首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The development of stratigraphic sequences has been demonstrated to be controlled by a set of factors including variations in subsidence, sediment input, eustatic sea level and physiography. Well and seismic data from the Jeanne d'Arc Basin, Grand Banks indicate that mid-Cretaceous tectonism controls at least three of these factors, namely subsidence, sediment input and physiography. North Atlantic rift tectonism was therefore the dominant factor in controlling the migration of coastal to shallow marine environments and the development of sequence stratigraphy in this basin during the mid-Cretaceous. The Avalon Formation respresents a mainly Barremian to Early Aptian regressive phase of clastic, marine to marginal marine sedimentation. This followed the deposition of a thick sequence of mainly marine limestones and shales of the Whiterose Formation above a mid-Valanginian sequence-bounding unconformity. The increased clastic input and northward progradation of coastal environments represented by the Avalon Formation occurred during uplift of a basement arch to the south with subsidence of the basin increasing to the north, accompanied by only relatively minor faulting. These features indicate that a period of epeirogenesis was initiated during the Barremian. Continuing uplift over an expanding area at the southern end of the basin is interpreted to have resulted in the development of an angular unconformity with incised valleys. This mid-Aptian unconformity defines the top of the Whiterose/Avalon sequence. Initiation of brittle fracturing of the sedimentary package and underlying basement (i.e. rifting) in mid-Aptian times resulted in rapid fault-controlled subsidence and fragmentation of the Jeanne d'Arc Basin. This great increase in subsidence rate caused retrogradation of coastal environments across the previously developed sequence-bounding unconformity, despite continuing high rates of sediment input from the uplifted basin margins. The transgressive, siliciclastic Ben Nevis Formation comprises two separate but related facies associations. A locally preserved basal association represents interfingering back-barrier environments and is herein defined as the Gambo Member. An upper, ubiquitous facies association comprises tidal-inlet channel, shoreface and lower shoreface/offshore transition sandstones. This upper facies association onlapped marine ravinement diastems above the laterally equivalent back-barrier facies. The rapid fault-controlled subsidence and high sediment input rate of this mid-Aptian to late Albian rift period resulted in the accumulation and preservation of very thick shoreface sandstones. The transgressive sandstones were buried by laterally equivalent offshore shales of the Nautilus Formation. Flooding of the basin margins induced by the onset of thermal subsidence in latest Albian or early Cenomanian times marks the top of the Ben Nevis/Nautilus syn-rift sequence.  相似文献   

2.
The Melut Basin is a rift basin in the interior Sudan linked to the Mesozoic-Cenozoic Central and Western African Rift System. The Paleocene Yabus Formation is the main reservoir deposited in heterogeneous fluvial/lacustrine environment. Delineation of channel sandstone from shale is a challenge in reservoir exploration and development. We demonstrate a detailed 3D quantitative seismic interpretation approach that integrates petrophysical properties derived from well logs analysis. A porosity transform of acoustic impedance inversion provided a link between elastic and rock properties. Thus, we used seismic porosity to discriminate between different facies with appropriate validation by well logs. At the basin scale, the results revealed lateral and vertical facies heterogeneity in the Melut Basin. Good reservoir quality is observed in the Paleocene Yabus Formation. The sand facies indicated high porosity (20%) corresponding to low acoustic impedance (20000–24000 g ft/(cm3.s)). However, lower quality reservoir is observed in the Cretaceous Melut Formation. The porosity of sand/shale facies is low (5%), corresponding to high acoustic impedance (29000–34000 g ft/(cm3.s)). This suggests that the Yabus Sandstone is potentially forming a better reservoir quality than Melut Formation. At the reservoir scale, we evaluated the facies quality of Yabus Formation subsequences using petrophysical analysis. The subsequences YB1 to YB3, YB4 to YB7 and YB8 to YB10 showed relatively similar linear regressions, respectively. The subsequence of YB4 to YB7 is considered the best reservoir with higher porosity (25%). However, subsequence YB1 to YB3 showed lower reservoir quality with higher shale volume (30%). This attributed to floodplain shale deposits in this subsequence. Similarly, the high porosity (20%) recognized in deeper subsequences YB6 to YB9 is due to clean sand facies. We learnt a lesson that appropriate seismic preconditioning, exhaustive petrophysical analysis and well log validation are important keys for improved reservoir quality prediction results in fluvial/lacustrine basins.  相似文献   

3.
The lower part of the Carboniferous Shannon Basin of Western Ireland contains a deep-water succession which exceeds 1200 m in thickness that comprises five lithologically different units deposited within a confined, relatively narrow basin: (i) a calciclastic debris-flow and turbidite unit formed by resedimentation from nearby carbonate platforms, (ii) a siliciclastic black shale succession with former source potential which onlaps basin margins (Clare Shales), (iii) a sandstone-dominated turbidite formation, controlled by ponded accommodation and deposited axially in the basin (Ross Formation), (iv) a mudstone-rich turbidite-bearing succession, which onlaps basin margins (lower Gull Island Formation), and (v) a mudstone-dominated prograding slope succession (upper Gull Island Formation and lower Tullig Cyclothem), which grades transitionally upwards into deltaic deposits. The top unit records progradation at a time when basin differential subsidence had diminished significantly and local basin topography did not control deposition. The two upper mudstone-dominated units are different in terms of both sandstone content and their genetic significance within the overall basin-fill, and their potential relevance as reservoir analogues.The lower part of the Gull Island Formation contains three principal facies associations: (a) shallow turbidite channels and sheets representing channel margin and levee deposits, (b) mud-rich slumps, and (c) less than 1 m thick, rare, hemipelagic shales. More than 75% is deformed by soft-sediment deformation, but only to a smaller degree affecting sandstone units. The turbidites record transport to the ENE, along the axis of the basin, while the slumps were derived from an unstable northern slope and transported transversely into the basin towards the southeast. The distribution of turbidite sandstone and slumps is inversely proportional. Sandstones decrease in importance away from the basin axis as slumps increase in number and thickness. The lower part of the Gull Island Formation is interpreted to record progressive fill of a deep basin controlled by local, healed slope accommodation with onlap/sidelap of the basin margins. The instability resulted from a combination of fault-controlled differential subsidence between basin margin and basin axis, and high rates of sedimentation.The upper part of the Gull Island Formation is entirely dominated by mudstones, which grade upwards into siltstones. It contains rare, up to 15 m thick, isolated channels filled by turbidites, showing transport towards the east. The upper part records easterly progradation of a deep-water slope genetically tied to overlying deltaic deposits, and controlled by regional accommodation.The contrasts between the lower and upper parts of the Gull Island Formation show that onlapping/sidelapping turbidite successions have reservoir potential near basin axes, but that prograding deep-water slopes are less likely to have reservoir potential of significance. A suggested regional downlap surface between the two parts is a significant break and marker in terms of reservoir potential.  相似文献   

4.
The Early Cretaceous South Atlantic Magmatic Province (SAMP), which includes the Paraná-Etendeka LIP, produced about 8 million km3 of tholeiitic basalt and diabase over an area of 4 million km2. Huge pre-salt oil reserves, discovered in 2007 by Petrobras in non-marine carbonates, are estimated at more than 45 billion barrels. Here we show the close causal relationship of the southward increasing width of the wedge-shaped South Atlantic rift with the similarly southward increase in igneous activity, in the thicknesses of non-marine carbonate and salt, and in the size of oil reserves, all controlled mainly by South America’s early clockwise rotation away from Africa about a pole in its northeast. Large diabase dike swarms transversal to the rift witness to South America’s rotation that opened in its wake the southward widening South Atlantic rift. Westward increasing pressure on the Equatorial margin by South America’s clockwise rotation forced open the Benue trough and created pre-late-Aptian folds in the Demerara Plateau and in Brazil’s Solimões (Upper Amazonas) basin. Prerift and synrift volcanic activity increases southward, culminating in the Parana-Etendeka LIP and in the offshore volcanic SDRSs that continue southward to the Cape Basin. Berriasian-Valanginian rift sediments deposited from about 145 Ma, 10 Ma before the flood basalts of the Parana-Etendeka LIP. The largest transversal dike swarm continued in the proto-Walvis Ridge that separated the central South Atlantic endorheic rift basin from the sea in the south; erosion and leaching of basalts supplied Ca, Mg, and SiO2 to the endorheic basin for the deposition of non-marine carbonates and authigenic clays. Basalt flows intercalated with carbonates nearly until salt deposition about 113 Ma. Hypogenic leaching of carbonates by mantle-derived CO2 created optimal reservoirs. Supergiant oil deposits occur where the widest endorheic basin and the volcanic province overlap.  相似文献   

5.
Reservoir pressures within the Bullwinkle minibasin (Green Canyon 65, Gulf of Mexico continental slope) increase at a hydrostatic gradient whereas pressures predicted from porosity within mudstones bounding these reservoirs increase at a lithostatic gradient: they are equal at a depth 1/3 of the way down from the crest of the structure. Two- and three-dimensional steady-state flow models demonstrate that bowl-shaped structures will have lower pressures than equivalent two-dimensional structures and that if a low permeability salt layer underlies the basin, the pressure is reduced. We conclude that at Bullwinkle, pressure is reduced due to an underlying salt body and the bowl-shape of the basin. A geometric approach to predict sandstone pressure is to assume that the reservoir pressure equals the area-weighted average of the mudstone pressure. When the mudstone pressure gradient is constant, as at Bullwinkle, the reservoir pressure equals the mudstone pressure at the average depth (centroid) of the reservoir.  相似文献   

6.
The Late Devonian to Early Mississippian Bakken Formation in the Williston basin of North Dakota, USA, shows a tri-partite subdivision: a middle mixed carbonate-siliciclastic member is sandwiched in-between two black siliciclastic mudstones, the lower and upper Bakken member shales. However, the transition from the lower shale member to the middle member does not represent a gradual coarsening but contains in places several millimeter - to centimeter-thick siliciclastic mudstones and carbonates that consist of three facies: (1) a glauconitic carbonate-rich siliciclastic mudstone, (2) a carbonate mud-to wackestone, and (3) an echinoderm wacke-to packstone with shell fragments. These three facies are present in many (all?) of the cores close and directly in the basin center in Mountrail County, North Dakota. At least one of these three facies is present in all 23 cores included in this study.This thin carbonate unit at the transition between the lower and the middle Bakken members is interpreted as representing the remnants of the transgressive systems tract. It is assumed that relative sea-level fell before deposition of the middle Bakken member establishing a proximal coarse-grained to distal fine-grained depositional transect that successively migrated into the basin. During the subsequent transgression, the siliciclastic input was low to absent, and the entire sedimentary system switched to depositing carbonates. The proximal to distal transect during this time showed coarse-grained packstones (and grainstones?) close to the shoreline, and a fining outwards towards the distal parts of the basin. This transgression also eroded what remained of the regressive and most of the subsequent transgressive sediments, leaving only the thin carbonate layer behind. Evidence for the regression, even though no sediment is directly preserved along the lower to middle Bakken member contact, comes from the fill of clastic dykes that cut through the lower Bakken member shale. The fill of the clastic dykes is partly siliciclastic and partly carbonate and not similar to any of the surrounding sediment. This indicates that these dykes must have originated before the middle Bakken member was deposited, yet the overlying sediment must have been carbonate at some point and siliciclastic another time. As it is not present anymore, this sediment must have been entirely removed by erosion.The here presented model suggests that the Bakken Formation reflects two entire sea-level oscillations. The first encompasses the lower Bakken member shale and the siliciclastic regressive portion of the lowstand only preserved as infill of the clastic dykes. The subsequent transgression deposited the carbonates now blanketing the lower to middle Bakken member transition, and the highstand and subsequent regression plus lowstand are represented by the middle Bakken member. The transgressive surface and therewith the onset of the topmost Bakken transgression is marked by the transition from the middle to the upper Bakken shale member.  相似文献   

7.
The Kaimiro Formation is an early to middle Eocene, NE-SW trending reservoir fairway in Taranaki Basin, and comprises a range of coastal plain through to shallow marine facies. A time of regional transgression is observed across the Paleocene–Eocene transition, which is linked to a general global warming trend and to regional thermal relaxation-related subsidence in New Zealand. The earliest Eocene transgressive deposits pass upwards into a series of cyclically stacked packages, interpreted as 3rd and 4th order sequences. Maximum regression occurred within the early Eocene and was followed by punctuated retrogradational stacking patterns associated with shoreline retreat and subsequent regional transgression in the middle Eocene.The Kaimiro Formation is considered a good reservoir target along most of the reservoir fairway, which can largely be attributed to a consistently quartz-rich, lithic-poor composition and reasonably coarse sand grain size. Correlations demonstrate that within the early Eocene the main reservoir facies are channel-fill sandstones overlying candidate sequence boundaries in paleoenvironmentally landward (proximal) settings, and upper shoreface/shoreline sandstones in relatively basinward (distal) settings. Middle Eocene reservoir facies are not represented in distal wells due to overall transgression at this time, yet they form a significant target in more proximal well locations, particularly on the Taranaki Peninsula.Depositional facies is one of the principal controls on sandstone reservoir quality. However, while reservoir facies have been proven along the length of the reservoir fairway, it is evident that diagenesis has significantly impacted sandstone quality. Relatively poor reservoir properties are predicted for deeply buried parts of the basin (maximum burial >4.5 km) due to severe compaction and relatively abundant authigenic quartz and illite. In contrast, good reservoir properties are locally represented in reservoir facies where present-day burial depths are <4 km due to less severe compaction, cementation and illitisation. Within these beds (<4 km) the presence of locally occurring authigenic grain-coating chlorite (shallow marine facies) and/or well-developed secondary porosity are both favourable to reservoir quality, while pervasive kaolinite and/or carbonate are both detrimental to reservoir quality.These results illustrate how an interdisciplinary approach to regional reservoir characterisation are used to help reduce risk during prospect evaluation. Assessment of both reservoir distribution and quality is necessary and can be undertaken through integrated studies of facies, sequence stratigraphy, burial modelling and petrography.  相似文献   

8.
In north-eastern Siberia the active mid-ocean Gakkel Ridge interacts with the continental shelf of the Laptev Sea. Extension has affected the shelf since at least the Early Tertiary and has resulted in the formation of a complex horst and graben system. We present new seismic data from the Laptev Sea including deep seismic soundings.The most prominent rift basin is the Ust' Lena Rift with a minimum E–W width of 300 km at latitude 75°N and a Cenozoic infill up to 13 km in thickness. The asymmetric shape of the basin and conclusive evidence for a detachment imply a simple-shear geometry. The suggested rift model combines a ramp and flat geometry for the detachment with ductile stretching beneath the detachment. A major west-dipping, hingeline, listric fault separates the Ust' Lena Rift from the Laptev Horst.The 100–150 km wide Laptev Horst is subdivided into three units by narrow rift grabens. Another prominent rift graben is the Anisin Basin, which is located in the northern shelf area.Though the Laptev Sea Rift formed in interaction with an active mid-oceanic ridge, there are indications that the Laptev Sea rift is of the ‘passive rift’ type. The rift was developed east of a SW–NE trending transfer zone which links the Gakkel Ridge to the Laptev Sea Rift.  相似文献   

9.
The Eocene Niubao Formation of the Lunpola Basin, a large Cenozoic intermontane basin in central Tibet, is an important potential hydrocarbon source and reservoir unit. It represents ∼20 Myr of lacustrine sedimentation in a half-graben with a sharply fault-bounded northern margin and a low-angle flexural southern margin, resulting in a highly asymmetric distribution of depositional facies and sediment thicknesses along the N-S axis of the basin. An integrated investigation of well-logs, seismic data, cores and outcrops revealed three third-order sequences (SQ1 to SQ3), each representing a cycle of rising and falling lake levels yielding lowstand, transgressive, and highstand systems tracts. Lowstand systems tracts (LST) include delta and fan delta facies spread widely along the gentle southern margin and concentrated narrowly along the steep northern margin of the basin, with sublacustrine fan sand bodies extending into the basin center. Highstand systems tracts (HST) include expanded areas of basin-center shale deposition, with sublacustrine fans, deltas and fan deltas locally developed along the basin margins. Sequence development may reflect episodes of tectonic uplift and base-level changes. The southern margin of the basin exhibits two different structural styles that locally influenced sequence development, i.e., a multi-step fault belt in the south-central sector and a flexure belt in the southeastern sector. The sedimentary model and sequence stratigraphic framework developed in this study demonstrate that N2 (the middle member of Niubao Formation) exhibits superior hydrocarbon potential, characterized by thicker source rocks and a wider distribution of sand-body reservoirs, although N3 (the upper member of Niubao Formation) also has good potential. Fault-controlled lithologic traps are plentiful along the basin margins, representing attractive targets for future exploratory drilling for hydrocarbons.  相似文献   

10.
The Campos, Santos and Pelotas basins have been investigated in terms of 2D seismo-stratigraphy and subsidence. The processes controlling accommodation space (e.g. eustacy, subsidence, sediment input) and the evolution of the three basins are discussed. Depositional seismic sequences in the syn-rift Barremian to the drift Holocene basin fill have been identified. In addition, the subsidence/uplift history has been numerically modeled including (i) sediment flux, (ii) sedimentary basin framework, (iii) relation to plate-tectonic reconfigurations, and (iv) mechanism of crustal extension. Although the initial rift development of the three basins is very similar, basin architecture, sedimentary infill and distribution differ considerably during the syn-rift sag to the drift basin stages. After widespread late Aptian–early Albian salt and carbonate deposition, shelf retrogradation dominated in the Campos Basin, whereas shelf progradation occurred in the Santos Basin. In the Tertiary, these basin fill styles were reversed: since the Paleogene, shelf progradation in the Campos Basin contrasts with overall retrogradation in the Santos Basin. In contrast, long-term Cretaceous–Paleogene shelf retrogradation and intense Neogene progradation characterize the Pelotas Basin. Its specific basin fill and architecture mainly resulted from the absence of salt deposition and deformation. These temporally and spatially varying successions were controlled by specific long-term subsidence/uplift trends. Onshore and offshore tectonism in the Campos and Santos basins affected the sediment flux history, distribution of the main depocenters and occurrence of hydrocarbon stratigraphic–structural traps. This is highlighted by the exhumation and erosion of the Serra do Mar, Serra da Mantiqueira and Ponta Grossa Arch in the hinterland, as well as salt tectonics in the offshore domain. The Pelotas Basin was less affected by changes in structural regimes until the Eocene, when the Andean orogeny caused uplift of the source areas. Flexural loading largely controlled its development and potential hydrocarbon traps are mainly stratigraphic.  相似文献   

11.
The Early Miocene was a period of active rifting and carbonate platform development in the Midyan Peninsula, NW Saudi Arabia. However, there is no published literature available dealing with the detailed characterization of the different carbonate platforms in this study area. Therefore, this study aims to present new stratigraphic architectural models that illustrate the formation of different carbonate platforms in the region and the forcing mechanisms that likely drove their formation. This study identified the following features formed during active rifting: a) a Late Aquitanian (N4) fault-block hangingwall dipslope carbonate ramp, b) a Late Burdigalian (N7-N8) isolated normal fault-controlled carbonate platform with associated slope deposits, and c) a Late Burdigalian (N7-N8) attached fault-bounded platform with reef buildups, rimmed shelf developed on a footwall fault-tip within a basin margin structural relay zone that formed coinciding with the second stage of rifting. Variations in cyclicity have been observed within the internal stratigraphic architecture of each platform and also between platforms. High-resolution sequence stratigraphic analysis shows to be parasequences the smallest depositional packages (metre-scale cycles) within the platforms. The hangingwall dipslope carbonate ramp and the attached platform demonstrate aggradational-progradational parasequence stacking patterns. These locations appear to have been more sensitive to eustatic cyclicities, despite the active tectonic setting. The isolated, fault-controlled carbonate platform reveals disorganized stratal geometries in both platform-top and slope facies, suggesting a more complex interplay of rates of tectonic uplift and subsidence, variation in carbonate productivity, and resedimentation of carbonates, such that any sea-level cyclicity is obscure. This study explores the interplay between different forcing mechanisms in the evolution of carbonate platforms in active extensional tectonic regions. Characterization of detailed parasequence-scale internal architecture allows the spatial variation in syn-depositional relative base-level changes to be inferred and is critical for understanding the development of rift basin carbonate platforms. Such concepts may be useful for the prediction of subsurface facies relationships beyond interwell areas in hydrocarbon exploration and reservoir modeling activities.  相似文献   

12.
Subsurface Upper Triassic sediments of northern Jordan represent part of a regressive evaporitic-clastic succession that marks the shrinkage phase of the Late Triassic basin in the northern parts of the Arabian Plate. Sabkhas developed along the basin margin, whereas, oolitic shoals formed on the deeper parts of the carbonate platform. The basin reached a drewdown stage in the Risha, Palmyra and parts of northern Iraq, where halite was precipitated. Local shales, marls and argillaceous limestones are the major source rocks. The total organic content values of the shales and carbonates range between 0.5–1.9%. The main reservoir rocks are the oolitic limestones with porosities of 8–20% and permeabilities that range between 0.01–80 md. Regional swells and troughs that were cut by normal and strike-slip faulting are the main structural styles in the area. Favourable conditions for hydrocarbon generation and accumulation may be found under the Hauran Basalts in NE Jordan.  相似文献   

13.
Various studies have demonstrated the intrinsic interrelationship between tectonics and sedimentation in salt-related rift basins during extension as well as during their inversion by compression. Here, we present seven brittle–ductile analogue models to show that the longitudinal or transverse progradation of sediment filling an elongate extensional basin has a substantial impact on the growth of diapirs and their lateral geometrical variations. We use five extensional models to reveal how these prograding systems triggered diapir growth variations, from proximal to distal areas, relative to the sedimentary source. In the models, continuous passive diapir walls developed, after a short period of reactive–active diapiric activity, during syn-extensional homogeneous deposition. In contrast, non-rectilinear diapir walls grew during longitudinal prograding sedimentation. Both longitudinal and transverse post-extensional progradation triggered well-developed passive diapirs in the proximal domains, whereas incipient reactive–active diapirs, incipient roller-like diapirs, or poorly developed diapirs were generated in the distal domains, depending on the modelled sedimentary pattern. Two models included final phases of 6% and 10% shortening associated with basin inversion by compression, respectively, to discriminate compressional from purely extensional geometries. With the applied shortening, the outward flanks of existing diapir walls steepened their dips from 8°–17° to 30°–50°. Likewise, 6% of shortening narrowed the diapir walls by 32%–72%, with their fully closing (salt welds) with 10% of shortening. We compare our results with the distribution of salt walls and minibasins of the Central High Atlas diapiric basin in Morocco, which was infilled with a longitudinally prograding mixed siliciclastic and carbonatic depositional sequence during the Early–Middle Jurassic with a minimum thicknesses of 2.5–4.0 km.  相似文献   

14.
To improve the understanding of the distribution of reservoir properties along carbonate platform margins, the connection between facies, sequence stratigraphy, and early diagenesis of discontinuities along the Bathonian prograding oolitic wedge of the northeastern Aquitaine platform was investigated. Eight facies are distributed along a 50 km-outcropping transect in (1) toe-of-slope, (2) infralittoral prograding oolitic wedge, (3) platform margin (shoal), (4) open marine platform interior, (5) foreshore, and (6) terrestrial settings. The transition from shallow platform to toe-of-slope facies is marked in the field by clinoforms hundred of meters long. Carbonate production was confined to the shallow platform but carbonates were exported basinward toward the breakpoint where they cascaded down a 20–25° slope. Ooid to intraclast grainstones to rudstones pass into alternating marl-limestone deposits at an estimated paleodepth of 40–75 m. Three sea-level falls of about 10 m caused the formation of discontinuities corresponding to sequence boundaries. Along these discontinuities, erosional marine hardgrounds formed in a high-hydrodynamic environment at a water depth of less than 10 m, displaying isopachous fibrous cements and meniscus-type cements. The cements pass landward into meniscus and microstalactitic forms along the same discontinuities, which are characteristic of subaerial exposure. During the deposition of transgressive systems tracts, carbonate accumulation remained located mostly on the shallow platform. Energy level increased and carbonates were exported during the deposition of highstand systems tracts forming the infralittoral prograding oolitic wedge. During the deposition of lowstand systems tracts, carbonate production fell to near zero and intraclast strata, derived from the erosion of hardgrounds on the shallow platform, prograded basinward. Early diagenetic cements are related exclusively to discontinuities that are not found within the prograding wedge because of the continuous high sedimentation rate under lower hydrodynamic conditions. This absence of early cementation within the infralittoral prograding oolitic wedge was conducive to porosity conservation, making such features good targets for carbonate reservoir exploration. This study proposes a novel sequence stratigraphy model for oolitic platform wedges, including facies and early diagenesis features.  相似文献   

15.
渤海湾盆地渤中凹陷古近系沉积体系演化及物源分析   总被引:22,自引:0,他引:22  
综合运用地质、测井、地震及分析化验等资料,对渤海湾盆地渤中凹陷古近系沉积体系进行了较深入的研究,研究表明渤中凹陷古近系的沉积体系主要受构造升降和湖平面变化的控制,经历了3期裂陷和湖侵,发育5套沉积体系,其中沙河街组沉积时期为裂陷期,以扇三角洲、湖底扇沉积为主,并发育特征的滩坝及浅水台地相沉积;东营组沉积时期为湖侵期,主要发育大型湖泊三角洲沉积,并逐渐向辫状河相过渡。构造及沉积体系分析认为,沙三段沉积时期物源丰富,主要来自石臼坨凸起、渤南和庙西凸起,沙一、二段沉积时期物源有限,东三沉积期物源主要来自石臼坨和沙东南凸起,东二沉积期大面积的湖侵使得本区处于浅湖-半深湖环境,凹陷周边大量古水系将石臼坨凸起、沙垒田凸起的物源带入凹陷中沉积,使得大型三角洲叠覆体广泛发育。  相似文献   

16.
Carbonate karst is one of the research highlights in the field of carbonate reservoir geology. Here, we report on a new type of karst formed in the Middle Permian Maokou Formation, southern Sichuan Basin, SW China, i.e., inland facies-controlled eogenetic karst, which is different from the previously defined telogenetic karst. This karst is eogenetic as the formation was buried at shallow depths prior to being subaerially exposed for a period of 7–8 Myr, in the paleo-continental region of the Upper Yangtze Uplift. Subaerial exposure may have been caused by a sea level regression during the Tungwu Orogeny, which gave rise to a depositional hiatus over a broad area. The top of the Maokou Formation is commonly marked by a weathered crust and an unconformable relationship with overlying layers. Below the surface, the Maokou Formation contains sediments deposited by an underground drainage. The geological setting can be inferred from an inland karst far from coastline. The subsurface karst interval consists mainly of coarse-grained limestone and micrite, with the former occurring in shoal facies deposited in a high-energy depositional environment, and the latter in non-shoal facies deposited in a low-energy environment. Both of them were interbedded with in variable thicknesses. The coarse-grained limestone layers with high porosity and permeability acted as inception horizons, more favourable for the development of karst than the micritic layers with low porosity and permeability. Therefore, in places where both coarse-grained limestone and micrite are present, the karst is considered to be facies-controlled. The primary permeability of the coarse-grained limestone, combined with the permeability provided by faults and fractures, provides sufficient channels for karst water. Formation of the karst system was characterized by contemporaneous development at multiple levels, as controlled by the stratigraphic position of coarse-grained shoal facies. The karst reservoir therefore developed in both karst highland and karst transitional zone (area between the karst highland and karst basin). According to this model of karstification, hydrocarbon exploration should focus on karst highlands located on palaeohighs and in synclines located far from fault zones.  相似文献   

17.
Jurassic-Cretaceous rift successions and basin geometries of the Sverdrup Basin are reconstructed from a review and integration of stratigraphy, igneous records, outcrop maps, and subsurface data. The rift onset unconformity is in the Lower Jurassic portion of the Heiberg Group (approximately 200–190 Ma). Facies transgress from early syn-rift sandstones of the King Christian Formation to marine mudstones of the Jameson Bay Formation. The syn-rift succession of marine mudstones in the basin centre, Jameson Bay to Deer Bay formations, ranges from Early Jurassic (Pleinsbachian) to Early Cretaceous (Valanginian). Early post-rift deposits of the lower Isachsen Formation are truncated by the sub-Hauterivian unconformity, which is interpreted as a break up unconformity at approximately 135–130 Ma. Cessation of rift subsidence allowed for late post-rift sandstone deposits of the Isachsen Formation to be distributed across the entire basin. Marine deposition to form mudstone of the Christopher Formation throughout the Canadian Arctic Islands and outside of the rift basin records establishment of a broad marine shelf during post-rift thermal subsidence at the start of a passive margin stage. The onset of the High Arctic Large Igneous Province at approximately 130 Ma appears to coincide with the breakup unconformity, and it is quite typical that magma-poor rifted margins have mainly post-rift igneous rocks. We extend the magma-poor characterization where rifting is driven by lithospheric extension, to speculatively consider that the records from Sverdrup Basin are consistent with tectonic models of retro-arc extension and intra-continental rifting that have previously been proposed for the Amerasia Basin under the Arctic Ocean.  相似文献   

18.
The Cretaceous Tres Pasos Formation of southern Chile records a slope system characterized by >800 m of paleo-bathymetric relief. Channel deposits are exposed in an outcrop 2.5 km long by 125 m thick and are located in proximity to the toe of a slope clinoform. Exquisite exposures of channel strata offer a unique opportunity for high-resolution analyses of channel stacking patterns and provide insight into the evolution of conduits that transport sediment from continents to the deep ocean.Eighteen slope channels, or channel elements, are present in the strata studied. They are 6–15 m thick and comprised of stacked turbiditic sedimentation units. Channel fills are characterized by a gradational transition from amalgamated sandstone-rich facies in the channel axes to thinly interbedded sandstone and siltstone at the channel margins over distances of 10–30 m. These elements are generally considered to be ∼300 m wide and were formed by punctuated periods of incision and sedimentary bypass, followed by in-filling by collapsing turbidity currents. Out-of-channel deposits consist primarily of fine-grained facies, which are typically covered by vegetation in the study area.The channel strata of the mapped portion of the Tres Pasos Formation can be grouped into three channel complexes 25–70 m thick. Complexes are differentiated based on the preservation of siltstone-dominated deposits (bypass drapes and channel margin), which persist across the entire outcrop belt and coincide with shifts in channel stacking pattern. The oldest four channel elements (channel complex 1) are characterized by the highest lateral offsets, relative to one another. These are interpreted to record the most unconfined channel-stacking pattern present. As the channel system evolved (channel complexes 2 and 3), channel elements began to stack on top of one another, due to the increased confinement imparted on the slope channel system. The amount of vertical offset between successive channel elements preserves the record of channel aggradation as well as erosional degradation. The greatest vertical offset observed is associated with the oldest channels; as the system matured, vertical offset decreased. This decrease in vertical offset is coincident with the decrease in lateral offset of channels. The lateral offset decrease is attributed to establishment of constructional confinement and is the consequence of increased focusing of successive channel-initiating gravity flows. As confinement establishes, channels are predisposed toward underfilled conditions upon abandonment. The capture of channel-initiating currents along channel abandonment relief fairways focused incision and resulted in increased erosion and decreased vertical offset. The consequence of these conditions is an upward increase in channel element amalgamation.The organized stacking of slope channels observed in the Tres Pasos Formation is comparable to that of seismically imaged channel-levee or entrenched slope valley systems. By analogy to these 3-dimentionally constrained systems, a portion of the poorly exposed out-of-channel facies in the Tres Pasos Formation is attributed to aggradational internal levee deposits. The facies insight derived from the studied outcrop provides insight into analogous hydrocarbon-bearing units from numerous continental margins.  相似文献   

19.
Mapping geological details and interpreting three-dimensional geometries in a highly heterogeneous outcrop such as the exposure at Big Rock Quarry has been a continuous challenge especially because high vertical cliffs make access to most of the rocks difficult for direct geological observations. Previous interpretations of facies architecture were derived from gamma-ray profiles, a core and measurements made on two-dimensional photomosaics. This paper represents the first attempt of three-dimensional interpretation of the geometry and facies pattern of the Jackfork nested channel complex deposited at the base-of-slope.Examination of the photo real model of the outcrop with assigned lithologies allowed extraction of accurate 3-D qualitative, as well as quantitative (channel dimensions) geometric information. This facilitated interpretation and reconstruction of the submarine channel complex architecture making possible correlations of strata exposed on the two sides of the quarry.Most of the exposed vertically and laterally stacked channels are large, aggradational with well-defined axial regions overlain by matrix-supported breccia which grades upward into amalgamated sandstones. The thickness of the sandstone decreases toward the southeastern end of the quarry where more shale is present. The channel infill consists of thin-bedded sandstones interlayered with shale which overlain the breccia. The upper part of the quarry is made up of smaller, lateral migrating channels.Significant channel width and thickness variation can be recognized at outcrop scale. Thirty-eight identified channels are characterized by a relatively low aspect ratio (4:1 to 32:1) with channel dimensions ranging from 25 m to 314 m wide and 2 m-24 m deep. Bed thickness distributions of various facies show that the sandstone comprises a significant proportion (83%) of the total channel thickness, while shale and breccia represent about 8%, and 17% respectively. This yields a high net-to gross ratio of more than 80%.Compared to previous reconstructions our 3-D photo real model is more accurate and it can be used to calibrate simulation of processes in deep-water environments.  相似文献   

20.
The Songliao Basin is a large-scale petroliferous basin in China. With a gradual decline in conventional oil production, the exploration and development of replacement resources in the basin is becoming increasingly important. Previous studies have shown that the Cretaceous Qingshankou Formation (K2qn) has favorable geological conditions for the formation of shale oil. Thus, shale oil in the Qingshankou Formation represents a promising and practical replacement resource for conventional oil. In this study, geological field surveys, core observation, sample tests, and the analysis of well logs were applied to study the geochemical and reservoir characteristics of shales, identify shale oil beds, build shale oil enrichment models, and classify favorable exploration areas of shale oil from the Cretaceous Qingshankou Formation. The organic matter content is high in shales from the first member of the Cretaceous Qingshankou Formation (K2qn1), with average total organic carbon (TOC) content exceeding 2%. The organic matter is mainly derived from lower aquatic organisms in a reducing brackish to fresh water environment, resulting in mostly type I kerogen. The vitrinite reflectance (Ro) and the temperature at which the maximum is release of hydrocarbons from cracking of kerogen occurred during pyrolysis (Tmax) respectively range from 0.5% to 1.1% and from 430 °C to 450 °C, indicating that the K2qn1 shales are in the low-mature to mature stage (Ro ranges from 0.5% to 1.2%) and currently generating a large amount of oil. The favorable depth for oil generation and expulsion is 1800–2200 m and 1900–2500 m, respectively as determined by basin modeling. The reserving space of the K2qn1 shale oil includes micropores and mircofractures. The micropore reservoirs are developed in shales interbedded with siltstones exhibiting high gamma ray (GR), high resistivity (Rt), low density (DEN), and slightly abnormal spontaneous potential (SP) in the well-logging curves. The microfracture reservoirs are mainly thick shales with high Rt, high AC (acoustic transit time), high GR, low DEN, and abnormal SP. Based on the shale distribution, geochemical characteristics, reservoir types, fracture development, and the process of shale oil generation and enrichment, the southern Taikang and northern Da'an are classified as two favorable shale oil exploration areas in the Songliao Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号