首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents approaches for evaluating hybrid source rock/reservoirs within tight-rock petroleum systems. The emerging hybrid source rock/reservoir shale play in the Upper Cretaceous Second White Specks and Belle Fourche formations in central Alberta, Canada is used as an example to evaluate organic and inorganic compositions and their relationships to pore characteristics. Nineteen samples from a 77.5 m-long core were analyzed using organic petrography, organic geochemistry, several methods of pore characterization, and X-ray powder diffraction (XRD). The lower part of the studied section includes quartz- and clay-rich mudrocks of the Belle Fourche Formation with low carbonate content, whereas the upper portion contains calcareous mudrocks of the Second White Specks Formation. Strata are mineralogically composed of quartz plus albite (18–56 wt. %), carbonates (calcite, dolomite, ankerite; 1–65 wt. %), clays (illite, kaolinite, chlorite; 15–46 wt. %), and pyrite (2–12 wt. %). Petrographic examinations document that organic matter represents marine Type II kerogen partly biodegraded with limited terrestrial input. Vitrinite reflectance Ro (0.74–0.87%), Tmax values (438–446 °C) and biomarkers indicate mid-maturity within the oil window. The relatively poor remaining hydrocarbon potential, expressed as an S2 value between 2.1 and 6.5 mg HC/g rock, may result from an estimated 60–83% of the original kerogen having been converted to hydrocarbons, with the bulk having migrated to adjacent sandstone reservoirs. However, the present-day remaining total organic carbon TOCpd content remains relatively high (1.7–3.6 wt. %), compared with the estimated original TOCo of 2.4–5.0 wt. %. The calculated transformation ratio of 60–83% suggests that the remaining 17–40 wt. % of kerogen is able to generate more hydrocarbons. The studied section is a tight reservoir with an average Swanson permeability of 3.37·10−5 mD (measured on two samples) and total porosity between 1.7 and 5.0 vol. % (3 vol. % on average). The upper part of the sandy Belle Fourche Formation, with slightly elevated porosity values (3.5–5 vol. %), likely represents the interval with the best reservoir properties in the studied core interval. Total pore volume ranges between 0.0065 and 0.0200 cm3/g (measured by a combination of helium pycnometry and mercury immersion). Mesopores (2–50 nm ∅) are the most abundant pores and occupy 34–67% of total porosity or a volume of 0.0030–0.0081 cm3/g. In comparison, micropores (<2 nm ∅) cover a wide range from 6 to 60% (volume 0.0007–0.0053 cm3/g), and macropores (>50 nm ∅) reach up to 57% with the exception of some samples failing to indicate the presence of this pore fraction (volume 0.0000–0.0107 cm3/g). Macroporosity is mostly responsible for variations in total porosity, as suggested by macroporosity's strongest correlation with total porosity within the section. The relatively narrow ranges of TOC and minerals contents among measured samples limit our ability to further deconvolute factors that influence changes in total porosity and pore size distribution.  相似文献   

2.
Cretaceous sedimentary rocks of the Mukalla, Harshiyat and Qishn formations from three wells in the Jiza sub-basin were studied to describe source rock characteristics, providing information on organic matter type, paleoenvironment of deposition and hydrocarbon generation potential. This study is based on organic geochemical and petrographic analyses performed on cuttings samples. The results were then incorporated into basin models in order to understand the burial and thermal histories and timing of hydrocarbon generation and expulsion.The bulk geochemical results show that the Cretaceous rocks are highly variable with respect to their genetic petroleum generation potential. The total organic carbon (TOC) contents and petroleum potential yield (S1 + S2) of the Cretaceous source rocks range from 0.43 to 6.11% and 0.58–31.14 mg HC/g rock, respectively indicating non-source to very good source rock potential. Hydrogen index values for the Early to Late Cretaceous Harshiyat and Qishn formations vary between 77 and 695 mg HC/g TOC, consistent with Type I/II, II-III and III kerogens, indicating oil and gas generation potential. In contrast, the Late Cretaceous Mukalla Formation is dominated by Type III kerogen (HI < 200 mg HC/g TOC), and is thus considered to be gas-prone. The analysed Cretaceous source rock samples have vitrinite reflectance values in the range of 0.37–0.95 Ro% (immature to peak-maturity for oil generation).A variety of biomarkers including n-alkanes, regular isoprenoids, terpanes and steranes suggest that the Cretaceous source rocks were deposited in marine to deltaic environments. The biomarkers also indicate that the Cretaceous source rocks contain a mixture of aquatic organic matter (planktonic/bacterial) and terrigenous organic matter, with increasing terrigenous influence in the Late Cretaceous (Mukalla Formation).The burial and thermal history models indicate that the Mukalla and Harshiyat formations are immature to early mature. The models also indicate that the onset of oil-generation in the Qishn source rock began during the Late Cretaceous at 83 Ma and peak-oil generation was reached during the Late Cretaceous to Miocene (65–21 Ma). The modeled hydrocarbon expulsion evolution suggests that the timing of oil expulsion from the Qishn source rock began during the Miocene (>21 Ma) and persisted to present-day. Therefore, the Qishn Formation can act as an effective oil-source but only limited quantities of oil can be expected to have been generated and expelled in the Jiza sub-basin.  相似文献   

3.
Uppermost Jurassic and Lower Cretaceous strata of the Silesian Nappe of the Outer Western Carpathians contain large amounts of shale, which can, under favourable conditions, become source rocks for hydrocarbons. This study analysed 45 samples from the area of Czech Republic by the means of palynofacies analysis, thermal alteration index (TAI) of palynomorphs and total organic carbon (TOC) content to determine the kerogen type, hydrocarbon source rock potential, and to interpret the depositional environment. Uppermost Jurassic Vendryně Formation and Lower Cretaceous Formations (Těšín Limestone, Hradiště and Lhoty) reveal variable amount of mostly gas prone type III kerogen. Aptian Veřovice Formation has higher organic matter content (over 3 wt.%) and oil-prone type II kerogen. Organic matter is mature to overmature and hydrocarbon potential predisposes it as a source of gas. Aptian black claystones of the Veřovice Fm. are correlatable with oceanic anoxic event 1 (OAE1).  相似文献   

4.
The Gordondale Member is a hydrocarbon source rock and potential unconventional reservoir that extends across northeastern British Columbia and central-northwestern Alberta. It is an organic-rich, calcareous, fossiliferous mudstone with a median total organic carbon value of 6.0 wt%. A total of 230 samples were collected from approximately 25 m of Gordondale Member core for organic matter analysis using Rock-Eval 6 analysis and organic petrology. Detailed core logging provides sedimentological context for organic matter characterization. The predominant organic material in the samples is solid bitumen and liptinite with lesser zooclast and inertinite. Most kerogen is Type II, autochthonous marine biomass, with minimal dilution by inert organic carbon. Rock-Eval Tmax values and random reflectance measurements of solid bitumen indicate the samples are within the oil generation window. Solid bitumen contributes a substantial amount of hydrocarbon potential to the interval. A micro-reservoir structure within the core is produced by thin intervals of impermeable displacive calcite that act as barriers to the upward migration of free hydrocarbons. These free hydrocarbon accumulations could make excellent targets for horizontal wells within the Gordondale Member.  相似文献   

5.
东海西湖凹陷浙东中央背斜带烃源岩生排烃史研究   总被引:9,自引:1,他引:9  
为了深化西湖凹陷浙东中央背斜带油气成藏过程的研究,优化勘探目标选择,在烃源岩特征分析的基础上,应用动态数值模拟技术,定量恢复了研究区主要烃源岩层系的生排烃历史,研究表明,浙东中央背斜带主要发育4套烃源岩系,其中始新统平湖组泥岩与煤层为主力烃源岩,具较高的有机质丰度=生烃强度与排烃效率,烃类排出具阶段性、多期次幕式排烃的特点汉平湖组为源岩的油气系统应是本区油气勘探的主要目标。  相似文献   

6.
西湖凹陷中-下始新统宝石组油气地质与勘探潜力   总被引:13,自引:0,他引:13  
西湖凹陷是东海陆架盆地油气勘探潜力最好的凹陷之一。通过西湖凹陷宝石一井中下始新统宝石组井震资料,厘定了影响油气资源计算结果较大的关键参数,如烃源岩厚度、有机质油气产率、排聚系数等;建立了构造、沉积、孔隙度与油气生、运、聚模型,编绘了西湖凹陷宝石组生油岩厚度图、有机碳、Ro、生油气强度等值线图;采用BASIMS 4.5盆地综合模拟系统重现了西湖凹陷宝石组的地史、热史、生烃史、排烃史和运聚史,分析了宝石组空间展布特征与生、储、盖、圈、运、保等地质条件,提出并建立了宝石组合油气系统。利用多种方法定量计算的宝石组生烃量和资源量与西湖凹陷已证实的主力烃源岩系平湖组相似,认为宝石组是西湖凹陷又一重要烃源岩及油气勘探目的层系,拥有巨大的油气勘探潜力。  相似文献   

7.
丽水—椒江凹陷是东海陆架盆地油气勘探的一个重要领域,目前处于较低的油气勘探阶段。基于现有地质资料,在烃源岩发育特征及有机质丰度、类型和成熟度分析的基础上,采用含油气盆地数值模拟技术,定量恢复了研究区月桂峰组烃源岩的生排烃史。结果表明,月桂峰组烃源岩有机质丰度高,有机质类型以Ⅱ1型和Ⅱ2型为主,具有油气兼生的能力,总体上处于成熟阶段和高成熟阶段;月桂峰组烃源岩具有较高的生排烃强度,总体上经历了2次生排烃过程,但在不同构造单元存在明显的差异性。总之,以月桂峰组烃源岩为油气来源的含油气系统是该区油气勘探的主要目标。  相似文献   

8.
An evaluation of the petroleum generating potential of onshore Eocene-Miocene sequences of Western Sabah, Malaysia was performed based on organic petrological and geochemical methods. The sequences analysed are the Belait, Meligan, Temburong and West Crocker formations of western Sabah. The Belait Formation which is Stage IV equivalent in the offshore represents one of the major source rock/reservoirs of the petroleum-bearing Sabah Basin. The Eocene-Early Miocene West Crocker and Temburong formations are deepwater turbidites whilst the Miocene Meligan and Belait formations are shallow marine fluvio-deltaic deposits. The vitrinite reflectance and pyrolysis Tmax values show that the Belait samples are generally immature for hydrocarbon generation, whereas the Meligan, Temburong and West Crocker samples are in the mature to late maturity stage of hydrocarbon generation. The overall bulk source rock properties of the Belait and Meligan show fair to good petroleum source rock potential with TOC more than 1 wt %, hydrocarbon yield in the range of 400–1300 ppm and moderately high HI for many of the samples. Most of the samples representing the Temburong and West Crocker formations have TOC less than 1 wt% and have no to fair hydrocarbon generating potential. Interestingly, the samples collected in the West Crocker Formation characterized by slump deposits (MTD) have TOC>2 and possess good to excellent hydrocarbon generating potential. The organic matter present in all of the studied formations is mainly of terrigenous origin based on the abundance of woody plant materials observed under the microscope. Consequently, the analysed sequences are predominantly gas prone, dominated by Type III and Type III-IV kerogen except for minor occurrence of mixed oil-gas prone Type II-III kerogen in the Belait Formation and in the slump mass transport deposits (MTD) of the West Crocker Formation.  相似文献   

9.
Upper Jurassic organic matter-rich, marine shales of the Mandal Formation have charged major petroleum accumulations in the North Sea Central Graben including the giant Ekofisk field which straddles the graben axis. Recent exploration of marginal basin positions such as the Mandal High area or the Søgne Basin has been less successful, raising the question as to whether charging is an issue, possibly related to high thermal stability of the source organic matter or delayed expulsion from source to carrier.The Mandal Formation is in part a very prolific source rock containing mainly Type II organic matter with <12 wt.-% TOC and HI < 645 mg HC/g TOC but Type III-influenced organofacies are also present. The formation is therefore to varying degrees heterogeneous. Here we show, using geochemical mass balance modelling, that the petroleum expulsion efficiency of the Mandal Formation is relatively low as compared to the Upper Jurassic Draupne Formation, the major source rock in the Viking Graben system. Using maturity series of different initial source quality from structurally distinct regions and encompassing depositional environments from proximal to distal facies, we have examined the relationship between free hydrocarbon retention and organic matter structure. The aromaticity of the original and matured petroleum precursors in the Mandal source rock plays a major role in its gas retention capacity as cross-linked monoaromatic rings act on the outer surface of kerogen as sorptive sites. However, oil retention is a function of both kerogen and involatile bitumen compositions. Slight variations in total petroleum retention capacities within the same kerogen yields suggest that texture of organic matter (e.g. organic porosity) could play a role as well.  相似文献   

10.
中国海域及邻区某些盆地生油岩的有机地球化学特征   总被引:1,自引:0,他引:1  
本文根据有机地球化学资料,研究和探讨了中国海域及邻区某些盆地生油岩的有机质丰度、可溶有机质的组成特征和不溶有机质的性质。结果表明,绝大多数生油岩有机碳含量大于0.90%,氯仿沥青“A”含量平均值大于600ppm,总烃大于200ppm。母质类型为腐殖—腐泥型和腐泥—腐殖型。  相似文献   

11.
Deposition of organic rich black shales and dark gray limestones in the Berriasian-Turonian interval has been documented in many parts of the world. The Early Cretaceous Garau Formation is well exposed in Lurestan zone in Iran and is composed of organic-rich shales and argillaceous limestones. The present study focuses on organic matter characterization and source rock potential of the Garau Formations in central part of Lurestan zone. A total of 81 core samples from 12 exploratory wells were subjected to detailed geochemical analyses. These samples have been investigated to determine the type and origin of the organic matter as well as their petroleum-generation potential by using Rock-Eval/TOC pyrolysis, GC and GCMS techniques. The results showed that TOC content ranges from 0.5 to 4.95 percent, PI and Tmax values are in the range of 0.2 and 0.6, and 437 and 502 °C. Most organic matter is marine in origin with sub ordinary amounts of terrestrial input suggesting kerogen types II-III and III. Measured vitrinite reflectance (Rrandom%) values varying between 0.78 and 1.21% indicating that the Garau sediments are thermally mature and represent peak to late stage of hydrocarbon generation window. Hydrocarbon potentiality of this formation is assessed fair to very good capable of generating chiefly gas and some oil. Biomarker characteristics are used to provide information about source and maturity of organic matter input and depositional environment. The relevant data include normal alkane and acyclic isoprenoids, distribution of the terpane and sterane aliphatic biomarkers. The Garau Formation is characterized by low Pr/Ph ratio (<1.0), high concentrations of C27 regular steranes and the presence of tricyclic terpanes. These data indicated a carbonate/shale source rock containing a mixture of aquatic (algal and bacterial) organic matter with a minor terrigenous organic matter contribution that was deposited in a marine environment under reducing conditions. The results obtained from biomarker characteristics also suggest that the Garau Formation is thermally mature which is in agreement with the results of Rock-Eval pyrolysis.  相似文献   

12.
Potential source rocks on the Laminaria High, a region of the northern Bonaparte Basin on the North West Shelf of Australia, occur within the Middle Jurassic to Lower Cretaceous early to post-rift sequences. Twenty-two representative immature source rock samples from the Jurassic to Lower Cretaceous (Plover, Laminaria, Frigate, Flamingo and Echuca Shoals) sequences were analysed to define the hydrocarbon products that analogous mature source rocks could have generated during thermal maturation and filled the petroleum reservoirs in the Laminaria High region. Rock-Eval pyrolysis data indicate that all the source rocks contain type II–III organic matter and vary in organic richness and quality. Open system pyrolysis-gas chromatography on extracted rock samples show a dominance of aliphatic components in the pyrolysates. The Plover source rocks are the exception which exhibit high phenolic contents due to their predominant land-plant contribution. Most of the kerogens have the potential to generate Paraffinic–Naphthenic–Aromatic oils with low wax contents. Bulk kinetic analyses reveal a relatively broad distribution of activation energies that are directly related to the heterogeneity in the kerogens. These kinetic parameters suggest different degrees of thermal stability, with the predicted commencement of petroleum generation under geological heating conditions covering a relatively broad temperature range from 95 to 135 °C for the Upper Jurassic−Lower Cretaceous source rocks. Both shales and coals of the Middle Jurassic Plover Formation have the potential to generate oil at relatively higher temperatures (140–145 °C) than those measured for crude oils in previous studies. Hence, the Frigate and the Flamingo formations are the main potential sources of oils reservoired in the Laminaria and Corallina fields. Apart from being a reservoir, the Laminaria Formation also contains organic-rich layers, with the potential to generate oil. For the majority of samples analysed, the compositional kinetic model predictions indicate that 80% of the hydrocarbons were generated as oil and 20% as gas. The exception is the Lower Cretaceous Echuca Shoals Formation which shows the potential to generate a greater proportion (40%) of gas despite its marine source affinity, due to inertinite dominating the maceral assemblage.  相似文献   

13.
从有机碳含量、可溶有机质含量及其转化率、热解参数、饱和烃的生物表示化合物特征、有机岩石学特征几个方面分析了民和盆地侏罗系烃源岩的有机质丰度、类型和成熟度,并进行了地球化学特征分析和生烃潜力评价。分析认为盆地发育湖相泥岩和煤系两大类烃源岩,有机质以较富含低等水生生物原始母质的腐泥腐殖型为主,主要分布于中侏罗统。通过对盆地石油地质条件的评价,结合各区带落实认识程度和资料品质条件认为:武家鼻隆构造带是最有利的勘探区带,万泉堡鼻状构造带具有良好勘探潜力,大庄构造带是寻找浅层次生油气藏的有利区带。永登凹陷面积大,资源丰富,勘探认识程度低,具有良好勘探前景。  相似文献   

14.
Marine carbonate rocks are widespread and their sedimentary layers are huge and thick.Many oil seepages outcrops are found in the Middle-Upper Proterozoic of North China. Combined with previous data, the paper discusses the evaluation criteria of marine carbonate source rocks.Many factors,such as organic matter types of source rocks,thermal maturity,mineral and chemical composition,paleotemperature and source-reservioir relationship etc. Should be considered. Therefore,the abundance cutoff criteria of organic matters in North China especially in the Southern area,needs further.In this paper,North China is divided into the north area dn the south area,and the organic matter type,organic matter abundance and degree of thermal evolution of organic matter in the two areas in overall and both of them are high thermal evaluation level.Furthermore,the majority of the organic matters of the source rock have been in highly over matured phase.Source rock mature period of Liulaobei Formation and Xuhuai Group in the southern area ids equal to that of the lower Xiamalin Formation in the northern area,the hydrocarbon generation capacity of Chuanlinggou Formation,and different organic matter types obtained with different methods on source rock research in the south area of North China are also put forward.  相似文献   

15.
The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression, in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone. The oil-gas source correlation in the Xihu Depression was analyzed by hydrocarbon generating thermal simulation data via gold-tube pyrolysis experiments. The results indicated that the oil and gas in the Xihu Depression were mainly derived from coal measure source rocks of the Eocene Pinghu Formation. Therefore, the identification of coal seams is extremely crucial for evaluating coal measure source rocks in the Pinghu Formation in the Xihu Depression. Geochemical and petrological characterization pointed to input of terrigenous organic matter and redox conditions of the depositional environment as factors that govern the ability of the coal measure source rocks in hydrocarbon generation in the Xihu Depression. In this regard, the sedimentary organic facies in the Pinghu Formation were classified into four predominantly terrigenous and one mixed-source subfacies, which all varied in carbon and hydrogen content. The coal measure source rocks in the carbon- and hydrogen-rich tidal flat-lagoon exhibited the highest hydrocarbon generation potential, whereas the mudstone in the neritic facies was the poorest in its hydrocarbon yield. These results suggested that the coal measure source rocks in the Pinghu Formation likely developed in the Hangzhou Slope and the Tiantai Slope, both representing promising sources for oil and gas exploration.  相似文献   

16.
The terrigenously-dominated marine shales which were deposited in the lower Eocene Pinghu Formation were thought to be a potential source rock in the Xihu Depression of the East China Sea Shelf Basin. However, the exceptionally high total organic carbon content (TOC, >6% on average) of the tidal sand ridge samples was not compatible with their sedimentary environment, indicating coal-bearing sedimentary debris may have been transferred from the coast to the ocean. In this study, new sights into the origins and supply of organic materials in the coastal environment were proposed in the neritic organic matter of the Eocene Pinghu Formation. A discriminant model was developed using plynofacies analysis data to pinpoint the source of organic materials in marine source rocks. The discrimination results suggested that marine mudstones were associated with tidal flat mudstones rather than deltaic ones. The biomarker characteristics of mudstones deposited in various environments support this assertion, indicating that the supply of plant materials in tidal flats is the primary organic matter source for the marine environment. The organic matter abundance was elevated in tidal flats due to their superior preservation conditions. Additionally, the lithological assemblage of tidal flats suggests that tidal currents can scour marshes and then transport dispersed terrigenous organic materials to neritic areas. These findings indicate that coal-bearing sedimentary debris was likely transferred from the coast to the ocean, and tidal currents are thought to be the dominant mechanism driving organic matter from the tidal to the marine environment.  相似文献   

17.
The Oligocene Ruslar Formation is a hydrocarbon source rock in the Kamchia Depression, located in the Western Black Sea area. Depositional environment and source potential of the predominantly pelitic rocks were investigated using core and cuttings samples from four offshore wells. In these wells the Ruslar Formation is up to 500 m thick. Based on lithology and well logs, the Ruslar Formation is subdivided from base to top into units I–VI. Dysoxic to anoxic conditions and mesohaline to euhaline salinities prevailed during deposition of the Ruslar Formation. Relatively high oxygen contents occurred during early Solenovian times (lower part of unit II), when brackish surface water favoured nannoplankton blooms and the deposition of bright marls (“Solenovian event”). Anoxic conditions with photic zone anoxia were established during late Oligocene times (units III and IV) and, probably, reflect a basin-wide anoxic event in the Eastern Paratethys during Kalmykian times. Organic carbon content in the Ruslar Formation is up to 3%. Autochthonous aquatic and allochthonous terrigenous biomass contribute to the organic matter. Relatively high amounts of aquatic organic matter occur in the lower part of the Ruslar Formation (units I and II) and in its upper part (unit VI). Diatoms are especially abundant in the lower part of unit VI. The kerogen is of type III and II with HI values ranging from 50 to 400 mgHC/gTOC. Units I and II (Pshekian, lower Solenovian) are characterized by a fair (to good) potential to produce gas and oil, but potential sources for gas and oil also occur in the Upper Oligocene units IV–VI.  相似文献   

18.
Understanding the hydrocarbon accumulation pattern in unconventional tight reservoirs is crucial for hydrocarbon evaluation and oil/gas extraction from such reservoirs. Previous studies on tight oil accumulation are mostly concerned with self-generation or from source to reservoir rock over short distances. However, the Lucaogou tight oil in Jimusar Sag of Junggar Basin shows transitional feature in between. The Lucaogou Formation comprises fine-grain sedimentary rocks characterized by thin laminations and frequently alternating beds. The Lucaogou tight silt/fine sandstones are poorly sorted. Dissolved pores are the primary pore spaces, with average porosity of 9.20%. Although the TOC of most silt/fine sandstones after Soxhlet extraction is lower than that before extraction, they show that the Lucaogou siltstones in the area of study have fair to good hydrocarbon generation potential (average TOC of 1.19%, average S2 of 4.33 mg/g), while fine sandstones are relatively weak in terms of hydrocarbon generation (average TOC of 0.4%, average S2 of 0.78 mg/g). The hydrocarbon generation amount of siltstones, which was calculated according to basin modeling transformation ratio combined with original TOC based on source rock parameters, occupies 16%–72% of oil retention amount. Although siltstones cannot produce the entire oil reserve, they certainly provide part of them. Grain size is negatively correlated with organic matter content in the Lucaogou silt/fine sandstones. Fine grain sediments are characterized by lower deposition rate, stronger adsorption capacity and oxidation resistance, which are favorable for formation of high quality source rocks. Low energy depositional environment is the primary reason for the formation of siltstones containing organic matter. Positive correlation between organic matter content and clay content in Lucaogou siltstones supports this view point. Lucaogou siltstones appear to be effective reservoir rocks due to there relatively high porosity, and also act as source rocks due to the fair to good hydrocarbon generation capability.  相似文献   

19.
在烃源岩分布特征、有机质丰度、类型和成熟度分析的基础上,运用含油气盆地数值模拟技术,定量恢复了烃源岩热成熟演化史,探讨了油气差异分布特征。研究表明,文昌A凹陷各层系烃源岩分布广,厚度大,有机质丰度高;有机质类型文昌组偏Ⅱ1型,恩平组偏Ⅲ型,二者现今多处于高成熟—过成熟阶段。凹陷内烃源岩成熟时间早(文昌组约45.5Ma),现今成熟度高,以干气生成为主;凹陷边缘烃源岩成熟时间较晚(文昌组约30.0Ma),现今成熟度相对较低,以石油生成为主。凹陷现今油气差异分布的格局受制于有机质类型差异和热演化史不同,且下一步油气勘探方向,凹陷内以天然气为主,凹陷边缘以石油为主。  相似文献   

20.
Significant oil and gas accumulations occur in and around Lougheed Island, Arctic Canada, where hydrocarbon prospectivity is controlled by potential source rock distribution and composition. The Middle to Upper Triassic rocks of the Schei Point Group (e.g. Murray Harbour and Hoyle Bay formations) contain a mixture of Types I and II organic matter (Tasmanales marine algae, amorphous fluorescing bituminite). These source rocks are within the oil generation zone and have HI values up to 600 mg HC/g Corg. The younger source rocks of the Lower Jurassic Jameson Bay and the Upper Jurassic Ringnes formations contain mainly gas-prone Type II/III organic matter and are marginally mature. Vitrinite reflectance profiles suggest an effective geothermal gradient essentially similar to the present-day gradient (20 to 30°C/km). Maturation gradients are low, ranging from 0.125 to 0.185 log%Ro/km. Increases in subsidence rate in the Early Cretaceous suggest that the actual heat flow history was variable and has probably diminished from that time. The high deposition rates of the Christopher Formation shales coincide with the main phase of rifting in Aptian-Albian times. Uplift and increased sediment supply in the Maastrichtian resulted in a new sedimentary and tectonic regime, which culminated in the final phase of the Eurekan Orogeny. Burial history models indicate that hydrocarbon generation in the Schei Point Group took place during rifting in Early Cretaceous, long before any Eurekan deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号