首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential source rocks on the Laminaria High, a region of the northern Bonaparte Basin on the North West Shelf of Australia, occur within the Middle Jurassic to Lower Cretaceous early to post-rift sequences. Twenty-two representative immature source rock samples from the Jurassic to Lower Cretaceous (Plover, Laminaria, Frigate, Flamingo and Echuca Shoals) sequences were analysed to define the hydrocarbon products that analogous mature source rocks could have generated during thermal maturation and filled the petroleum reservoirs in the Laminaria High region. Rock-Eval pyrolysis data indicate that all the source rocks contain type II–III organic matter and vary in organic richness and quality. Open system pyrolysis-gas chromatography on extracted rock samples show a dominance of aliphatic components in the pyrolysates. The Plover source rocks are the exception which exhibit high phenolic contents due to their predominant land-plant contribution. Most of the kerogens have the potential to generate Paraffinic–Naphthenic–Aromatic oils with low wax contents. Bulk kinetic analyses reveal a relatively broad distribution of activation energies that are directly related to the heterogeneity in the kerogens. These kinetic parameters suggest different degrees of thermal stability, with the predicted commencement of petroleum generation under geological heating conditions covering a relatively broad temperature range from 95 to 135 °C for the Upper Jurassic−Lower Cretaceous source rocks. Both shales and coals of the Middle Jurassic Plover Formation have the potential to generate oil at relatively higher temperatures (140–145 °C) than those measured for crude oils in previous studies. Hence, the Frigate and the Flamingo formations are the main potential sources of oils reservoired in the Laminaria and Corallina fields. Apart from being a reservoir, the Laminaria Formation also contains organic-rich layers, with the potential to generate oil. For the majority of samples analysed, the compositional kinetic model predictions indicate that 80% of the hydrocarbons were generated as oil and 20% as gas. The exception is the Lower Cretaceous Echuca Shoals Formation which shows the potential to generate a greater proportion (40%) of gas despite its marine source affinity, due to inertinite dominating the maceral assemblage.  相似文献   

2.
Three bitumen fractions were obtained and systematically analysed for the terpane and sterane composition from 30 Paleozoic source rocks and 64 bitumen-containing reservoir rocks within the Upper Sinian, Lower Cambrian, Lower Silurian, Middle Carboniferous, Upper Permian and Lower Triassic strata in the Sichuan Basin and neighbouring areas, China. These bitumen fractions include extractable oils (bitumen I), oil-bearing fluid inclusions and/or closely associated components with the kerogen or pyrobitumen/mineral matrix, released during kerogen or pyrobitumen isolation and demineralization (bitumen II), and bound compounds within the kerogen or pyrobitumen released by confined pyrolysis (bitumen III). In addition, atomic H/C and O/C ratios and carbon isotopic compositions of kerogen and pyrobitumen from some of the samples were measured. Geochemical results and geological information suggest that: (1) in the Central Sichuan Basin, hydrocarbon gases in reservoirs within the fourth section of the Upper Sinian Dengying Formation were derived from both the Lower Cambrian and Upper Sinian source rocks; and (2) in the Eastern Sichuan Basin, hydrocarbon gases in Middle Carboniferous Huanglong Formation reservoirs were mainly derived from Lower Silurian source rocks, while those in Upper Permian and Lower Triassic reservoirs were mainly derived from both Upper Permian and Lower Silurian marine source rocks. For both the source and reservoir rocks, bitumen III fractions generally show relatively lower maturity near the peak oil generation stage, while the other two bitumen fractions show very high maturities based on terpane and sterane distributions. Tricyclic terpanes evolved from the distribution pattern C20 < C21 < C23, through C20 < C21 > C23, finally to C20 > C21 > C23 during severe thermal stress. The concentration of C30 diahopane in bitumen III (the bound components released from confined pyrolysis) is substantially lower than in the other two bitumen fractions for four terrigenous Upper Permian source rocks, demonstrating that this compound originated from free hopanoid precursors, rather than hopanoids bound to the kerogen.  相似文献   

3.
In the Chelif basin, the geochemical characterization reveals that the Upper Cretaceous and Messinian shales have a high generation potential. The former exhibits fair to good TOC values ranging from 0.5 to 1.2% with a max. of 7%. The Messinian series show TOC values comprised between 0.5 and 2.3% and a high hydrogen index (HI) with values up to 566 mg HC/g TOC. Based on petroleum geochemistry (CPLC and CPGC) technics, the oil-to source correlation shows that the oil of the Tliouanet field display the same signature as extracts from the Upper Cretaceous source rocks (Cenomanian to Campanian). In contrast, oil from the Ain Zeft field contains oleanane, and could thus have been sourced by the Messinian black shale or older Cenozoic series. Two petroleum systems are distinguished: Cretaceous (source rock) – middle to upper Miocene (reservoirs) and Messinian (source rock)/Messinian (reservoirs). Overall, the distribution of Cretaceous-sourced oil in the south, directly connected with the surface trace of the main border fault of the Neogene pull-apart basin, rather suggests a dismigration from deeper reservoirs located in the parautochthonous subthrust units or in the underthrust foreland, rather than from the Tellian allochthon itself (the latter being mainly made up of tectonic mélange at the base, reworking blocks and slivers of Upper Cretaceous black shale and Lower Miocene clastics). Conversely, the occurrence of Cenozoic-sourced oils in the north suggests that the Neogene depocenters of the Chelif thrust-top pull-apart basin reached locally the oil window, and therefore account for a local oil kitchen zone. In spite of their limited extension, allochthonous Upper cretaceous Tellian formations still conceal potential source rock layers, particularly around the Dahra Mountains and the Tliouanet field. Additionally they are also recognized by the W11 well in the western part of the basin (Tahamda). The results of the thermal modelling of the same well shows that there is generation and migration of oil from this source rock level even at recent times (since 8 Ma), coevally with the Plio-Quaternary traps formation. Therefore, there is a possibility of an in-situ oil migration and accumulation, even from Tellian Cretaceous units, to the recent structures, like in the Sedra structure. However, the oil remigration from deep early accumulations into the Miocene reservoirs is the most favourable case in terms of hydrocarbon potential of the Chelif basin.  相似文献   

4.
Structured organic matters of the Palynomorphs of mainly dinoflagellate cysts are used in this study for dating the limestone, black shale, and marl of the Middle Jurassic (Bajocian–Bathonian) Sargelu Formation, Upper Jurassic (Upper Callovian – Lower Oxfordian) Naokelekan Formation, Upper Jurassic (Kimeridgian and Oxfordian) Gotnia and Barsarine Formations, and Upper Jurassic – Lower Cretaceous (Tithonian-Beriassian) Chia Gara source rock Formations while spore species of Cyathidites australis and Glechenidites senonicus are used for maturation assessments of this succession. Materials' used for this palynological study are 320 core and cutting samples of twelve oil wells and three outcrops in North Iraq.Terpane and sterane biomarker distributions, as well as stable isotope values, were determined for oils potential source rock extracts of Jurassic-Lower Cretaceous strata to determine valid oil-to-source rock correlations in North Iraq. Two subfamily carbonate oil types-one of Middle Jurassic age (Sargelu) carbonate rock and the other of mixed Upper Jurassic/Cretaceous age (Chia Gara) with Sargelu sources as well as a different oil family related to Triassic marls, were identified based on multivariate statistical analysis (HCA & PCA). Middle Jurassic subfamily A oils from Demir Dagh oil field correlate well with rich, marginally mature, Sargelu source rocks in well Mk-2 near the city of Baiji. In contrast, subfamily B oils have a greater proportion of C28/C29 steranes, indicating they were generated from Upper Jurassic/Lower Cretaceous carbonates such as those at Gillabat oil field north of Mansuriyah Lake. Oils from Gillabat field thus indicate a lower degree of correlation with the Sargelu source rocks than do oils from Demir Dagh field.Palynofacies assessments are performed for this studied succession by ternary kerogen plots of the phytoclast, amorphous organic matters, and palynomorphs. From the diagram of these plots and maturation analysis, it could be assessed that the formations of Chia Gara and Sargelu are both deposited in distal suboxic to anoxic basin and can be correlated with kerogens classified microscopically as Type A and Type B and chemically as Type II. The organic matter, comprised principally of brazinophyte algae, dinoflagellate cysts, spores, pollen, foraminifera test linings, and phytoclasts in all these formations and hence affected with upwelling current. These deposit contain up to 18 wt% total organic matters that are capable to generate hydrocarbons within mature stage of thermal alteration index (TAI) range in Stalplin's scale (Staplin, 1969) of 2.7–3.0 for the Chia Gara Formation and 2.9–3.1 for the Sargelu Formation. Case study examples of these oil prone strata are; one 7-m (23-ft) thick section of the Sargelu Formation averages 44.2 mg HC/g S2 and 439 °C Tmax (Rock-Eval pyrolysis analyses) and 16 wt% TOC especially in well Mk-2 whereas, one 8-m (26-ft) thick section of the Chia Gara and 1-m (3-ft) section of Naokelekan Formations average 44.5 mg HC/g S2 and 440 °C Tmax and 14 wt% TOC especially in well Aj-8. One-dimension, petroleum system models of key wells using IES PetroMod Software can confirm their oil generation capability.These hydrocarbon type accumulation sites are illustrated in structural cross sections and maps in North Iraq.  相似文献   

5.
The Unst Basin is situated in the northern North Sea between the East Shetland Basin and the Shetland Isles. The basin is essentially a three-armed, Permo-Triassic fault-controlled basin containing up to 3600 m of red-beds. This is overlain by a westerly thickening Jurassic and early Cretaceous sequence, the stratigraphy of which is very similar to that of the East Shetland Basin. In particular, the Brent Group (140 m), Humber Group (685 m) and Cromer Knoll Group (300 m) are well represented.As a result of Laramide uplift of the area, the thick Upper Cretaceous and Palaeocene strata of the East Shetland Basin are absent from the Unst Basin. This uplift resulted in substantial erosion within the Unst Basin providing the major source for Palaeocene sands in the Viking Graben and the Faeroes Basin. Late Palaeocene and younger Tertiary strata transgress westwards across this erosion surface.Petroleum exploration within the basin culminated in the drilling of two exploration wells. These wells encountered potential reservoir and source rocks in the Jurassic section. However, geochemical analyses indicate these source rocks are immature for hydrocarbon generation within the Unst Basin. It is concluded that the Unst Basin has a low petroleum potential.  相似文献   

6.
The most petroliferous province in Syria is the Euphrates Graben system in the eastern part of the country. The source of the produced light and heavy oils has been a matter of debate from a petroleum geochemistry perspective as there are several possible source rock and just one proven source rock (R'mah formation). Based on gross composition and oil-oil correlation of biomarker and non-biomarker characteristics, three oil families have here been identified in the study area. Crude oils of Family 1 have been found to be generated from a marine and clay-rich source rock that is older than Jurassic in age based on age-related biomarker parameters (steranes and nordiacholestane ratios). Maturity-related parameters (aliphatic biomarkers and diamondoids) signal that the source of this oil family had a high maturation level. These features fit very well to the Tanf Formation (Abba Group) which is equivalent to Lower Silurian Hot Shales found elsewhere in the Middle East and North Africa. However, the Upper Cretaceous R'mah Formation and Shiranish Formation were found to be responsible for generating the majority of the crude oils studied (Family 2). Compositional and molecular differences between Families 2A and 2B were attributed to facies and subtle maturation variations. Geochemical oil-source rock correlations indicate that Family 2A was most likely sourced from the Shiranish Formation, while Family 2B was sourced from the R'mah Formation. Secondary alteration processes influenced bulk petroleum composition, most notably the depletion of light ends and the lowering of API gravity, particularly in the northwestern part of the graben.  相似文献   

7.
The Alpine Foreland Basin is a minor oil and moderate gas province in central Europe. In the Austrian part of the Alpine Foreland Basin, oil and minor thermal gas are thought to be predominantly sourced from Lower Oligocene horizons (Schöneck and Eggerding formations). The source rocks are immature where the oil fields are located and enter the oil window at ca. 4 km depth beneath the Alpine nappes indicating long-distance lateral migration. Most important reservoirs are Upper Cretaceous and Eocene basal sandstones.Stable carbon isotope and biomarker ratios of oils from different reservoirs indicate compositional trends in W-E direction which reflect differences in source, depositional environment (facies), and maturity of potential source rocks. Thermal maturity parameters from oils of different fields are only in the western part consistent with northward displacement of immature oils by subsequently generated oils. In the eastern part of the basin different migration pathways must be assumed. The trend in S/(S + R) isomerisation of ααα-C29 steranes versus the αββ (20R)/ααα (20R) C29 steranes ratio from oil samples can be explained by differences in thermal maturation without involving long-distance migration. The results argue for hydrocarbon migration through highly permeable carrier beds or open faults rather than relatively short migration distances from the source. The lateral distance of oil fields to the position of mature source rocks beneath the Alpine nappes in the south suggests minimum migration distances between less than 20 km and more than 50 km.Biomarker compositions of the oils suggest Oligocene shaly to marly successions (i.e. Schoeneck, Dynow, and Eggerding formations) as potential source rocks, taking into account their immature character. Best matches are obtained between the oils and units a/b (marly shale) and c (black shale) of the “normal” Schöneck Formation, as well as with the so-called “Oberhofen Facies”. Results from open system pyrolysis-gas chromatography of potential source rocks indicate slightly higher sulphur content of the resulting pyrolysate from unit b. The enhanced dibenzothiophene/phenanthrene ratios of oils from the western part of the basin would be consistent with a higher contribution of unit b to hydrocarbon expulsion in this area. Differences in the relative contribution of sedimentary units to oil generation are inherited from thickness variations of respective units in the overthrusted sediments. The observed trend towards lighter δ13C values of hydrocarbon fractions from oil fields in a W-E direction are consistent with lower δ13C values of organic matter in unit c.  相似文献   

8.
A reconnaissance study of potential hydrocarbon source rocks of Paleozoic to Cenozoic age from the highly remote New Siberian Islands Archipelago (Russian Arctic) was carried out. 101 samples were collected from outcrops representing the principal Paleozoic-Cenozoic units across the entire archipelago. Organic petrological and geochemical analyses (vitrinite reflectance measurements, Rock-Eval pyrolysis, GC-MS) were undertaken in order to screen the maturity, quality and quantity of the organic matter in the outcrop samples. The lithology varies from continental sedimentary rocks with coal particles to shallow marine carbonates and deep marine black shales. Several organic-rich intervals were identified in the Upper Paleozoic to Lower Cenozoic succession. Lower Devonian shales were found to have the highest source rock potential of all Paleozoic units. Middle Carboniferous-Permian and Triassic units appear to have a good potential for natural gas formation. Late Mesozoic (Cretaceous) and Cenozoic low-rank coals, lignites, and coal-bearing sandstones also display a potential for gas generation. Kerogen type III (humic, gas-prone) dominates in most of the samples, and indicates deposition in lacustrine to coastal paleoenvironments. Most of the samples (except some of Cretaceous and Paleogene age) reached oil window maturities, whereas the Devonian to Carboniferous units shared a maturity mainly within the gas window.  相似文献   

9.
Geological samples from the southern Kerguelen Plateau include Lower Cretaceous basalt and lava breccia, probable Lower Cretaceous conglomerate and shelf limestone, Upper Cretaceous chert with dolomite, Upper Cretaceous-Eocene ooze, and Tertiary conglomerate. Neogene sediments are only a few hundred m thick, and include foraminiferal and diatomaceous ooze, and ice-rafted debris. In conjunction with seismic reflection profiles, the samples indicate Early Cretaceous near-shore volcanism, followed by erosion, sedimentation, and subsidence through Cretaceous; arching of the plateau at the end of Cretaceous; subsidence through Paleogene; widespread emergence in mid-Tertiary; and slow subsidence through Neogene.  相似文献   

10.
Crude oil samples from Cretaceous and Tertiary reservoir sections in the Zagros Fold Belt oil fields, southern Iraq were investigated using non-biomarker and biomarker parameters. The results of this study have been used to assess source of organic matter, and the genetic link between oils and their potential source rocks in the basin. The oils are characterized by high sulphur and trace metal (Ni, V) contents and relatively low API gravity values (17.4–22.7° API). This indicates that these oils are heavy and generated from a marine source rock containing Type II-S kerogen. This is supported by their biomarker distributions of normal alkanes, regular isoprenoids, terpanes and steranes and the bulk carbon isotope compositions of their saturated and aromatic hydrocarbons. The oils are characterized by low Pr/Ph ratios (<1), high values of the C35 homohopane index and C31-22R/C30 hopane ratios, relatively high C27 sterane concentrations, and the predominance of C29-norhopane. These biomarkers suggest that the oils were generated predominantly from a marine carbonate source rock, deposited under reducing conditions and containing plankton/algal and microorganisms source input. The presence of gammacerane also suggests water column stratification during source rock deposition.The biomarker characteristics of the oils are consistent with those of the Middle Jurassic Sargelu carbonate as the effective source rock in the basin. Biomarker maturity data indicate that the oils were generated from early maturity source rocks.  相似文献   

11.
Significant oil and gas accumulations occur in and around Lougheed Island, Arctic Canada, where hydrocarbon prospectivity is controlled by potential source rock distribution and composition. The Middle to Upper Triassic rocks of the Schei Point Group (e.g. Murray Harbour and Hoyle Bay formations) contain a mixture of Types I and II organic matter (Tasmanales marine algae, amorphous fluorescing bituminite). These source rocks are within the oil generation zone and have HI values up to 600 mg HC/g Corg. The younger source rocks of the Lower Jurassic Jameson Bay and the Upper Jurassic Ringnes formations contain mainly gas-prone Type II/III organic matter and are marginally mature. Vitrinite reflectance profiles suggest an effective geothermal gradient essentially similar to the present-day gradient (20 to 30°C/km). Maturation gradients are low, ranging from 0.125 to 0.185 log%Ro/km. Increases in subsidence rate in the Early Cretaceous suggest that the actual heat flow history was variable and has probably diminished from that time. The high deposition rates of the Christopher Formation shales coincide with the main phase of rifting in Aptian-Albian times. Uplift and increased sediment supply in the Maastrichtian resulted in a new sedimentary and tectonic regime, which culminated in the final phase of the Eurekan Orogeny. Burial history models indicate that hydrocarbon generation in the Schei Point Group took place during rifting in Early Cretaceous, long before any Eurekan deformation.  相似文献   

12.
华南陆缘出露的上三叠统-白垩系,累计厚度超过10 000m,露头调查未见油苗,烃源岩主要为泥岩、碳质泥岩和煤线,有机质类型以Ⅱ-Ⅲ型为主。上三叠统小水组,发育较深水的海相、Ⅱ型良好烃源岩,TOC为1.17%~5.43%;下侏罗统桥源组发育海陆过渡环境的Ⅲ型良好烃源岩,TOC为1.36%~10.37%;下侏罗统其他层系(金鸡组、银瓶山组、上龙水组、长埔组、吉水门组)发育浅海-半深海相的中等-好的烃源岩,TOC为0.5%~1.76%。烃源岩均已处于成熟-过成熟阶段。小水组、蓝塘群烃源岩品质良好,厚度巨大,在南海北部海域开展中生界烃源岩研究时,值得重点关注是否有与之相当的烃源岩层系发育。  相似文献   

13.
台湾海峡地区新生代的构造演化   总被引:9,自引:1,他引:9  
根据采集反射剖面,结合区域地质资料,分析了晋江凹陷、九龙江凹陷、新竹凹陷、台中凹陷和台湾凹陷为半地堑结构。新竹凹陷和台中凹陷下拗,演变为前陆盆地。晋江凹陷和九龙江凹陷因岩石圈上隆,其沉积较薄。这种模式决定了在台湾海峡地区,西部的生油气层为下第三系,而东部的生油气层为下第三系和上第三系。  相似文献   

14.
Differing seismic facies are observed from within the Westphalian sequences of the southern North Sea. A review of published synthetic seismograms and seismic data from known coal-bearing basins establishes seismic facies types and their relationships. Similar reflection character is recognized from Westphalian sequences in the southern North Sea and lithologies confirmed by borehole information. Probable sand/silt or clastic-prone Upper Coal Measures (Westphalian C/D) stages and coal-prone Lower and Middle Coal Measures (Westphalian A, B and part C) stages can be defined and mapped, providing information on the regional distribution of source and reservoir rocks and stratigraphic plays. It is suggested that sand-prone channel complexes or clastic dominated areas within the mainly A/B stages can be recognized and mapped, providing information on migration pathways and stratigraphic plays.  相似文献   

15.
The prolific, oil-bearing basins of eastern Venezuela developed through an unusual confluence of Atlantic, Caribbean and Pacific plate tectonic events. Mesozoic rifting and passive margin development created ideal conditions for the deposition of world-class hydrocarbon source rocks. In the Cenozoic, transpressive, west-to-east movement of the Caribbean plate along the northern margin of Venezuela led to the maturation of those source rocks in several extended pulses, directly attributable to regional tectonic events. The combination of these elements with well-developed structural and stratigraphic fairways resulted in remarkably efficient migration of large volumes of oil and gas, which accumulated along the flanks of thick sedimentary depocenters.At least four proven and potential hydrocarbon source rocks contribute to oil and gas accumulations. Cretaceous oil-prone, marine source rocks, and Miocene oil- and gas-prone, paralic source rocks are well documented. We used reservoired oils, seeps, organic-rich rocks, and fluid inclusions to identify probable Jurassic hypersaline-lacustrine, and Albian carbonate source rocks. Hydrocarbon maturation began during the Early Miocene in the present-day Serrania del Interior, as the Caribbean plate moved eastward relative to South America. Large volumes of hydrocarbons expelled during this period were lost due to lack of effective traps and seals. By the Middle Miocene, however, when source rocks from the more recent foredeeps began to mature, reservoir, migration pathways, and topseal were in place. Rapid, tectonically driven burial created the opportunity for unusually efficient migration and trapping of these later-expelled hydrocarbons. The generally eastward migration of broad depocenters across Venezuela was supplemented by local, tectonically induced subsidence. These subsidence patterns and later migration resulted in the mixing of hydrocarbons from different source rocks, and in a complex map pattern of variable oil quality that was further modified by biodegradation, late gas migration, water washing, and subsequent burial.The integration of plate tectonic reconstructions with the history of source rock deposition and maturation provides significant insights into the genesis, evolution, alteration, and demise of Eastern Venezuela hydrocarbon systems. We used this analysis to identify additional play potential associated with probable Jurassic and Albian hydrocarbon source rocks, often overlooked in discussions of Venezuela. The results suggest that oils associated with likely Jurassic source rocks originated in restricted, rift-controlled depressions lying at high angles to the eventual margins of the South Atlantic, and that Albian oils are likely related to carbonate deposition along these margins, post-continental break up. In terms of tectonic history, the inferred Mesozoic rift system is the eastern continuation of the Espino Graben, whose remnant structures underlie both the Serrania del Interior and the Gulf of Paria, where thick evaporite sections have been penetrated. The pattern of basin structure and associated Mesozoic deposition as depicted in the model has important implications for the Mesozoic paleogeography of northern South America and Africa, Cuba and the Yucatan and associated new play potential.  相似文献   

16.
Coals are oil source rocks in many of the Tertiary basins of Southeast Asia. The precursors of these hydrogen rich and oxygen poor coals are coastal plain peats which have mainly developed in an everwet and tropical climate. In these environments water flow and reworking can concentrate liptinitic kerogen in preference to vitrinitic kerogen. The distribution, petrography and chemistry of the coaly Miocene source rocks present in the Kutai Basin are described. The recognition of environmental controls on the accumulation of potentially oil-prone coals and coaly shales in deltaic environments is an aid to predictive source bed recognition in petroleum exploration. Comments on the environment of deposition of coaly sediments in the basins of the Norwegian Sea are discussed with reference to their possible oil and/or gas sourcing potential. The Triassic - Jurassic coals of the Haltenbanken area may become more oil-prone towards the delta margins, and facies mapping could aid oil exploration in this area.  相似文献   

17.
Thermal history, petroleum system, structural, and tectonic constraints are reviewed and integrated in order to derive a new conceptual model for the Norman Wells oil field, and a new play type for tectonically active foreland regions. The thermal history recorded by Devonian rocks suggests that source rocks experienced peak thermal conditions in the Triassic–Jurassic, during which time oil was likely generated. After initial oil generation and expulsion, the Canol Formation oil shale retained a certain fraction of hydrocarbons. The shallow reservoir (650–350 m) is a Devonian carbonate bank overlain by the Canol Formation and resides within a hanging wall block of the Norman Range thrust fault. Both reservoir and source rocks are naturally fractured and have produced high API non-biodegraded oil. Thrust faults in the region formed after the Paleocene, and a structural cross-section of the field shows that the source and reservoir rocks at Norman Wells have been exhumed by over 1 km since then.The key proposition of the exhumation model is that as Canol Formation rocks underwent thrust-driven exhumation, they crossed a ductile–brittle transition zone and dip-oriented fractures formed sympathetic to the thrust fault. The combination of pore overpressure and new dip-directed subvertical fractures liberated oil from the Canol Formation and allowed for up-dip oil migration. Reservoir rocks were similarly fractured and improved permeability enhanced charging and pooling of oil. GPS and seismicity data indicate that strain transfer across the northern Cordillera is a response to accretion of the Yakutat terrane along the northern Pacific margin of North America, which is also the probable driving force for foreland shortening and rock exhumation at Norman Wells.  相似文献   

18.
墨西哥湾盆地石油的来源和分类   总被引:2,自引:0,他引:2  
通过对墨西哥湾岸盆地大量原油样品的抽样调查,其地球化学特征表明,原油的成因类型主要有5组,即①上侏罗统牛津阶海相泥灰岩;②上侏罗统牛津阶海相碳酸盐岩;③上侏罗统提塘阶海相泥灰岩;④白垩系海相碳酸盐岩—蒸发岩;⑤第三系海相三角洲碎屑岩。每一组都与特定的烃源岩有关。烃源岩为多源输入,多相(石油—天然气)变化,已达到成熟,并经历了后期填充蚀变过程。  相似文献   

19.
The Upper Cretaceous and Paleocene Gottero Sandstone was deposited as a small deep-sea fan on ophiolitic crust in a trench-slope basin. It was thrust northeastward as an allochthonous sheet in Early and Middle Cenozoic time. The Gottero, as thick as 1500 m, was probably derived from erosion of Hercynian granites and associated metamorphic rocks in northern Corsica. Outcrops of inner-fan channel, middle-fan channel and interchannel, outer-fan lobe, fan-fringe, and basin-plain facies associations indicate that the depositional model of Mutti and Ricci Lucchi for mixed-sediment deep-sea fans can be used. The original fan had a radius of 30 to 50 km. Margin setting represents fan and/or source area  相似文献   

20.
Geochemical characteristics of organic matter in the profiles of Dukla, Silesian, Sub-Silesian and Skole units of the Polish Outer Carpathians and of the Palaeozoic–Mesozoic basement in the Dębica-Rzeszów-Leżajsk-Sanok area were established based on Rock-Eval, vitrinite reflectance, isotopic and biomarker analyses of 485 rock samples. The Oligocene Menilite beds have the best hydrocarbon potential of all investigated formations within the Dukla, Silesian, and Skole units. The Ordovician, Silurian, Lower Devonian and locally Middle Jurassic strata of the Palaeozoic–Mesozoic basement are potential source rocks for oil and gas accumulated in Palaeozoic and Mesozoic reservoirs. Thirty one natural gas samples from sandstone reservoirs of the Lower Cretaceous-Lower Miocene strata within the Outer Carpathian sequence and eight from sandstone and carbonate reservoirs of the Palaeozoic–Mesozoic basement were analysed for molecular and isotopic compositions to determine their origin. Natural gases accumulated both in the Outer Carpathian and the Palaeozoic–Mesozoic basement reservoirs are genetically related to thermogenic and microbial processes. Thermogenic gaseous hydrocarbons that accumulated in the Dukla and Silesian units were generated from the Menilite beds. Thermogenic gaseous hydrocarbons that accumulated in the Sub-Silesian Unit most probably migrated from the Silesian Unit. Initial, and probably also secondary microbial methane component has been generated during microbial carbon dioxide reduction within the Oligocene Menilite beds in the Dukla Unit and Oligocene-Lower Miocene Krosno beds in the Silesian Unit. Natural gases that accumulated in traps within the Middle Devonian, Mississippian, Upper Jurassic, and Upper Cretaceous reservoirs of the Palaeozoic–Mesozoic basement were mainly generated during thermogenic processes and only sporadically from initial microbial processes. The thermogenic gases were generated from kerogen of the Ordovician-Silurian and Middle Jurassic strata. The microbial methane component occurs in a few fields of the Dukla and Silesian units and in the two accumulations in the Middle Devonian reservoirs of the Palaeozoic–Mesozoic basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号