首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Summary A torrential precipitation event occurred in Catalonia (northeastern part of Spain) during 9 and 10 October 1994. More than 400mm were registered in the south of Catalonia. A diagnostic study shows that most of the ingredients to produce heavy rain (large scale upward vertical motion, instability, high moisture content in all the troposphere) were present over the Spanish coast and western Mediterranean. Mesoscale triggering mechanisms have been associated with the orographic forcing, not only through physical lifting of moist air by the coastal mountains, but also by the redistribution of the surface pressure field induced by the Atlas and Pyrenees ranges. A numerical simulation of the event using a meso- model has been performed. The model forecasts qualitatively well the rainfall distribution but underestimates the maximum rainfalls. The effects of the orography and the evaporation from the sea have been also studied. The simulations have shown that the action of the orography is decisive for the rainfall, pressure and wind distrbutions over the Spanish coast and the western Mediterranean. The isolated action of the evaporation turns to be much less important. However the combined effect of orography and evaporation is the most important factor in the areas where the greatest amount of rainfall occurred.With 26 Figures  相似文献   

2.
Summary This paper characterizes Mesoscale Convective Systems (MCSs) during 2001 over Iberia and the Balearic Islands and their meteorological settings. Enhanced infrared Meteosat imagery has been used to detect their occurrence over the Western Mediterranean region between June and December 2001 according to satellite-defined criteria based on the MCS physical characteristics. Twelve MCSs have been identified. The results show that the occurrence of 2001 MCSs is limited to the August–October period, with September being the most active period. They tend to develop during the late afternoon or early night, with preferred eastern Iberian coast locations and eastward migrations. A cloud shield area of 50.000 km2 is rarely exceeded. When our results are compared with previous studies, it is possible to assert that though 2001 MCS activity was moderate, the convective season was substantially less prolonged than usual, with shorter MCS life cycles and higher average speeds. The average MCS precipitation rate was 3.3 mm·h−1 but a wide range of values varying from scarce precipitation to intense events of 130 mm·24 h−1 (6 September) were collected. The results suggest that, during 2001, MCS rainfall was the principal source of precipitation in the Mediterranean region during the convective season, but its impact varied according to the location. Synoptic analysis based on NCEP/NCAR reanalysis show that several common precursors could be identified over the Western Mediterranean Sea when the 2001 MCSs occurred: a low-level tongue of moist air and precipitable water (PW) exceeding 25 mm through the southern portion of the Western Mediterranean area, low-level zonal warm advection over 2 °C·24 h−1 towards eastern Iberia, a modest 1000–850 hPa equivalent potential temperature (θe) difference over 20 °C located close to the eastern Iberian coast, a mid level trough (sometimes a cut-off low) over Northern Africa or Southern Spain and high levels geostrophic vorticity advection exceeding 12·10−10 s−2 over eastern Iberia and Northern Africa. Finally, the results suggest that synoptic, orographic and a warm-air advection were the most relevant forcing mechanisms during 2001.  相似文献   

3.
Summary A set of mesoscale numerical simulations using the Emanuel and Kain-Fritsch deep convection schemes has been performed in order to determine the sensitivity of the forecast-especially, the rainfall-to the scheme used. The study is carried out for two cases of heavy precipitation in the coastal zone of the Western Mediterranean, where the topographic forcing is of primary influence. The first one, characterized by an almost stationary synoptic situation, is dominated by warm, moist advection at low levels; the second one, of frontal type, presents a much stronger dynamic forcing at upper levels. Although the comparison attempt is conditioned by the limited number of considered cases, the numerical results provide at least some preliminary conclusions. The inclusion of a convective scheme improves the forecast precipitation, through two actions: directly, producing more realistic rainfall patterns in areas of convection; indirectly, avoiding excessive precipitation in areas with orographic or dynamical upward forcing by drying and stabilizing the atmosphere upstream. In particular, the Kain-Fritsch scheme seems to be more sensitive to the orographic forcing, in agreement with observations.With 21 Figures  相似文献   

4.
This study examines the ability of the cloud-resolving weather research and forecasting (WRF) model to reproduce the convective cells associated with the flash-flooding heavy rainfall near Seoul, South Korea, on 12 July 2006. A triply nested WRF model with the highest resolution of 3-km horizontal grid spacing was integrated with conventional analysis data. The WRF model simulated the initiation of isolated thunderstorms, and the formation of a convective band, cloud cluster, and squall line at nearly the right time. The corresponding precipitation simulation was also reasonably reproduced in its distribution, although the amount was underestimated. A sensitivity experiment that excludes the orography over the peninsula revealed that orographic forcing over the peninsula is responsible for about 20% increase in precipitation over the heavy rainfall region. It was identified that in addition to the up-lifting local orographic forcing to the west of the mountain range in South Korea, anticyclonic circulation due to the presence of the Gaema Heights in North Korea contribute to the confinement of convective activities in the heavy rainfall region.  相似文献   

5.
Summary The average pressure distribution at mean sea level and the vertical structure of synoptic scale surface cyclones (with central pressure less than 1000 hPa) that occur in the Mediterranean region is studied for a 40 year period (1958–1997) on a seasonal and daily basis. The cyclonic occurrences are studied in three regions of enhanced cyclonic activity: gulf of Genoa, Southern Italy and Cyprus. The cyclones are identified with the aid of an objective method based on grid point values, available every 6 hours. The analysis revealed different characteristics of the cyclones that occur in the three regions, reflecting the different mechanisms that are responsible for their occurrence in each region. For the Genoa region the cyclone pressure minimum is located over the gulf, associated with orographic forcing, while surface dynamics occur further south. Over Southern Italy, the pressure minimum covers a wide area, whilst the surface dynamics are found to act in the same region, becoming more important in winter and spring. The pressure minimum of cyclones over Cyprus is located over the land during winter and spring and is influenced by surface dynamics and orography. Received November 7, 2000 Revised July 14, 2001  相似文献   

6.
Summary This study analyzes the mechanisms of the development of a heavy rainfall event (17 June 1987) over the lee side of the Central Mountain Range (CMR) in northeastern Taiwan during the southwesterly monsoon. This heavy rainfall event was examined using gridded data from the European Centre for Medium-Range Weather Forecasts, surface rainfall data and numerical model results, employing a non-hydrostatic fifth-generation mesoscale model (MM5) developed by the National Center for Atmospheric Research and Pennsylvania State University. A tropical depression was simulated over the northern South China Sea on 16 June. Convergence, resulting from the southeasterly winds associated with the circulation from the tropical depression, and northeasterly winds over the Taiwan Strait, occurred over the northern Bashi Channel at 850 hPa. The convergence amplified planetary vorticity and the vorticity associated with the intensifying tropical depression. Consequently, a mesovortex with low pressure over the northeastern edge of the tropical depression near southern Taiwan was produced. Additional convergence over the ocean adjacent to southern Taiwan caused by the interaction between the northeasterly flow, which was deflected over the southeastern slope of the CMR, and the southeasterly flow of the tropical depression, also affected the intensity of the mesovortex. When the mesovortex moved northward and reached southern Taiwan, the southeasterly flow associated with it interacted with an east-southeasterly flow, which was related to the tropical depression, to form a mesoscale convective system (MCS) over the ocean adjacent to southeastern Taiwan. As the mesovortex moved northward, the MCS, which was embedded in the southeasterly flow, also drifted inland toward northeastern Taiwan. The orographic lifting and the ascending motion associated with the deceleration of the easterly flow near the CMR enhanced the MCS over northeastern Taiwan and produced heavy rainfall. To examine the role of Taiwan’s orography on the modelled rainfall, two simulations were conducted; one which included Taiwan’s orography and one which excluded it. In both simulations, the mesovortex in the northern Bashi Channel and the MCS near southeastern Taiwan were reproduced. However, in the simulation excluding the orography, the mesovortex was slightly less intense. In addition, without the extra orographic lifting and the ascending motion caused by flow deceleration, rainfall over northeastern Taiwan was weaker than in the simulation with the orography.  相似文献   

7.
Summary A methodology developed for automatic classification of Objective Synoptic Processes (OSP) and its application to the study of the mesoscale atmospheric circulatory patterns associated with them is described. The classification was based on the analysis of the evolution of surface pressure and geopotencial height at 500 hPa during three days. An iterative procedure results in an objective grouping of the main configurations describing different large-scale situations. This routine has been applied over an appropriate domain covering the Iberian Peninsula to obtain OSPs in the region for the two month period July–August, using daily synoptic maps for years 1990 to 1999 (a total of 7304 surface and 500 hPa synoptic maps have been used in the analysis). Finally, for a characteristic day for two of the OSPs obtained, a mesoscale meteorological model (TAPM) has been run at high resolution for the region of Catalonia, Northeastern Spain, in order to describe the local atmospheric circulatory patterns associated with a given large-scale situation. Results show that the complex orography modifies the large-scale forcings resulting in wind fields with a very important horizontal variability, significant daily cycle, and specific local features related to orographic elements, which the model was able to incorporate due to the highly-resolved orography used.  相似文献   

8.
Summary Monthly rainfall conditions in Israel were determined, using data from 12 stations, during 30 years (1961–90). The definition of a month to be dry, normal or wet, was done using standardized rainfall totals. Pressure departures for each of the three rainfall categories for each month of the rainy season, were calculated and mapped. Correlation between rainfall totals at each of the 12 stations and monthly mean sea level pressure at 72 grid points in the area delimited by the 20° W and 50° E meridians and the 20° N and 60° N parallels, was performed. For each month, 12 correlation maps were prepared (one of each station). Similar maps were averaged together to form coherent rainfall regions. At the beginning of the rainy season (October) the rainfall in Israel is sporadic and spotty without a distinctable coherent region. At the end of the rainy season (April) the rainfall is more widespread, forming a large coherent region covering most of the country. Dry rainfall conditions in Israel, were found to be characterized by positive pressure departures in the eastern Mediterranean and over Israel and/or by easterly or southerly circulation over the eastern Mediterranean. Wet rainfall conditions in Israel, were found to be characterized by negative pressure departures in the eastern Mediterranean and over Israel and/or by westerly or northerly circulation over the eastern Mediterranean. Moreover, in many cases dry conditions in Israel, were associated with below normal pressure conditions over central or western Europe, while wet conditions in Israel, with above normal conditions over the same region, thus, reflecting the so-called Mediterranean Oscillation. Finally, normal rainfall conditions are characterized by very slight to negligible pressure departures over the entire Mediterranean and Europe. Received November 18, 1997 Revised March 3, 1998  相似文献   

9.
The flash flood that occurred on 12–13 November 1999 in meridional France is documented. This event caused 35 fatalities and severe damage to property as rainfall totals locally exceeded 550 mm in 24 h and 620 mm in 48 h.The main issue of the present study is to discuss how realistically the spatial and temporal rainfall distribution of this flash flood event can be represented with present state-of-the-art operational and research modeling frameworks. The predictability of the present event for different forecast ranges is investigated and sensitivity studies are conducted in order to discuss the influence of model physics (convection, microphysics), atmospheric moisture analysis and Mediterranean sea surface temperature forcing on the quality of the results. It is shown that the present event could be reasonably predicted on forecast ranges of 2–3 days as it was essentially determined by strong moisture advection from the Mediterranean coupled with frontal and orographical lifting. However, precipitation scores show significant sensitivity to both analysis errors and model physics.  相似文献   

10.
Summary  Several episodes of heavy precipitation, which occurred in the region south of the Alps, have been simulated by means of the mesoscale model BOLAM3. Each case was run at 3 different resolutions, up to 4 km grid interval. The quantitative precipitation “forecast” fields are compared with available rain data. In general, satisfactory results are obtained in terms of spatial distribution and timing of precipitation, except in cases in which pre-frontal convection is dominant. The diagnostics of phenomena involved in orographic precipitation identify the different mesoscale atmospheric features associated with the interaction with topography, like the formation of low level jets, convergence zones, rainbands, and organized convective systems. These appear as “ingredients” common to all the cases considered and are shown to be sensitive to orographic forcing, as well as to the latent heat exchange processes. Received March 2, 1999/Revised June 1, 1999  相似文献   

11.
An unusual heavy coastal rainfall event (>231?mm?day?1) occurred during the period of 24?C25 June 1987 over the lowland (elevation less than 200?m) and coastal areas in northwest and central Taiwan. The Weather Research and Forecasting (WRF) model is used to investigate the role of synoptic forcing, orographic effects and the diurnal heating cycle on the generation of a prefrontal localized low-level convergence zone offshore leading to the observed coastal rainfall maximum. This case is well simulated by the control experiment initialized at 0000 UTC (0800 LST) 24 June 1987 using the European Centre for Medium-Range Weather Forecasts data. A model sensitivity test without Taiwan??s terrain fails to reproduce the observed coastal rainfall maximum. It is apparent that for this case, synoptic forcing by the Mei-Yu jet/front system is inadequate to initiate deep convection leading to the development of coastal heavy precipitation. The generation of the localized low-level convergence zone is closely related to the simulated strong winds with a large southwesterly wind component (or the barrier jet) along the northwestern coast as the surface front approaches. The development of the simulated barrier jet is due to a 50?C60% increase in the meridional pressure gradient as a result of orographic blocking. The diurnal heating cycle also impacts the strength of the simulated barrier jet over the northwestern Taiwan coast. The simulated barrier jet is stronger (~3?m?s?1) in the early morning than in the afternoon as orographic blocking is most significant when the surface air is the coldest. The representation of the terrain in the model impacts the simulated barrier jet and rainfall. With a coarse horizontal resolution (45?km), orographic blocking is less significant than the control run with a much weaker meridional wind component over the northwestern coast of Taiwan. The coarse resolution model fails to reproduce the observed rainband off the northwestern coast. Thus, to successfully simulate this type of event, high-resolution mesoscale models adequately depicting Taiwan??s terrain are required.  相似文献   

12.
Summary An exceptional rainstorm affected the eastern coast of Peninsular Malaysia during 9–11 December 2004 as a result of a westward propagating tropical disturbance known as the Borneo vortex. Rainfall totals near the storm center exceeded 600 mm and led to flash floods, loss of life and severe damage in the area. This study presents the results of a numerical simulation of this event using the fifth generation of the Penn State – NCAR Mesoscale Model (MM5). The model successfully simulated the synoptic circulation and reproduced the episode with comparable spatial patterns and total accumulated amount of precipitation to the observed. Various sensitivity experiments showed that the local topography is decisive in shaping the rainfall distribution during the storm episode. The role of the terrain elevation appears to be to block the westward progression of the system and inhibit excessive rainfall in the inland areas of Peninsular Malaysia. To the north of the storm center where coastal terrain elevation is relatively high, orography plays an important role in the rainfall by providing an additional forcing for moist air lifting. An additional fake dry simulation suggested that latent heat release is crucial for the development of the storm. Without latent heating, the vertical coupling of low-level convergence and upper level divergence is weakened and the vertical motion associated with the storm is suppressed.  相似文献   

13.
华东中尺度地形对浙北暴雨影响的模拟研究   总被引:20,自引:2,他引:20  
以一次梅雨降水为例,利用中尺度模式进行一系列中尺度地形对降水的增幅影响的敏感性试验。结果表明,中尺度地形对强降水区域的分布和强度有很大的影响,强降水中心位于地形附近,地形引起的12小时降水增幅高达总降水的90%以上;中尺度地形作为一种外界迫动,初始在低层形成气旋性辐合和水汽热量的集中,然后通过凝结潜热释放所造成的中高层增温和高层辐散,使得地形垂直环流加强和向上伸展。于是在降水、潜热释放与地形垂直环流之间出现一种正反馈机制,导致地形对降水的强烈增幅;同时午后下垫面加热所形成的不稳定层结也有利于地形垂直环流的不稳定发展,产生新的雨峰;初始场的中尺度扰动似乎在降水的地形性增幅中并不起明显作用。  相似文献   

14.
地形对门头沟一次大暴雨动力作用的数值研究   总被引:7,自引:2,他引:5  
2002年6月24—25日,北京门头沟附近发生了一次大暴雨过程。为探讨地形在本次过程中的动力作用,采用美国俄克拉荷马大学风暴分析预测中心开发的ARPS模式,对大暴雨过程进行了数值试验。控制试验采用27、9 km双重单向嵌套网格,网格覆盖范围约为3000 km×3000 km、900 km×900 km。两层网格均采用全物理过程,使用的都是全球30″的地形资料。在控制试验的基础上,进行了3组敏感性试验:第1组试验采用干过程模拟,即不考虑凝结潜热的作用;第2组试验将地形整体向东/西平移1°;第3组试验是将门头沟西部的局地地形抠除一部分。试验结果表明,在不考虑凝结潜热作用时,东南风气流仍然可以爬升到2 km以上,超过了大气的抬升凝结高度,证实了地形的动力作用是本次大暴雨的触发机制;将地形向东/西平移1°后,由于大气的对流稳定度发生了改变,模拟的降水强度和落区也发生了变化,表明山坡和山顶的对流不稳定大气是导致本次大暴雨的必要条件;抠除局地地形后,模拟的降水量也发生了不同程度的改变,再次证明大暴雨是在多尺度地形以及一定的天气系统配置下产生的。  相似文献   

15.
In order to test the sensitivity of the transitional phase of the 2006 West African monsoon (WAM) onset to different mechanisms, weather research and forecasting (WRF) model simulations have been carried out addressing the role of the Saharan heat low (SHL) and its sensitivity to the albedo field and to the northern Africa orography, and the role of the sea surface temperature (SST) in the eastern tropical Atlantic and Mediterranean. Lowering albedo over the desert region induces a northward location of the inter-tropical convergence zone (ITCZ), while removing mountains in North Africa reduces rainfall over West Africa. Shifting SST forward by 15?days leads to a northward location of the ITCZ before the WAM onset. However none of these factors modifies the timing of the WAM onset in 2006. The transitional phase of the 2006 WAM onset has been examined in more detail. The enhancement of SHL intensity, combined with the development of the oceanic cold tongue in the Guinea gulf, leads to low-level moisture flux divergence in the ITCZ reducing rainfall and increasing low-level humidity over the Sahel. However, weakening of convection can be clearly attributed to dry-air intrusions in mid-levels, originating from the subtropical westerly jet and associated with Rossby wave pattern over North Africa. Sensitivity tests on the synoptic scale forcing outside of the WRF model domain confirm the dominating role of large-scale dynamics to control the transitional phase of the WAM onset and its timing. However it is shown that the regional factors can modulate this larger scale forcing.  相似文献   

16.
Summary Two different blocking indices are computed for the Southern Hemisphere for the period 1979–1985, one is based on sea level pressure and the other on upper tropospheric zonal wind. The Southern Hemisphere blocking climatology based on these two indices separately presents very similar results, mainly in identifying the region of maximum occurrence over eastern Australia and the western Pacific. The sea level presure index shows strong orographic influences, while the 250hPa zonal wind index is not affected by orography but does exaggerate seasonal variations. It is apparent that blocking occurrence in the eastern Australia and neighbouring areas has a link with climatological atmospheric features.With 8 Figures  相似文献   

17.
冀春晓  薛根元  赵放 《大气科学》2007,31(2):233-244
应用非静力平衡中尺度模式MM5(V3.6),对0414号台风Rananim在登陆期间移动路径和所产生的降水进行了数值模拟研究,模式较好地再现了台风Rananim的移动路径和所产生的降水,但模拟的过程降雨量与实况值还有所偏差。多普勒雷达探测资料表明,台风Rananim登陆期间,强回波带出现在台风移动的右前方,螺旋云带中镶嵌着大量的对流云团;垂直液态水含量的高值区出现在台风中心的西北侧。作者通过在浙江、福建东部沿海一带进行有无地形的数值对比试验,着重讨论了台风登陆期间地形对台风降水、台风结构特征变化的影响。结果表明:(1)台风登陆期间, 地形的影响对台风降雨量有明显的增幅作用。由地形强迫产生的降雨量和地形走向相一致,迎风坡降雨量增加,背风坡降雨量减少,地形影响使浙江东部一带增加的平均降雨量约占该地区模拟平均总降雨量的40%左右。(2)台风登陆期间,地形的强迫作用有利于在低层台风眼的西北侧形成明显的辐合带,高层为明显的辐散区;在中尺度环流场上,地形的影响有利于台风中心西北侧低层中尺度气旋性涡旋系统的发生发展,从而激发中尺度对流云团,形成中尺度雨团,造成了台风中心南北雨区和雨量的不对称分布。(3)地形的强迫作用,可以使台风流场局部发生改变。当地形强迫产生与台风环流同向的中尺度扰动时,将使台风环流局部明显增强;当地形强迫产生与台风环流反向的中尺度扰动时,将使台风环流局部明显减弱。(4)台风登陆期间,地形的影响可以使台风靠近陆地一侧眼壁内的垂直上升速度增大,位涡明显增强,从而造成台风涡旋的增强。  相似文献   

18.
Effects of aerosol radiative forcing on the diurnal and seasonal cycles of precipitation over West Africa and eastern Atlantic Ocean are investigated for the boreal summer season: June–July–August. An eight year (2000–2007) average of GCM simulated rainfall data is compared with the corresponding TRMM rainfall data. The comparison shows that the amplitude of the diurnal cycles of rainfall over land and ocean are reasonably well simulated. Over land, the phase of the simulated diurnal cycle of precipitation peaks several hours earlier than that of the TRMM data. Corresponding differences over the ocean(s) are relatively smaller. Some of the key features of the aerosol induced model simulated field anomalies are: (a) aerosol direct radiative forcing which increases the atmospheric stability and reduces the daytime moist convection and convective precipitation; (b) the aerosol induced changes in the diurnal cycle of precipitation are out of phase with those of the TRMM data over land, but are in-phase over the ocean; (c) aerosols reduce the amplitude of the diurnal cycle of precipitation over land and enhance it over ocean. However, the phase of the diurnal cycle is not affected much by the aerosol radiative forcing both over land and ocean. During the boreal summer, aerosol radiative forcing and induced circulation and precipitation cool the Sahel and the southern part of Sahara desert more than the adjacent areas to the north and south, thereby shifting the peak meridional temperature gradient northward. Consequently, an anomalous easterly jet is found north of its climatological location. This anomalous jet is associated with increased cyclonic circulation to the south of its axis, resulting in an anomalous monsoon rain belt in the Sahel.  相似文献   

19.
索马里急流和澳洲越赤道气流年际变异不同配置及其影响   总被引:2,自引:0,他引:2  
汪卫平  杨修群 《气象科学》2014,34(6):591-600
使用NCEP/NCAR大气再分析资料、Hadley中心海表温度分析资料和中国160站降水观测资料,分析了夏季索马里急流与澳洲越赤道气流年际变异之间的关系及相关联的海表温度、大气环流和中国降水异常分布特征。结果表明:夏季索马里急流和澳洲越赤道气流的年际变异存在两类关系,即多数的反位相和少数的同位相关系。当夏季索马里急流和澳洲越赤道气流呈前者减弱、而后者增强的反位相变化时,热带印度洋—太平洋海气异常表现为处于发展阶段的经典的东部El Nio型,造成东亚夏季风显著减弱,中国降水呈南方偏多、北方偏少的偶极型分布;当夏季索马里急流和澳洲越赤道气流同位相增强时,海气异常表现为处于成熟阶段的中太平洋El Nio型,东亚夏季风增强,中国降水呈长江流域降水偏少、而华北和华南沿海降水显著偏多的三极型分布。  相似文献   

20.
In order to investigate the impact of the smoothed orography and the spurious orographic ripples on simu-lations in the low-resolution spectral model, three different numerical tests, that is, the unsmoothed orography scheme, the smoothed orography scheme and non-ripples scheme are performed. In this paper, the model used by us is the same as Part I except for orographic specification.The results from simulations indicate that, as far as the climatic simulation is concerned, some aspects of the simulated stationary disturbances, zonal and meridional wind, temperature and precipitation in the low-resolu-tion spectral model with properly smoothed mountains are significantly improved, especially in winter hemis-phere.The deep ripples in the model with the unsmoothed orography produce spurious high pressure regions at the surface with subsidence, and suppress rainfall, causing an unrealistic splitting of the precipitation area in northern winter and summer. Removal of tbe deep ripples by using the special procedure for smoothing topog-raphy allows a strong upward motion in the ripple area with heavy rainfall, eliminating the unrelistic split in the precipitation area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号