首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ordovician is the most important exploration target in the Tabei Uplift of the Tarim Basin, which contains a range of petroleum types including solid bitumen, heavy oil, light oil, condensate, wet gas and dry gas. The density of the black oils ranges from 0.81 g/cm3 to 1.01 g/cm3 (20 °C) and gas oil ratio (GOR) ranges from 4 m3/m3 to 9300 m3/m3. Oil-source correlations established that most of the oils were derived from the Mid-Upper Ordovician marine shale and carbonate and that the difference in oil properties is mainly attributed to hydrocarbon alteration and multi-stage accumulation. In the Tabei Uplift, there were three main periods of hydrocarbon accumulation in the late Caledonian stage (ca. 450–430 Ma), late Hercynian stage (ca. 293–255 Ma) and the late Himalayan stage (ca. 12–2 Ma). The oil charging events mainly occurred in the late Caledonian and late Hercynian stage, while gas charging occurred in the late Hercynian stage. During the late Caledonian stage, petroleum charged the reservoirs lying east of the uplift. However, due to a crustal uplifting episode in the early Hercynian (ca. 386–372 Ma), most of the hydrocarbons were transformed by processes such as biodegradation, resulting in residual solid bitumen in the fractures of the reservoirs. During the late Hercynian Stage, a major episode of oil charging into Ordovician reservoirs took place. Subsequent crustal uplift and severe alteration by biodegradation in the west-central Basin resulted in heavy oil formation. Since the late Himalayan stage when rapid subsidence of the crust occurred, the oil residing in reservoirs was exposed to high temperature cracking conditions resulting in the production of gas and charged from the southeast further altering the pre-existing oils in the eastern reservoirs. A suite of representative samples of various crude oils including condensates, lights oils and heavy oils have been collected for detailed analysis to investigate the mechanism of formation. Based on the research it was concluded that the diversity of hydrocarbon physical and chemical properties in the Tabei Uplift was mainly attributable to the processes of biodegradation and gas washing. The understanding of the processes is very helpful to predict the spatial distribution of hydrocarbon in the Tabei Uplift and provides a reference case study for other areas.  相似文献   

2.
The effects of oil cracking on fluorescence color, homogenization temperature (Tho) and trapping pressure (Pt) of oil inclusions from deeply buried reservoirs (DBRs) (3672–4359 m) in the northern Dongying Depression were determined based on fluorescence spectroscopy and homogenization temperatures of oil inclusions, kinetic modeling of crude oil cracking, and petroleum inclusion thermodynamics modeling.The modeling results demonstrate that fluorescence color, Tho and predicted Pt have strong relationships with the transformation rate via cracking of oil to gas (Tr), and the formation temperature (Tf) that the inclusions experienced. The fluorescence color is hardly influenced at all during the initial stages of oil cracking (Tr < 13%, Tf < 160 °C), but fluorescence color begins to shift toward shorter wavelengths (blue shift) during progressive oil cracking (Tr < 24%, Tf < 190 °C). With further oil cracking, the fluorescence color may either experience no change or continue its blue shift. Eventually the fluorescence color will disappear as the aromatic compounds are completely cracked. The Tho increases at first (Tr < 24%, Tf < 190 °C), but then decreases or even becomes negative during major oil cracking. The reconstructed Pt values show a corresponding reverse trend.Oil inclusions from DBRs and other shallow reservoirs in the Dongying Depression show an obvious blue shift in fluorescence color at a depth of approximate 4000 m (Tf = 160 °C) and generally contain solid bitumen below 4000 m, supporting the effect of oil cracking on fluorescence variation, consistent with the modeling result. The Tho from DBRs in the Minfeng area increases with increasing burial depth (Tf < 190 °C), which is also consistent with the modeling results. However, the Tho of oil inclusions with blue-white fluorescence from DBRs in the Shengtuo area did not show such a trend. Recent trapping, high trapping pressure and higher-maturity oil may have led to a low-degree of oil cracking, and thus less modification of Tho in the Shengtuo area.Oil cracking results in consistent volume ratios of pyrobitumen to oil inclusions (Fvpy) in the same fluid inclusion assemblage, and the Fvpy value increases with oil cracking level, which can be used to recognize if oil cracking has occurred in oil inclusions and what level of oil cracking they have experienced.As the oil cracking model used in this study did not account for the role of pressure, it is more applicable for oil inclusions that were trapped under normally pressured conditions. Oil inclusions trapped under overpressured conditions will be less influenced by oil cracking.  相似文献   

3.
The hydrocarbon migration and accumulation of the Suqiao deep buried-hill zone, in the Jizhong Subbasin, the Bohai Bay Basin, eastern China, was investigated from the perspective of paleo-fluid evidence by using fluid inclusions, quantitative fluorescence techniques (QGF), total scanning fluorescence method (TSF) and organic geochemical analysis. Results show that the current condensate oil-gas reservoirs in the study area once were paleo-oil reservoirs. In addition, the reservoirs have experienced at least two stages of hydrocarbon charge from different sources and/or maturities. During the deposition of the Oligocene Dongying Formation (Ed), the deep Ordovician reservoirs were first charged by mature oils sourced from the lacustrine shale source rocks in the fourth member of Shahejie and Kongdian Formations (Es4+Ek), and then adjusted at the end of Ed period subsequently by virtue of the tectonic movement. Since the deposition of the Neogene Minghuazhen Formation (Nm), the reservoirs were mainly charged by the gas that consisted of moderate to high-maturity condensate and wet gas sourced from the Es4+Ek lacustrine shale source rocks and mature coal-derived gas sourced from the Carboniferous-Permian (C-P) coal-bearing source rocks. Meanwhile, the early charged oil was subjected to gas flushing and deasphalting by the late intrusion of gas. The widely distributed hydrocarbon inclusions, the higher QGF Index, and FOI (the frequency of oil inclusions) values in both gas-oil and water zone, are indicative of early oil charge. In addition, combined with the homogenization temperatures of the fluid inclusions (<160 °C) and the existence of solid-bitumen bearing inclusions, significant loss of the n-alkanes with low carbon numbers, enrichments of heavier components in crude oils, and the precipitation of asphaltene in the residual pores suggest that gas flushing may have played an important role in the reservoir formation.  相似文献   

4.
Tight gas grainstone reservoirs in the third member of the Feixianguan Formation, Jiannan area, evolved from a paleo-oil accumulation as evidenced from abundant solid reservoir bitumen. Porosity evolution of the grainstones was studied by evaluating relative influences of sedimentology, diagenesis, and solid bitumen formed during cracking of accumulated oils. Grainstones exhibited regional-distinct effectiveness for paleo-oil and present-gas accumulations during oil window and subsequent gas window diagenesis. In the southern zone where grainstones were not subjected to subaerial exposure and meteoric diagenesis in the early diagenetic stage, paleoporosity at the time of oil charge was mainly controlled by sedimentologic factors (e.g., grain size, sorting, and grain type), and paleo-oil reservoirs only occurred in the ooid-dominated grainstones with good sorting and coarse grain size. In contrast, in the northern zone meteoric diagenesis was responsible for paleoporosity preservation due to the early mineral stabilization of grains and meteoric calcite cementation, which caused grainstones greater resistance to compaction. Hence, most of the grainstones in the northern zone, regardless of textural variables, formed effective reservoirs for paleo-oil accumulation. As the oil cracked to gas with increasing depth and temperature during the late oil window and initial gas window, solid bitumen occluded reservoir pores to varying degrees and caused paleo-oil reservoirs to be significantly heterogeneous or completely ineffective for gas accumulation. In contrast, most grainstones that were once ineffective oil reservoirs transformed into effective gas reservoirs due to no or minor influence of solid bitumen precipitation. The model of reservoir transformation development of tight grainstones provides a plausible explanation for key observations concerning the diagenetic and distribution differences between paleo-oil and present-gas reservoirs. It is useful in predicting the distribution of potential reservoirs in carbonate strata in future exploration.  相似文献   

5.
The physical mechanisms responsible for hydrocarbon migration in carrier beds are well understood. However, secondary migration is one of poorly understood facets in petroleum system. The Carboniferous Donghe sandstone reservoir in the Tarim Basin's Hudson oilfield is an example of a secondary (or unsteady) reservoir; that is, oil in this reservoir is in the process of remigration, making it a suitable geologic system for studying hydrocarbon remigration in carrier beds. Experimental methods including grains containing oil inclusions (GOI), quantitative grain fluorescence (QGF) and quantitative grain fluorescence on extract (QGF-E) -- together with the results from drilling, logging and testing data -- were used to characterize the nature of oil remigration in the Donghe sandstone. The results show that (1) significant differences exist between paleo- and current-oil reservoirs in the Donghe sandstone, which implies that oil has remigrated a significant distance following primary accumulation; (2) due to tectonic inversion, oil remigration is slowly driven by buoyancy force, but the oil has not entered into the trap entirely because of the weak driving force. Oil scarcely enters into the interlayers, where the resistance is relatively large; (3) the oil-remigration pathway, located in the upper part of the Donghe sandstone, is planar in nature and oil moving along this pathway is primarily distributed in those areas of the sandstone having suitable properties. Residual oil is also present in the paleo-oil reservoirs, which results in their abnormal QGF-E. A better understanding of the characteristics of oil remigration in the Donghe sandstone in the Hudson oilfield can contribute to more effective oil exploration and development in the study area.  相似文献   

6.
The identification of reservoir oil–gas–water layers is a fundamental task in petroleum exploration and exploitation, but is difficult, especially in cases of complex hydrocarbon migration and accumulation. In such cases, hydrocarbon remigration and dysmigration take place very commonly, leading to the presence of residual or paleo-oil accumulations and layers, which cannot be easily identified or misinterpreted as oil layers by conventional logging and geophysical data. In this paper, based on a case study in the Luxi area of the central Junggar Basin, NW China, we seek to characterize such layers in terms of organic geochemistry. We suggest specific indicator parameters of organic geochemistry such as the chloroform bitumen content of reservoir extracts, which is usually >1.0% in oil layers. We explore the application of grains containing oil inclusions (GOI) (the ratio of mineral grains containing oil inclusions to the total number of mineral grains) for the identification of oil–gas–water layers in the Junggar Basin for the first time; this method has been used elsewhere. The maximum GOI values for the oil layers, oil–water layers, water layers and dry layers are >11%, 7%–11%, 6%–7% and <6%, respectively. In addition, gas layers and heavy-oil layers that are difficult to identify by conventional organic geochemical parameters were identified using biomarkers. The typical characteristics of the soluble reservoir bitumen in the gas layers include a much greater abundance of tricyclic terpanes (two times in general) relative to pentacyclic terpanes and a tricyclic terpane distribution of C20 > C21 > C23. In contrast, the typical characteristic of the heavy-oil layers is the presence of 25-norhopanes in reservoir bitumen extracts. These specific indicators can be applied in the Junggar Basin and in similar settings elsewhere.  相似文献   

7.
Phase fractionation can strongly deplete oil of its volatile compounds in a regular and characteristic fashion. This process has affected oils to a remarkably uniform extent throughout the 30 × 15 km South Marsh Island 208–239 and Vermilion 30–31 area (including the Tiger Shoal, Starfak, Mound Point, Lighthouse Point, Amber, Trinity Shoal, and Aquamarine fields) just offshore Louisiana. Fractionation of the original “parent” oil likely occurred in the deep, relatively flat-lying Rob L sand that underlies the area, and produced gas-washed oils (mean API 33°) and gas condensates (mean API 50°) in a volume ratio of 1:3.5. Both fractionated oil and vapor migrated from the fractionation site to shallower reservoirs. However, the estimated ultimate production ratio of gas-washed oil to gas condensate in this group of fields is 1:0.32, about 11 times higher than would be expected on mass balance considerations alone. Thus, there is an apparent deficiency of producible gas condensate relative to the amount of producible oil for the entire study area and for every field in that area. In the case of the Tiger Shoal field, the ratio of industry-estimated ultimately producible oil to gas condensate is 1:1.1. Based on the production data, we conclude that either there is an additional 6.4 × 106 m3 (43 MMbbl) of undiscovered and/or unproduced condensate in the area or that condensate has escaped preferentially in vapor form to the seafloor. The well-studied and nearly depleted Tiger Shoal field provides a good example of how chemical data can be analyzed in a way that contributes insight into the phase fractionation process and the remaining exploration potential of an area.  相似文献   

8.
The eastern main sub-sag (E-MSS) of the Baiyun Sag was the main zone for gas exploration in the deep-water area of the Zhujiang River (Pearl River) Mouth Basin at its early exploration stage, but the main goal of searching gas in this area was broken through by the successful exploration of the W3-2 and H34B volatile oil reservoirs, which provides a new insight for exploration of the Paleogene oil reservoirs in the E-MSS. Nevertheless, it is not clear on the distribution of “gas accumulated in the upper layer, oil accumulated in the lower layer” (Gasupper-Oillower) under the high heat flow, different source-rock beds, multi-stages of oil and gas charge, and multi-fluid phases, and not yet a definite understanding of the genetic relationship and formation mechanism among volatile oil, light oil and condensate gas reservoirs, and the migration and sequential charge model of oil and gas. These puzzles directly lead to the lack of a clear direction for oil exploration and drilling zone in this area. In this work, the PVT fluid phase, the origin of crude oil and condensate, the secondary alteration of oil and gas reservoirs, the evolution sequence of oil and gas formation, the phase state of oil and gas migration, and the configuration of fault activity were analyzed, which established the migration and accumulation model of Gasupper-Oillower co-controlled by source and heat, and fractionation controlled by facies in the E-MSS. Meanwhile, the fractionation evolution model among common black reservoirs, volatile reservoirs, condensate reservoirs and gas reservoirs is discussed, which proposed that the distribution pattern of Gasupper-Oillower in the E-MSS is controlled by the generation attribute of oil and gas from source rocks, the difference of thermal evolution, and the fractionation controlled by phases after mixing the oil and gas. Overall, we suggest that residual oil reservoirs should be found in the lower strata of the discovered gas reservoirs in the oil-source fault and diapir-developed areas, while volatile oil reservoirs should be found in the deeper strata near the sag with no oil-source fault area.  相似文献   

9.
The petroleum generation and charge history of the northern Dongying Depression, Bohai Bay Basin was investigated using an integrated fluid inclusion analysis workflow and geohistory modelling. One and two-dimensional basin modelling was performed to unravel the oil generation history of the Eocene Shahejie Formation (Es3 and Es4) source rocks based on the reconstruction of the burial, thermal and maturity history. Calibration of the model with thermal maturity and borehole temperature data using a rift basin heat flow model indicates that the upper interval of the Es4 source rocks began to generate oil at around 35 Ma, reached a maturity level of 0.7% Ro at 31–30 Ma and a peak hydrocarbon generation at 24–23 Ma. The lower interval of the Es3 source rocks began to generate oil at around 33–32 Ma and reached a maturity of 0.7% Ro at about 27–26 Ma. Oil generation from the lower Es3 and upper Es4 source rocks occurred in three phases with the first phase from approximately 30–20 Ma; the second phase from approximately 20–5 Ma; and the third phase from 5 Ma to the present day. The first and third phases were the two predominant phases of intense oil generation.Samples from the Es3 and Es4 reservoir intervals in 12 wells at depth intervals between 2677.7 m and 4323.0 m were investigated using an integrated fluid inclusion workflow including petrography, fluorescence spectroscopy and microthermometry to determine the petroleum charge history in the northern Dongying Depression. Abundant oil inclusions with a range of fluorescence colours from near yellow to near blue were observed and were interpreted to represent two episodes of hydrocarbon charge based on the fluid inclusion petrography, fluorescence spectroscopy and microthermometry data. Two episodes of oil charge were determined at 24–20 Ma and 4–3 Ma, respectively with the second episode being the predominant period for the oil accumulation in the northern Dongying Depression. The oil charge occurred during or immediately after the modelled intense oil generation and coincided with a regional uplift and a rapid subsidence, suggesting that the hydrocarbon migration from the already overpressured source rocks may have been triggered by the regional uplift and rapid subsidence. The expelled oil was then charged to the already established traps in the northern Dongying Depression. The proximal locations of the reservoirs to the generative kitchens and the short oil migration distance facilitate the intimate relationship between oil generation, migration and accumulation.  相似文献   

10.
The Vallecitos syncline is a westerly structural extension of the San Joaquin Basin. The Vallecitos oil field, comprised of eight separate areas that produce from Cretaceous and Paleogene reservoirs, accounted for 5.4 MMB of oil and 5.6 BCF associated of gas through 2010. However, exploration for oil and gas in the Vallecitos area is challenging due to structural complexity and limited data. The purpose of this study is to evaluate whether source rocks are actively generating petroleum in the Vallecitos syncline and to improve our understanding of burial history and timing of hydrocarbon generation. We conducted biomarker analysis on twenty-two oil samples from the Vallecitos syncline. Source-related biomarkers show two genetic groups of oil, which originated from two different source rocks. These results differ from earlier published interpretations in which the Kreyenhagen Formation is the only source rock in the Vallecitos syncline, and suggest that the Cretaceous Moreno Formation in the syncline also is an active source rock.Stratigraphic evidence and modeling suggest that late Cenozoic episodes of erosion due to folding and uplift removed significant overburden on the flanks of the syncline. To better understand the petroleum systems and clarify the total active source rocks in the area, 2D burial histories were generated through the Vallecitos syncline. A published cross-section through the deepest part of the syncline was selected to conduct thermal history, basin evolution, and migration analyses. The 2D model results indicate that the lower Kreyenhagen Formation has various maturities within the formation at different locations in the present-day syncline. The basal part of the Kreyenhagen Formation is in the dry gas window and maturity decreases away from the central part to the flanks. It remains immature along shallow portions of the present-day flanks. In contrast, the basal part of the Moreno Formation achieved extremely high maturity (past the gas generation zone) but is in the oil generation zone on the flanks of the syncline at shallow depth. All of our geochemical and 2D model results suggest that there are two active source rocks in the Vallecitos syncline. Accordingly, we propose that there are two active petroleum systems in the Vallecitos syncline.  相似文献   

11.
The Niudong Buried Hill Field, which lies in the Baxian Depression of the Bohai Bay Basin, is the deepest oil/gas accumulation in eastern China. Its Precambrian dolomite reservoir occurs at burial depths of 5860 m–6027 m. This paper attempts to document the hydrocarbon charging and accumulation history in this field, which could greatly enhance the understanding of the mechanisms for the formation of deep hydrocarbon accumulations. Our previous study of oil trapped in fluid inclusions has demonstrated that the ratio parameters of the fluorescence spectral intensities at 425 nm and 433 nm (Q425/433 ratio), and at 419 nm and 429 nm (Q419/429 ratio) can be more effective for revealing hydrocarbon charging history than the previously-used fluorescence parameters such as Lambda max and red/green quotient as well as fluorescence colors. The hydrocarbon charging and accumulation history in the Niudong Buried Hill Field was studied with an integrated approach involving the application of these two spectral parameters of petroleum inclusion fluorescence as well as utilization of other data including homogenization temperatures of aqueous inclusions coeval with petroleum inclusions, and cross-cutting relationships of cements and “oil veins” in pores and fractures. The results indicate that the dolomite reservoir in the Niudong Buried Hill Field experienced three episodes of hydrocarbon charging. In the first two episodes (between 38.5Ma and 25Ma), the low mature and mature oils, which were derived from source rocks in the Sha-4 Member of the Eocene Shahejie Formation, migrated into the reservoir, but part of them leaked out due to normal faulting at the updip margin of the buried hill. These early-charged oils were preserved mainly in small pores in micritic dolomites by oil-wettability and capillary pressure. In the Neogene, the basin subsided as a whole and local faults at the updip margin became inactive and played a sealing role. By approximately 13Ma, the source rocks became highly mature and the generated hydrocarbons then migrated into the reservoir and accumulated. Therefore, the last charging is the most important for hydrocarbon accumulation in the Niudong Buried Hill Field.  相似文献   

12.
In the Chelif basin, the geochemical characterization reveals that the Upper Cretaceous and Messinian shales have a high generation potential. The former exhibits fair to good TOC values ranging from 0.5 to 1.2% with a max. of 7%. The Messinian series show TOC values comprised between 0.5 and 2.3% and a high hydrogen index (HI) with values up to 566 mg HC/g TOC. Based on petroleum geochemistry (CPLC and CPGC) technics, the oil-to source correlation shows that the oil of the Tliouanet field display the same signature as extracts from the Upper Cretaceous source rocks (Cenomanian to Campanian). In contrast, oil from the Ain Zeft field contains oleanane, and could thus have been sourced by the Messinian black shale or older Cenozoic series. Two petroleum systems are distinguished: Cretaceous (source rock) – middle to upper Miocene (reservoirs) and Messinian (source rock)/Messinian (reservoirs). Overall, the distribution of Cretaceous-sourced oil in the south, directly connected with the surface trace of the main border fault of the Neogene pull-apart basin, rather suggests a dismigration from deeper reservoirs located in the parautochthonous subthrust units or in the underthrust foreland, rather than from the Tellian allochthon itself (the latter being mainly made up of tectonic mélange at the base, reworking blocks and slivers of Upper Cretaceous black shale and Lower Miocene clastics). Conversely, the occurrence of Cenozoic-sourced oils in the north suggests that the Neogene depocenters of the Chelif thrust-top pull-apart basin reached locally the oil window, and therefore account for a local oil kitchen zone. In spite of their limited extension, allochthonous Upper cretaceous Tellian formations still conceal potential source rock layers, particularly around the Dahra Mountains and the Tliouanet field. Additionally they are also recognized by the W11 well in the western part of the basin (Tahamda). The results of the thermal modelling of the same well shows that there is generation and migration of oil from this source rock level even at recent times (since 8 Ma), coevally with the Plio-Quaternary traps formation. Therefore, there is a possibility of an in-situ oil migration and accumulation, even from Tellian Cretaceous units, to the recent structures, like in the Sedra structure. However, the oil remigration from deep early accumulations into the Miocene reservoirs is the most favourable case in terms of hydrocarbon potential of the Chelif basin.  相似文献   

13.
YC21-1 is a gas-bearing structure found within the Yanan sag in the Qiongdongnan Basin, South China Sea. While the structure bears many geological similarities to the nearby YC13-1 gas field, it nevertheless does not contain commercially viable gas volumes. The main reservoirs of the YC21-1 structure contain high overpressures, which is greatly different from those of the YC13-1 structure. The pressure coefficients from drillstem tests, wireline formation tests and mud weights are above 2.1. Based on well-log analysis, illite content and vitrinite reflectance data of mudstones in well YC21-1-2, combining with tectonic and sedimentation characteristics, the timing and causes of overpressure generation are here interpreted. The results indicate the existence of two overpressure segments in the YC21-1 structure. The first overpressure segment resides mainly within the lower and the middle intervals of the Yinggehai Formation, and is interpreted to have been mainly caused by clay diagenesis, while disequilibrium compaction and hydrocarbon generation may also have contributed to overpressure generation. The second overpressure segment comprising the Sanya Formation (Pressure transition zone) and the Lingshui and Yacheng Formations (Hard overpressure zone) is interpreted to owe its presence to kerogen-to-gas cracking. According to petrography, homogenization temperature and salinity of fluid inclusions, two stages of oil-gas charge occurred within the main reservoirs. On the basis of overpressure causes and oil-gas charge history, combining with restored tectonic evolution and fluid inclusion characteristics, a complex accumulation and leakage process in the YC21-1 gas bearing structure has been interpreted. Collective evidence suggests that the first oil charge occurred in the Middle Miocene (circa 16.3–11.2 Ma). Small amount of oil generation and absence of caprocks led to the failure of oil accumulation. Rapid subsidence in the Pliocene and Quaternary gave rise to a sharp increase in geotemperature over a short period of time, leading to prolific gas-generation through pyrolysis and, consequently, overpressure within the main reservoirs (the second overpressure segment). During this period, the second gas charge occurred in the Pliocene and Quaternary (circa 4.5–0.4 Ma). The natural gas migrated in several phases, consisting of free and water soluble phases in a high-pressure environment. Large amounts of free gas are considered to have been consumed due to dissolution within formation water in highly pressured conditions. Water soluble gas could not accumulate in high point of structure. When the pore-fluid pressures in main reservoirs reached the fracture pressure of formation, free gas could leak via opened fractures within cracked caprocks. A repeated fracturing of caprocks may have consumed natural gas stored in formation water and have made water-soluble gas unsaturated. Therefore, the two factors including caprocks fracturing and dissolution of formation water are interpreted to be mainly responsible for the failure of natural gas accumulation in the YC21-1 structure.  相似文献   

14.
Tight grainstones, although widespread throughout the Lower Triassic Feixianguan Formation in the Sichuan Basin, have received little attention, in part, due to their lower porosity and greater heterogeneity relative to their dolostone counterparts. Based on data from cores and thin sections, as well as petrophysical properties, the Feixianguan grainstones, representing a major gas reservoir in the Jiannan gas field were systemically analysed to better understand porosity evolution in tight carbonates that have experienced original oil accumulation and subsequent thermal cracking during progressive burial. The grainstones were divided into two types according to whether pyrobitumen was present, and their porosity evolutions were quantitatively reconstructed. Taking 40% as the original porosity, the grainstones without pyrobitumen, which were ineffective palaeo-oil reservoirs, lost 21.94% and 3.13% of their porosities through marine and burial calcite cementation, respectively, and 13.34% by compaction, and have a current porosity of 1.59%, thus allowing them to serve as major present-day gas reservoirs. Comparatively, pyrobitumen-bearing grainstones, which were once palaeo-oil reservoirs, lost 23.96% and 2.36% of their porosities through marine and burial calcite cementation, respectively; 11.4% by compaction, and 1.44% by pyrobitumen and have a current porosity of 0.84%, thus making them ineffective gas reservoirs. This study provides a quantitative understanding of the close association between porosity evolution and reservoir effectiveness for the palaeo-oil charge and present-day gas accumulation with respect to diagenetic history, which is useful for the future exploration in tight gas limestone reservoirs.  相似文献   

15.
The Yuqi block is an important area for oil and gas exploration in the northern Akekule uplift, Tarim Basin, northwestern China. The Upper Triassic Halahatang Formation (T3h) within the Yuqi block can be subdivided into a lowstand system tract (LST), a transgressive system tract (TST), and a highstand system tract (HST), based on a study of initial and maximum flood surfaces. Oil in the lowstand system tract of the Halahatang Formation is characterized by medium to lightweight (0.8075 g/cm3–0.9258 g/cm3), low sulfur content (0.41%–1.4%), and high paraffin content (9.65%–10.25%). The distribution of oil and gas is principally controlled by low-amplitude anticlines and faults. Based on studies of fluorescence thin sections and homogenization temperatures of fluid inclusions, reservoirs in the T3h were formed in at least two stages of hydrocarbon charge and accumulation. During the first stage (Jurassic–Cretaceous) both the structural traps and hydrocarbon reservoirs were initiated; during the second stage (Cenozoic) the structural traps were finally formed and the reservoirs were structurally modified. The reservoir-forming mechanism involved external hydrocarbon sources (i.e. younger reservoirs with oil and gas sourced from old rocks), two directions (vertical and lateral) of expulsion, and multi-stage accumulation. This model provides a theoretical fundament for future oil and gas exploration in the Tarim Basin and other similar basins in northwestern China.  相似文献   

16.
The Qiongdongnan Basin, South China Sea has received huge thickness (>12 km) of Tertiary-Quaternary sediments in the deepwater area to which great attention has been paid due to the recent discoveries of the SS22-1 and the SS17-2 commercial gas fields in the Pliocene-Upper Miocene submarine canyon system with water depth over 1300 m. In this study, the geochemistry, origin and accumulation models of these gases were investigated. The results reveal that the gases are predominated by hydrocarbon gases (98%–99% by volume), with the ratio of C1/C1-5 ranging from 0.92 to 0.94, and they are characterized by relatively heavy δ13C1 (−36.8‰ to −39.4‰) and δDCH4 values (−144‰ to −147‰), similar to the thermogenic gases discovered in the shallow water area of the basin. The C5-7 light hydrocarbons associated with these gases are dominated by isoparaffins (35%–65%), implying an origin from higher plants. For the associated condensates, carbon isotopic compositions and high abundance of oleanane and presence of bicadinanes show close affinity with those from the YC13-1 gas field in the shallow water area. All these geochemical characteristics correlate well with those found in the shales of the Oligocene Yacheng Formation in the Qiongdongnan Basin. The Yacheng Formation in the deepwater area has TOC values in the range of 0.4–21% and contains type IIb–III gas-prone kerogens, indicating an excellent gas source rock. The kinetic modeling results show that the δ13C1 values of the gas generated from the Yacheng source rock since 3 or 4 Ma are well matched with those of the reservoir gases, indicating that the gas pool is young and likely formed after 4 Ma. The geologic and geochemical data show that the mud diapirs and faults provide the main pathways for the upward migration of gases from the deep gas kitchen into the shallow, normally pressured reservoirs, and that the deep overpressure is the key driving force for the vertical and lateral migration of gas. This gas migration pattern implies that the South Low Uplift and the No.2 Fault zone near the deepwater area are also favorable for gas accumulation because they are located in the pathway of gas migration, and therefore more attention should be paid to them in the future.  相似文献   

17.
Since the first drill in 1957, three oil, 19 gas and condensate fields have been discovered in the Thrace Basin. However, any petroleum system with its essential elements and processes has not been assigned yet. This study consists of two parts, (1) geochemical overview of the previous work in order to get a necessary help to construct a petroleum system and (2) calculation of quantitative undiscovered hydrocarbon resources generated from this system. An extensive overview study showed that the primary reservoir and source rocks in the Thrace Basin are the Middle Eocene Hamitabat sandstones and shales, respectively, hence it appears that the most effective petroleum system of the Thrace Basin becomes the Hamitabat (!) petroleum system. Currently, 18.5 billion m3 of in-place gas, 2.0 million m3 (12.7 million bbl) in-place waxy oil as well as minor amount of associated condensate were discovered from this system. This study showed that the regional distribution of the oil and gas fields almost overlapped with the previously constructed pod of active Hamitabat shales implying that short and up-dip vertical migration pathway of hydrocarbons from the source to trapping side was available. Thermal model demonstrated that hydrocarbon generation from the Hamitabat shales commenced in the Early Miocene. The amount of quantitative gas generation based on the mean-original TOC = 0.94 wt%, mean-original HI = 217 HC/g TOC and the volume of the pod of active source rock = 49 km3 is approximately 110 billion m3 of gaseous hydrocarbons that results in a high generation–accumulation efficiency of 17% when 18.5 billion m3 of already discovered hydrocarbons are considered.  相似文献   

18.
The identification of a deeply-buried petroleum-source rock, owing to the difficulty in sample collection, has become a difficult task for establishing its relationship with discovered petroleum pools and evaluating its exploration potential in a petroleum-bearing basin. This paper proposes an approach to trace a deeply-buried source rock. The essential points include: determination of the petroleum-charging time of a reservoir, reconstruction of the petroleum generation history of its possible source rocks, establishment of the spatial connection between the source rocks and the reservoir over its geological history, identification of its effective source rock and the petroleum system from source to trap, and evaluation of petroleum potential from the deeply-buried source rock. A case study of the W9-2 petroleum pool in the Wenchang A sag of the Pearl River Mouth Basin, South China Sea was conducted using this approach. The W9-2 reservoir produces condensate oil and gas, sourced from deeply-buried source rocks. The reservoir consists of a few sets of sandstone in the Zhuhai Formation, and the possible source rocks include an early Oligocene Enping Formation mudstone and a late Eocene Wenchang Formation mudstone, with a current burial depth from 5000 to 9000 m. The fluid inclusion data from the reservoir rock indicate the oil and the gas charged the reservoir about 18–3.5 Ma and after 4.5 Ma, respectively. The kinetic modeling results show that the main stages of oil generation of the Wenchang mudstone and the Enping mudstone occurred during 28–20 Ma and 20–12 Ma, respectively, and that the δ13C1 value of the gas generated from the Enping mudstone has a better match with that of the reservoir gas than the gas from the Wenchang mudstone. Results from a 2D basin modeling further indicate that the petroleum from the Enping mudstone migrated upward along the well-developed syn-sedimentary faults in the central area of the sag into the reservoir, but that the petroleum from the Wenchang mudstone migrated laterally first toward the marginal faults of the sag and then migrated upward along the faults into shallow strata. The present results suggest that the trap structure in the central area of the sag is a favorable place for the accumulation of the Enping mudstone-derived petroleum, and that the Wenchang mudstone-derived petroleum would have a contribution to the structures along the deep faults as well as in the uplifted area around the sag.  相似文献   

19.
Deeply buried (4500–7000 m) Ordovician carbonate reservoirs in the Tazhong area, Tarim Basin, NW China show obvious heterogeneity with porosity from null in limestones and sweet dolostones to 27.8% in sour dolostones, from which economically important oils, sour gas and condensates are currently being produced. Petrographic features, C, O, Sr isotopes were determined, and fluid inclusions were analyzed on diagenetic calcite, dolomite and barite from Ordovician reservoirs to understand controls on the porosity distribution. Ordovician carbonate reservoirs in the Tazhong area are controlled mainly by initial sedimentary environments and eo-genetic and near-surface diagenetic processes. However, vugs and pores generated from eogenetic and telogenetic meteoric dissolution were observed to have partially been destroyed due to subsequent compaction, filling and cementation. In some locations or wells (especially ZG5-ZG7 Oilfield nearby ZG5 Fault), burial diagenesis (e.g. thermochemical sulfate reduction, TSR) probably played an important role in quality improvement towards high-quality reservoirs. C2 calcite and dolomite cements and barite have fluid inclusions homogenization temperatures (Ths) from 86 to 113 °C, from 96 to 128 °C and from 128 to 151 °C, respectively. We observed petrographically corroded edges of these high-temperature minerals with oil inclusions, indicating the dissolution must have occurred under deep-burial conditions. The occurrence of TSR within Ordovician carbonate reservoirs is supported by C3 calcite replacement of barite, and the association of sulfur species including pyrite, anhydrite or barite and elemental sulfur with hydrocarbon and 12C-rich (as low as −7.2‰ V-PDB) C3 calcite with elevated Ths (135–153 °C). The TSR may have induced burial dissolution of dolomite and thus probably improved porosity of the sour dolostones reservoirs at least in some locations. In contrast, no significant burial dissolution occurred in limestone reservoirs and non-TSR dolostone reservoirs. The deeply buried sour dolostone reservoirs may therefore be potential exploration targets in Tarim Basin or elsewhere in the world.  相似文献   

20.
Two petroleum source rock intervals of the Lower Cretaceous Abu Gabra Formation at six locations within the Fula Sub-basin, Muglad Basin, Sudan, were selected for comprehensive modelling of burial history, petroleum maturation and expulsion of the generated hydrocarbons throughout the Fula Sub-basin. Locations (of wells) selected include three in the deepest parts of the area (Keyi oilfield); and three at relatively shallow locations (Moga oilfield). The chosen wells were drilled to depths that penetrated a significant part of the geological section of interest, where samples were available for geochemical and source rock analysis. Vitrinite reflectances (Ro %) were measured to aid in calibrating the developed maturation models.The Abu Gabra Formation of the Muglad Basin is stratigraphically subdivided into three units (Abu Gabra-lower, Abu Gabra-middle and Abu Gabra-upper, from the oldest to youngest). The lower and upper Abu Gabra are believed to be the major source rocks in the province and generally contain more than 2.0 wt% TOC; thus indicating a very good to excellent hydrocarbon generative potential. They mainly contain Type I kerogen. Vitrinite reflectance values range from 0.59 to 0.76% Ro, indicating the oil window has just been reached. In general, the thermal maturity of the Abu Gabra source rocks is highest in the Abu Gabra-lower (deep western part) of the Keyi area and decreases to the east toward the Moga oilfied at the Fula Sub-basin.Maturity and hydrocarbon generation modelling indicates that, in the Abu Gabra-Lower, early oil generation began from the Middle- Late Cretaceous to late Paleocene time (82.0–58Ma). Main oil generation started about 58 Ma ago and continues until the present day. In the Abu Gabra-upper, oil generation began from the end of the Cretaceous to early Eocene time (66.0–52Ma). Only in one location (Keyi-N1 well) did the Abu Gabra-upper reach the main oil stage. Oil expulsion has occurred only from the Abu Gabra-lower unit at Keyi-N1 during the early Miocene (>50% transformation ratio TR) continuing to present-day (20.0–0.0 Ma). Neither unit has generated gas. Oil generation and expulsion from the Abu Gabra source rocks occurred after the deposition of seal rocks of the Aradeiba Formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号