monsoon front. The synergism between the ice sheets and SST is found through the factor separation method, yielding an increase in the Meiyu precipitation, though a reduction of the Changma precipitation. The synergism between the ice sheets and SST play a non-negligible role and should be taken into consideration in GCM studies. Preliminary fully coupled AOGCM results presented here further substantiate the finding of stronger MIS–13 monsoons and a reinforcement from ice sheets. This work increases our understanding of the signals found in the paleo-observations and the dynamics of the complex East Asian Summer Monsoon.  相似文献   

14.
The timing and nature of ice sheet variations on Greenland over the last ~5 million years remain largely uncertain. Here, we use a coupled climate-vegetation-ice sheet model to determine the climatic sensitivity of Greenland to combined sets of external forcings and internal feedbacks operating on glacial-interglacial timescales. In particular, we assess the role of atmospheric pCO2, orbital forcing, and vegetation dynamics in modifying thresholds for the onset of glaciation in late Pliocene and Pleistocene. The response of circum-Arctic vegetation to declining levels of pCO2 (from 400 to 200 ppmv) and decreasing summer insolation includes a shift from boreal forest to tundra biomes, with implications for the surface energy balance. The expansion of tundra amplifies summer surface cooling and heat loss from the ground, leading to an expanded summer snow cover over Greenland. Atmospheric and land surface fields respond to forcing most prominently in late spring-summer and are more sensitive at lower Pleistocene-like levels of pCO2. We find cold boreal summer orbits produce favorable conditions for ice sheet growth, however simulated ice sheet extents are highly dependent on both background pCO2 levels and land-surface characteristics. As a result, late Pliocene ice sheet configurations on Greenland differ considerably from late Pleistocene, with smaller ice caps on high elevations of southern and eastern Greenland, even when orbital forcing is favorable for ice sheet growth.  相似文献   

15.
The individual contributions of insolation and greenhouse gases (GHG) to the interglacial climates of the past 800,000?years are quantified through simulations with a model of intermediate complexity LOVECLIM and using the factor separation technique. The interglacials are compared in terms of their forcings and responses of surface air temperature, vegetation and sea ice. The results show that the relative magnitude of the simulated interglacials is in reasonable agreement with proxy data. GHG plays a dominant role on the variations of the annual mean temperature of both the Globe and the southern high latitudes, whereas, insolation plays a dominant role on the variations of tree fraction, precipitation and of the northern high latitude temperature and sea ice. The Mid-Brunhes Event (MBE) appears to be significant only in GHG and climate variables dominated by it. The results also show that the relative importance of GHG and insolation on the warmth intensity varies from one interglacial to another. For the warmest (MIS-9 and MIS-5) and coolest (MIS-17 and MIS-13) interglacials, GHG and insolation reinforce each other. MIS-11 (MIS-15) is a warm (cool) interglacial due to its high (low) GHG concentration, its insolation contributing to a cooling (warming). MIS-7, although with high GHG concentrations, can not be classified as a warm interglacial due to it large insolation-induced cooling. Related to these two forcings, MIS-19 appears to be the best analogue for MIS-1. In the response to insolation, the annual mean temperatures averaged over the globe and over southern high latitudes are highly linearly correlated with obliquity. However, precession becomes important in the temperature of the northern high latitudes and controls the tree fraction globally. Over the polar oceans, the response during the local winters, although the available energy is small, is larger than during the local summers due to the summer remnant effect. The sensitivity to double CO2 is the highest for the coolest interglacial.  相似文献   

16.
The causes of atmospheric methane (CH4) changes are still a major contention, in particular with regards to the relative contributions of glacial-interglacial cycles, monsoons in both hemispheres and the late Holocene human intervention. Here, we explore the CH4 signals in the Antarctic EPICA Dome C and Vostok ice records using the methods of timeseries analyses and correlate them with insolation and geological records to address these issues. The results parse out three distinct groups of CH4 signals attributable to different drivers. The first group (~80% variance), well tracking the marine δ18O record, is attributable to glacial-interglacial modulation on the global water cycle with the effects shared by wetlands at all latitudes, from monsoonal and non-monsoonal regions in both hemispheres. The second group (~15% variance), centered at the ~10-kyr semi-precession frequency, is linkable with insolation-driven tropical monsoon changes in both hemispheres. The third group (~5% variance), marked by millennial frequencies, is seemingly related with the combined effect of ice-volume and bi-hemispheric insolation changes at the precession bands. These results indicate that bi-hemispheric monsoon changes have been a constant driver of atmospheric CH4. This mechanism also partially explains the Holocene CH4 reversal since ~5?kyr BP besides the human intervention. In the light of these results, we propose that global monsoon can be regarded as a system consisting of two main integrated components, one primarily driven by the oscillations of Inter-Tropical Convergence Zone (ITCZ) in response to the low-latitude summer insolation changes, anti-phase between the two hemispheres (i.e. the ITCZ monsoon component); and another modulated by the glacial-interglacial cycles, mostly synchronous at the global scale (i.e. the glacial-interglacial monsoon component). Although atmospheric CH4 record integrates all wetland processes, including significant non-monsoonal contributions, it is the only and probably the best proxy available to reflect the past changes of global monsoon. However, the utility of CH4 as a proxy of monsoon changes at any specific location is compromised by its bi-hemispheric nature.  相似文献   

17.
Climate and atmospheric CO2 concentration are intimately coupled in the Earth system: CO2 influences climate through the greenhouse effect, but climate also affects CO2 through its impact on the amount of carbon stored on land and in the ocean. The change in atmospheric CO2 as a response to a change in temperature ( $\varDelta CO_{2}/\varDelta T$ ) is a useful measure to quantify the feedback between the carbon cycle and climate. Using an ensemble of experiments with an Earth system model of intermediate complexity we show a pronounced time-scale dependence of $\varDelta CO_{2}/\varDelta T$ . A maximum is found on centennial scales with $\varDelta CO_{2}/\varDelta T$ values for the model ensemble in the range 5–12 ppm °C?1, while lower values are found on shorter and longer time scales. These results are consistent with estimates derived from past observations. Up to centennial scales, the land carbon response to climate dominates the CO2 signal in the atmosphere, while on longer time scales the ocean becomes important and eventually dominates on multi-millennial scales. In addition to the time-scale dependence, modeled $\varDelta CO_{2}/\varDelta T$ show a distinct dependence on the initial state of the system. In particular, on centennial time-scales, high $\varDelta CO_{2}/\varDelta T$ values are correlated with high initial land carbon content. A similar relation holds also for the CMIP5 models, although for $\varDelta CO_{2}/\varDelta T$ computed from a very different experimental setup. The emergence of common patterns like this could prove to usefully constrain the climate–carbon cycle feedback.  相似文献   

18.
Abstract

Present‐day results and CO2 sensitivity are described for two versions of a global climate model (genesis) with and without sea‐ice dynamics. Sea‐ice dynamics is modelled using the cavitating‐fluid method of Flato and Hibler (1990, 1992). The atmospheric general circulation model originated from the NCAR Community Climate Model version 1, but is heavily modified to include new treatments of clouds, penetrative convection, planetary boundary‐layer mixing, solar radiation, the diurnal cycle and the semi‐Lagrangian transport of water vapour. The surface models include an explicit model of vegetation (similar to BATS and SiB), multilayer models of soil, snow and sea ice, and a slab ocean mixed layer.

When sea‐ice dynamics is turned off, the CO2‐induced warming increases drastically around ~60–80°S in winter and spring. This is due to the much greater (and unrealistic) compactness of the Antarctic ice cover without dynamics, which is reduced considerably when CO2 is doubled and exposes more open ocean to the atmosphere. With dynamics, the winter ice is already quite dispersed for 1 × CO2 so that its compactness does not decrease as much when CO2 is doubled.  相似文献   

19.
 The Louvain-la-Neuve climate model (here referred to as the LLN 2-D model has been used extensively to simulate the Northern Hemisphere ice volume under both the insolation and CO2 forcings. The period analysed here covers the last 200 ky. First, sensitivity analyses to constant CO2 concentration were performed. The model was accordingly forced by insolation changes only, the CO2 concentration being kept constant to respectively 210, 250 and 290 ppmv. Results show that the simulated ice volume variations are comparable to the geological reconstructions only when the CO2 concentration is low (210 ppmv) and that the sensitivity of the simulated Northern Hemisphere ice volume to CO2 is not constant through time. Second, three CO2 reconstructions were used to force the LLN 2-D model in addition to insolation. Results show (1) a better agreement with the SPECMAP oxygen isotope time series, in particular as far as the amplitude of the signal is concerned, and (2) that the simulated Northern Hemisphere ice volume is not very sensitive to the slight differences between these three reconstructions.  相似文献   

20.
It is investigated how abrupt changes in the North Atlantic (NA) thermohaline circulation (THC) affect the terrestrial carbon cycle. The Lund–Potsdam–Jena Dynamic Global Vegetation Model is forced with climate perturbations from glacial freshwater experiments with the ECBILT-CLIO ocean–atmosphere–sea ice model. A reorganisation of the marine carbon cycle is not addressed. Modelled NA THC collapses and recovers after about a millennium in response to prescribed freshwater forcing. The initial cooling of several Kelvin over Eurasia causes a reduction of extant boreal and temperate forests and a decrease in carbon storage in high northern latitudes, whereas improved growing conditions and slower soil decomposition rates lead to enhanced storage in mid-latitudes. The magnitude and evolution of global terrestrial carbon storage in response to abrupt THC changes depends sensitively on the initial climate conditions. These were varied using results from time slice simulations with the Hadley Centre model HadSM3 for different periods over the past 21 kyr. Changes in terrestrial storage vary between −67 and +50 PgC for the range of experiments with different initial conditions. Simulated peak-to-peak differences in atmospheric CO2 are 6 and 13 ppmv for glacial and late Holocene conditions. Simulated changes in δ13C are between 0.15 and 0.25‰. These simulated carbon storage anomalies during a NA THC collapse depend on their magnitude on the CO2 fertilisation feedback mechanism. The CO2 changes simulated for glacial conditions are compatible with available evidence from marine studies and the ice core CO2 record. The latter shows multi-millennial CO2 variations of up to 20 ppmv broadly in parallel with the Antarctic warm events A1 to A4 in the South and cooling in the North.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号