首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The relationship between mineralogical characteristics and isotopic composition of sulfides has not received its proper share of attention from geologists, although many references are available concerning the application of sulfur isotopes to geological problems. Located in the vicinity of the contact region between the Yangtze Platform and the South China Caledonian Folding Zone, the Huxu deposit is hosted in a structural zone in quartz-diorite-porphyrite emplaced in Jurassic volcanic rocks. Sphalerite and galena are the principal ore minerals in the deposit. (1) Sphalerite is highly variable in color and this variation can be related to its chemical composition and sulfur isotopic characters. Dark colored sphalerites are poor in Zn and Ni, rich in Pb, Cu, Fe, Ag and Au and have high δ34S values, while the opposite is true for light-colored ones. (2) δ34S of sphalerite is negatively correlated with the contents of Zn and Ni and positively correlated with the contents of Pb, Cu, Ag and Au, with the absolute values of the correlation coefficients being greater than 0.7. The above two characters suggest that the sulfur isotopic composition of sphalerite is controlled not only by the physicochemical conditions under which the mineral was formed, but also by mineralogical characteristics of the host mineral. (3) Apparent correlations exist among the constituent elements in the sphalerite. For example, Zn is negatively correlated with Cu, Pb, Fe, Ag and Au and positively correlated with Ni. (4) Sphalerites of the same color in the same hand specimen always show similar characters with respect to trace element and sulfur isotopes. (5) Two distinct trends of evolution can be recognized between Zn and Cu, Zn and Pb, Zn and Ag and between these elements on one hand and δ34S on the other, reflecting that the ore-forming solutions may have resulted from mixing of fluids of different origins. (6) Pb is uniformly distributed in sphalerite and shows positive correlations with Cu, Fe, Ag and δ34S, suggesting isomorphic substitution in the sphalerite lattice. This project was financially supported by the Open Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences.  相似文献   

2.
Abstract. The Suttsu polymetallic vein-type deposit, hosted by tuff, tuff breccia and shale of the Miocene Kunnui Formation and propylitized hornblende-augite andesite, is located in southwestern Hokkaido, Japan. It has been exploited and explored for Cu, Pb, Zn and Ag until 1962.
In this study, we examined K-Ar ages, ore mineralogical characteristics and fluid inclusions to obtain new data for the deposit.
The K-Ar ages on sericite indicate that the polymetallic mineralization occurred in Late Miocene (8.1–5.7 Ma). The polymetallic banded ore from the Ohkubo vein is characterized by an abundance of Au, Ag, Sn, Bi, in, Se and Te. These metals are mainly ascribed to electrum (30.3–37.8 atom% Ag), Se-bearing pavonite (8.5–9.5 wt% Se), gustavite-lillianite solid solution, Se-bearing bismuthinite (5.0–5.3 wt% Se), kawazulite, cassiterite, Sn-bearing chalcopyrite (3.3–4.2 wt% Sn), In-bearing stannite, stannite-chalcopyrite solid solution, and In- and Sn-bearing sphalerite (2.6–8.4 wt% In and 1.8–4.3 wt% Sn), occurring in narrow bands of the ore. The In- and Sn-bearing sphalerite likely forms a sphalerite-roquesite-stannite solid solution with the contents of roquesite and stannite being about 2–9 and 2-A mole%, respectively. Temperatures and salinities (in wt% NaCl equiv.) of the ore fluids are estimated to be 180-250C and 3–4 wt%, respectively. The Sn-bearing chalcopyrite therefore probably precipitated metastably. The geologic and mineralogical features suggest that pre-Tertiary basement rocks rich in organic material underlie the Miocene Kunnui Formation nearby the deposit and that they contributed to local and temporary reduction of magnetite-series magmas favorable for the early stage tin-polymetallic mineralization.  相似文献   

3.
Several important mineral deposits of Sn, Zn, Cu, Pb, and other metals associated with Devonian sediments and Yanshanian (Cretaceous) granitic rocks are known in the Dachang district (Guangxi). Early genetic hypotheses related the origin of the deposits entirely to the Yanshanian granites. Recently, it was suggested that in Devonian times an earlier syngenetic metal concentration may have occurred, later overprinted by the Yanshanian metallogeny. This contribution is aimed at placing constraints on the physicochemical conditions during the Yanshanian ore formation-remobilization by studying the sulfide chemistry (arsenopyrite, sphalerite, stannite) and fluid inclusion data on the two major deposits in the area, i.e., the polymetallic cassiterite deposit of Changpo and the Zn-Cu skarn deposit of Lamo. Sphalerite and arsenopyrite are quite abundant in both deposits; stannite is minor, but fairly widespread at Changpo, and quite rare at Lamo. They are accompanied by pyrite, pyrrhotite, galena, chalcopyrite, cassiterite, fluorite, and a large variety of other sulfides and sulfosalts. The main compositional data for sphalerite and arsenopyrite are summarized as follows:Changpo: arsenopyrite associated with pyrrhotite 31.4–36.1 at% As; Associated with pyrite 31.9–33.1 at% As; sphalerite associated with pyrrhotite 18.3–22.2 mol% FeS; associated with pyrite 10.6–18.6 mol% FeS.Lamo: arsenopyrite associated with pyrrhotite 32.9–35.3 at% As; associated with pyrite 30.3–31.7 at% As; sphalerite associated with pyrrhotite, 17.2–24.4 mol% FeS; associated with pyrite 4.2–19.6 mol% FeS.Partitioning of Fe and Zn between coexisting sphalerite and stannite from Changpo indicates temperatures of 300°–350°C. For Lamo, the following fluid inclusion data are available: fluorite, salinities of 0–9.5 equiv. wt% NaCl, and homogenization temperatures between 160°C and 250°C; quartz, moderate salinities (0–4.6 equiv. wt% NaCl), and homogenization temperatures of 208°–260°C. Combining the mineralogical evidence with the compositional and fluid inclusion data, it is suggested that the evolution of the environment during the Yanshanian event was characterized by the following parameters: pressure was relatively low (on the order of 1–1.5 kb); temperature may have been as high as 500°C during deposition of the As-richest arsenopyrites, but eventually dropped below 200°–250°C in the latest stages; with an increase in sulfur activity and/or the decrease in temperature pyrrhotite was no longer stable in the latest stages of mineralization.  相似文献   

4.
The Tres Marias carbonate-hosted Zn–Ge deposit in Chihuahua, Mexico contains sphalerite with the highest average Ge (960 ppm) and willemite with the highest reported Ge contents of Mississippi-Valley-type (MVT) deposits worldwide. This has prompted current exploration efforts to focus on the deposit as a high-grade source of germanium. The sulfide-rich ore type (>125,000 t at 20% Zn and 250 g/t Ge) contains Fe-rich botryoidal sphalerite (type I) associated with solid hydrocarbons. This type exhibits distinctive intimately intergrown lamellar texture of high-Fe sphalerite (average 9.9 wt.% Fe and 800 ppm Ge) and a somewhat less Fe-rich sphalerite phase (average 5.5 wt.% Fe and 470 ppm Ge). Reddish-brown banded sphalerite (type II, average 5.7 wt.% Fe and 1,320 ppm Ge) is subordinately followed by galena and pyrite. The sulfide-poor “oxidized” zinc ore (up to 50 wt.% Zn; 250 to 300 ppm Ge) is a fine-grained, often friable, alteration product of the sulfide ore and associated limestone and breccia host. While some areas are dominated by carbonates and sulfates, others are enriched in silicates such as hemimorphite and willemite. The gangue assemblage includes goethite, hematite, and amorphous silica or quartz. Minor wulfenite, greenockite, cinnabar, and descloizite also occur. Willemite occurs as interstitial replacement of sphalerite and fracture fillings in the oxidized ore and can be unusually rich in Pb (up to 2.0 wt.%) and Ge (up to 4,000 ppm). Oscillatory zonation reflects trace element incorporation into willemite from the oxidation of primary Ge-bearing sphalerite and galena by siliceous aqueous fluids. The Tres Marias deposit has hybrid characteristics consisting of a primary low-temperature MVT Ge-rich Zn–Pb sulfide ore body, overprinted by Ge-rich hemimorphite, willemite, and Fe oxide mineralization.  相似文献   

5.
福建龙岩中甲铁矿是上世纪60年代探明的海相火山沉积-热液叠加改造型多金属硫化物磁铁矿矿床。随着该矿难选铁矿石选矿技术的突破,最近发现矿石中共(伴)生的分散元素铟、镉含量超过综合利用工业最低品位要求,铟、镉的储量估算均可达大型规模。通过研究铟、镉的赋存状态,认为矿石中尚无铟、镉的独立矿物存在,铟、镉主要与锌呈类质同象存在于闪锌矿的晶格中;铟、镉综合回收经济评价表明,铟、镉在选矿流程中主要走向锌精矿,可在锌的冶炼过程中综合回收,并会获得很好的经济效益。永安—梅县凹陷带内有众多与该矿床类似的铁多金属矿,该矿床共(伴)生铟、镉含量及赋存状态的考察,对区域同类矿床伴生元素的综合利用、提升经济价值有重大意义。  相似文献   

6.
东升庙多金属硫铁矿床闪锌矿特征及形成条件   总被引:2,自引:0,他引:2  
闪锌矿是东升庙多金属硫铁矿床中主要矿石矿物之一,本文从闪锌矿的产状、矿物共生组合、物理性质、化学成分、微量元素含量征、晶胞参数与FeS含量关系等方面探讨了闪锌矿标型特征及其与矿床成因的关系。本区有两类闪锌矿,其中晚期改造作用形成的闪锌矿比原沉积成因的富铁,形成了闪锌矿向铁闪锌矿转化的矿物系列。进一步确定了矿床成因类型为海底喷气热水沉积-弱改造型矿床。进而讨论了不同成矿期闪锌矿的形成条件。  相似文献   

7.
The disseminated gold deposit of Agdarreh (24.5 t at 3.7 g/t Au) is hosted in hydrothermally leached Miocene reefal limestone in the Takab geothermal field, which is part of the Cenozoic Urumieh–Dokhtar volcanic arc of NW Iran. Alteration and mineralisation are largely bedding controlled blanket-like and include: (1) pre-ore decalcification; (2) first-stage silicification associated with pyrite (early pyrite with 3–4 wt% As, late pyrite with <1–3 wt% As) and sphalerite; (3) second-stage silicification with precipitation of galena, Pb–Sb–As sulphides, sulphosalts, tellurides and native bismuth; (4) late-stage cinnabar and barite in vugs; (5) oxide ore stage and carbonate alteration (complex Mn–Fe-rich oxyhydroxides, arsenates, sulphates, APS minerals and rutile in residual leached rock and infill of karstic cavities). Gold occurs invisibly in the jasperoids and is enriched in the Mn–Fe oxyhydroxide surface cap of the jasperoids. Gold mineralisation is associated with the hydrothermal metal suite of As, Sb, Hg, Te, Se, Tl, Ba, Zn, Ag, Cd, Bi and Pb, and is characterised by very low Cu contents. Arsenian pyrite probably carried most of the primary (invisible) gold. Native gold occurs in association with the late-stage cinnabar and the oxide ore. The Agdarreh deposit shows many similarities with Carlin-type ore and is interpreted to have resulted from near-surface hydrothermal activity related to the Cenozoic arc volcanism that developed within the extensional Takab graben. The extensive oxidation at Agdarreh may be partly due to the waning stages of hydrothermal activity. Active H2S-bearing thermal springs are locally depositing extremely high contents of Au and Ag, and travertine is present over large areas, suggesting that ore-forming hydrothermal activity occurred periodically from the Miocene to Recent in the Takab geothermal field. The present paper deals with the geological framework, host rocks, characteristic features of hydrothermal alteration and mineralisation, and genesis of the Agdarreh deposit. The results of fluid inclusion and stable isotope studies are in progress and will be given in a forthcoming paper.  相似文献   

8.
As other calcsilicate-hosted ore deposits the Tumurtijn-ovoo Fe–Mn–Zn deposit is subdued to the question how the ore elements took place, whether linked to epigenetic silicification of a limestone host or bound to syngenetic precipitation during the deposition of a calcareous-siliceous sediment. The comparison of high Zn/Cd ratios of ores from Tumurtijn-ovoo ranging from 514 to 724 with those of other ore deposits relates Tumurtijn-ovoo to the group of submarine hydrothermal deposits which got their ore elements from basaltic source rocks by subseafloor leaching. Hence, respecting geological and textural features of the ores, a synsedimentary precipitation of zinc and cadmium in a volcano-sedimentary environment is suggested for Tumurtijn-ovoo. A group of low Zn/Cd ratios (274–297) is correlated with processes of mobilization and redeposition of sphalerite.  相似文献   

9.
A geochemical rock- and soil-sampling program was carried out in the vicinity of eight concealed “Cyprus type” deposits, occurring in marginal mafic to intermediate metapillow lavas of the Troodos Ophiolite Complex. The mineralization of massive and stockwork sulfide ore is characterized by the predominance of pyrite, intergrown with less chalcopyrite and minor amounts of sphalerite.Background values of Hg are in the range of 8–12 ppb for soils and 3–6 ppb for surface rocks. Anomaly/background ratios of 10:1 (soils) and 5:1 (rocks) have been found only, where Hg migrated along channels formed by faults cutting shallow-seated mineralization. Here, Hg sometimes shows significant correlations with Cu, Zn, Ba and exceptionally with Co. However in one case an Hg anomaly in soils and surface rocks was detected directly over a deposit. The use of Hg as indicator element for these types of deposits is therefore limited. Buried mineralization may be delineated more distinctly by Cu, Zn and Ba.  相似文献   

10.
与日本黑矿及现代海底火山岩为主岩矿床相比,白银厂矿田各类矿石,尤其是块状Zn-Pb-Cu矿石具有最高的As和Bi含量,比较高的Ga、Cd和Au含量,以及较高的Au/Ag和Co/Ni比值。该矿田矿石的Au含量与闪锌矿中铁含量呈负相关关系。小铁山矿床闪锌矿与日本黑矿的闪锌矿微量元素特征很相似。矿田各类矿石REE型式与细碧角斑岩类岩石基体相似,这说明矿石与岩石的物质来源基本一致。研究和对比表明,火山成因  相似文献   

11.
The Laloki and Federal Flag deposits are two of the many (over 45) polymetallic massive sulfide deposits that occur in the Astrolabe Mineral Field, Papua New Guinea. New data of the mineralogical compositions, mineral textures, and fluid inclusion studies on sphalerite from Laloki and Federal Flag deposits were investigated to clarify physiochemical conditions of the mineralization at both deposits. The two deposits are located about 2 km apart and they are stratigraphically hosted by siliceous to carbonaceous claystone and rare gray chert of Paleocene–Eocene age. Massive sulfide ore and host rock samples were collected from each deposit for mineralogical, geochemical, and fluid inclusion studies. Mineralization at the Laloki deposit consists of early‐stage massive sulfide mineralization (sphalerite‐barite, chalcopyrite, and pyrite–marcasite) and late‐stage brecciation and remobilization of early‐stage massive sulfides that was accompanied by late‐stage sphalerite mineralization. Occurrence of native gold blebs in early‐stage massive pyrite–marcasite‐chalcopyrite ore with the association of pyrrhotite‐hematite and abundant planktonic foraminifera remnants was due to reduction of hydrothermal fluids by the reaction with organic‐rich sediments and seawater mixing. Precipitation of fine‐grained gold blebs in late‐stage Fe‐rich sphalerite resulted from low temperature and higher salinity ore fluids in sulfur reducing conditions. In contrast, the massive sulfide ores from the Federal Flag deposit contain Fe‐rich sphalerite and subordinate sulfarsenides. Native gold blebs occur as inclusions in Fe‐rich sphalerite, along sphalerite grain boundaries, and in the siliceous‐hematitic matrix. Such occurrences of native gold suggest that gold was initially precipitated from high‐temperature, moderate to highly reduced, low‐sulfur ore fluids. Concentrations of Au and Ag from both Laloki and Federal Flag deposits were within the range (<10 ppm Au and <100 ppm Ag) of massive sulfides at a mid‐ocean ridge setting rather than typical arc‐type massive sulfides. The complex relationship between FeS contents in sphalerite and gold grades of both deposits is probably due to the initial deposition of gold on the seafloor that may have been controlled by factors such as Au complexes, pH, and fO2 in combination with temperature and sulfur fugacity.  相似文献   

12.
闪锌矿作为甲玛斑岩成矿系统远端热液流体形成的典型金属硫化物之一,也是揭示成矿流体演化和成矿作用差异的重要指示矿物。甲玛超大型铜多金属矿床是西藏冈底斯成矿带碰撞型斑岩成矿系统的典型代表,其远端成矿流体的性质有待进一步完善。甲玛矿床中闪锌矿可分为产于远端硅灰石矽卡岩型矿体中的闪锌矿(进一步分为主矿段和南坑矿段)、大理岩中Manto型矿体的闪锌矿和角岩型矿体中的闪锌矿。采用电子探针测定闪锌矿的元素组成及含量,研究结果表明,甲玛闪锌矿相对富集Fe、Mn、Cd等元素,其中,角岩型矿体中的闪锌矿的Fe和Cd含量最高,其次为硅灰石矽卡岩型矿体和大理岩中Manto矿体的闪锌矿。甲玛闪锌矿的颜色较丰富,且与Fe元素的含量具有较强相关性,颜色越偏红褐色的闪锌矿Fe含量越高,颜色越偏蓝黑色的闪锌矿Fe含量越低。距离斑岩成矿中心较近的角岩型矿体中的闪锌矿铁含量最高,形成温度最高,为中偏高温;远离斑岩成矿中心的远端硅灰石矽卡岩型矿体中闪锌矿的形成温度中等;更远端的大理岩中Manto矿体的闪锌矿形成温度最低,为中低温。距离热液成矿中心越远,闪锌矿中的Fe和Cd含量逐渐降低,形成温度越低,据此可将闪锌矿作为斑岩成矿系统判定热源和流体源的找矿标识之一。  相似文献   

13.
闪锌矿Cd、Fe含量与矿化阶段的关系   总被引:1,自引:0,他引:1  
闪锌矿是在许多矿床中最常见的矿物.闪锌矿的Cd、Fe含量与矿化阶段关系的研究,可以推断矿液演化史和矿床形成环境变化史.对矿床评价及勘查有一定的指示意义.分析国内外200多个矿床闪锌矿Cd、Fe含量数据,有8个矿床注明了闪锌矿形成的矿化阶段.其中4个矿床早阶段产生的闪锌矿比晚阶段形成的闪锌矿富Fe、贫Cd,4个矿床早阶段结晶的闪锌矿比晚阶段形成的闪锌矿既富Fe,又富Cd.反映矿床形成的地质构造和物理化学环境,矿液来源及演化史绝然不同.  相似文献   

14.
Trace and minor elements in sphalerite from metamorphosed sulphide deposits   总被引:1,自引:0,他引:1  
Sphalerite is a common sulphide and is the dominant ore mineral in Zn-Pb sulphide deposits. Precise determination of minor and trace element concentrations in sulphides, including sphalerite, by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS) is a potentially valuable petrogenetic tool. In this study, LA-ICP-MS is used to analyse 19 sphalerite samples from metamorphosed, sphalerite-bearing volcanic-associated and sedimentary exhalative massive sulphide deposits in Norway and Australia. The distributions of Mn, Fe, Co, Cu, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi are addressed with emphasis on how concentrations of these elements vary with metamorphic grade of the deposit and the extent of sulphide recrystallization. Results show that the concentrations of a group of trace elements which are believed to be present in sphalerite as micro- to nano-scale inclusions (Pb, Bi, and to some degree Cu and Ag) diminish with increasing metamorphic grade. This is interpreted as due to release of these elements during sphalerite recrystallization and subsequent remobilization to form discrete minerals elsewhere. The concentrations of lattice-bound elements (Mn, Fe, Cd, In and Hg) show no correlation with metamorphic grade. Primary metal sources, physico-chemical conditions during initial deposition, and element partitioning between sphalerite and co-existing sulphides are dominant in defining the concentrations of these elements and they appear to be readily re-incorporated into recrystallized sphalerite, offering potential insights into ore genesis. Given that sphalerite accommodates a variety of trace elements that can be precisely determined by contemporary microanalytical techniques, the mineral has considerable potential as a geothermometer, providing that element partitioning between sphalerite and coexisting minerals (galena, chalcopyrite etc.) can be quantified in samples for which the crystallization temperature can be independently constrained.  相似文献   

15.
花垣铅锌矿床的成矿流体演化特点和铅锌矿物沉淀机制存有分歧,为了总结矿床成因并建立成矿模式,指导该地区铅锌矿的下一步找矿勘探工作.对闪锌矿、主成矿期方解石和萤石中的流体包裹体进行岩相学观察、显微测温、拉曼光谱分析以及同步辐射X射线荧光微探针分析,结果显示花垣地区铅锌矿床成矿流体温度主要为150~220℃,总盐度一般为13%~23% NaCleqv,多> 15% NaCleqv,密度多 > 1 g/cm3,成矿流体为NaCl-CaCl2-MgCl2-H2O卤水体系.成矿流体均一温度具有由北而南降低的趋势.流体液相组分中主要为Ca2+、Mg2+、Na+、Cl-,具有盆地热卤水体系特点.流体包裹体气相中发育CO2、CH4,方解石、萤石中流体包裹体均有成矿元素Pb、Zn的存在.花垣矿集区成矿流体属于低温度、中-高盐度、中-高密度,成分以钠和钙氯化物为主的含矿热水溶液,流体运移方向为由北向南,流体来源于封层水、大气降水和少量变质水.铅锌矿物的沉淀与热化学硫酸盐还原作用有关.闪锌矿、方铅矿等矿石矿物与方解石、萤石等脉石矿物应属同一富含Pb、Zn、Mn、Fe、As、Cr等成矿元素的成矿流体在同一成矿期次相同条件下沉淀的产物.   相似文献   

16.
Tin‐polymetallic base metal deposits of Miocene age in the Eastern Cordillera in Bolivia were studied by ICP/MS and EPMA for major and minor elements, paying an attention to indium concentration of the ore deposits. The highest indium content and 1000 In/Zn ratio of individual ore deposits are 5,740 ppm and 22.2 for the Potosi deposits, 2,730 ppm and 7.4 for Bolivar deposit, 2,510 ppm and 17.5 for Siete Suyos–Animas deposits, and 1,290 ppm and 3.3 for San Vicente deposit. The same content and ratio of composite samples of the studied deposits are up to 292 ppm and 4.0 for Potosi deposits, 3,080 ppm and 11.3 for Huari Huari deposit, 100 ppm and 0.3 for Tuntoco deposit, 152 ppm and 1.8 for Porco deposit, 103 ppm and 59.2 for Animas deposit, and 1,160 ppm and 3.7 for Pirquitas deposit. Those of zinc concentrates are as follows: 1,080 ppm and 2.1 at San Lorenzo; 584 ppm and 1.7 at Bolivar; 499 ppm and 1.23 at Porco; 449 ppm and 1.21 at Reserva, and 213 ppm and 0.61 at Colquiri deposit. Indium occurs mostly in dark colored sphalerite and that of the Potosi deposit was found to have one of the highest concentrations, containing up to 1.27 wt% In. Petrukite was discovered in the Potosi deposit, and indium minerals are expected to occur in the Huari Huari deposit and others with the high 1000 In/Zn ratios. The indium contents of the zinc concentrates and composite samples were applied to the produced and remaining ores, then the total amounts of indium in the Bolivian tin‐polymetallic base metal deposits are speculated to be more than 12,000 tons In, which is bigger than that of South China (11,000 tons) and the Japanese Islands (9,000 tons). Sphalerites of the Potosi deposit have one of the highest ranges of indium, similarly to those of the San Vicente deposit. Both the San Vicente and Potosi deposits are rich in silver, implying significance of both silver‐polymetallic and tin‐polymetallic environments for the concentration of trace amounts of indium.  相似文献   

17.
王轶  常娜  刘亚非  赵慧博  刘三 《岩矿测试》2014,33(6):802-807
近年来外观形似鸡血石的红色朱砂玉备受关注,其中吉林、贵州、青海等地这种红色岩石已有矿物成分、岩性等相关方面的研究。本文利用常规宝石常数测定手段、偏光显微镜、X射线粉晶衍射仪、激光拉曼光谱仪、电子探针等分析测试技术,对陕西旬阳朱砂玉的矿物学和宝石学特征进行了研究。结果表明,该产地朱砂玉的矿物成分以石英、辰砂为主,含有少量的方解石、白云石、重晶石、黄铁矿;其中主要矿物成分辰砂的颜色随铁含量的增加而逐渐加深;矿物结构以碎屑结构、粒状变晶结构、穿插交代结构为主。根据矿物成分以及矿床成因的研究分析,初步认为陕西旬阳朱砂玉属于沉积-热液-强烈改造型矿床。该地区的朱砂玉与鸡血石的相似之处在于矿物的主要成分都含有辰砂,致使外观品质上具有一定的相似性,但具体矿床成因以及矿物成分有着明显的差别:旬阳朱砂玉产于沉积-热液-强烈改造型矿床中,其“地”主要矿物成分为石英岩,“血”为辰砂;而浙江昌化和内蒙古巴林鸡血石均产于中生代交代蚀变酸性火山岩的次级断裂小构造中,其“地”主要为地开石、高岭石、叶腊石,“血”为辰砂。此次研究采用多种分析测试手段为旬阳朱砂玉与鸡血石的鉴别提供了可靠的依据。  相似文献   

18.
贵州天桥铅锌矿床分散元素赋存状态及规律   总被引:12,自引:5,他引:7  
利用电子探针(EPMA)、电感耦合等离子质谱(ICP-MS)等分析了天桥铅锌矿床矿石矿物中分散元素的含量、赋存状态及规律,结果表明分散元素在该矿床中含量达到了综合利用评价指标,有的甚至达到了工业品位(如Cd等);这些分散元素可能以类质同象的形式赋存在硫化物矿物中,其规律为Ga、Cd、In等赋存在闪锌矿中,Ge、Tl等赋存在方铅矿中,黄铁矿中分散元素富集低;在不同颜色闪锌矿中,Ga、Cd富集规律表现为浅色闪锌矿>中色闪锌矿>黑色闪锌矿,而Ge、Tl、In、Se富集表现出中色闪锌矿相对高于浅色及黑色闪锌矿;同标本中,不同颜色闪锌矿的Ge、In富集规律在还显示浅色闪锌矿>中色闪锌矿>黑色闪锌矿,而Ga、Tl、Cd、Se富集规律呈现中色闪锌矿相对高于浅色及黑色闪锌矿.Ga/In、Zn/Cd等参数指示出矿床成因类型可能为热液-沉积-改造.  相似文献   

19.
运用光学显微镜、原子吸收光谱、能谱扫描电子显微镜等分析手段,从矿相学、成分分析等方面研究里伍铜(锌)矿床中主要含锌矿物闪锌矿的矿物学特征,通过研究分析得出,里伍铜(锌)矿床中的闪锌矿定名为铁闪锌矿,矿石中Zn的平均含量为1.11%,致密块状矿石中Zn含量最高可达1.88%。闪锌矿在矿石中的分布率为79.49%。  相似文献   

20.
吴胜华  孙冬阳  李军 《岩石学报》2020,36(1):245-256
华南包括两个世界级的W矿带,分别是南岭和江南造山带W成矿带。柿竹园W多金属矿床位于南岭地区,香炉山W矿床位于江南造山带东北部。两个矽卡岩W矿床都发育硫化物成矿阶段。但硫化物和成矿元素组成存在显著的差异。前者由含Pb、Zn、Ag硫化物和黝铜矿、银黝铜矿、含Ag斜方辉铅铋矿和铁硫锡铜矿硫盐组成;后者主要为磁黄铁矿。柿竹园远接触带Pb-Zn-Ag矿脉中硫化物(闪锌矿、黄铜矿、方铅矿和磁黄铁矿)较富集B、Mn、Cr、Sb、Sn和Hg,香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物(磁黄铁矿、黄铜矿和闪锌矿)较富集W、Se和Bi。两个矿床中黄铜矿、闪锌矿和方铅矿较富集Ag,黄铜矿、闪锌矿富集In和Sn,闪锌矿还富集Cd。两个矿床中的硫化物微量元素分析表明与矽卡岩W矿成矿相关的硫化物可载有多种微量元素。这些元素参与到硫化物中程度由多种因素控制。具体如下,硫化物中B含量高低与成矿相关岩体中B含量相关;在相对高温和还原条件下,硫化物中W含量较高;闪锌矿中Mn和Cd与Zn发生取代作用; Cr可以一定程度进入到硫化物中,并受成矿流体中Cr含量影响; Se与S发生了一定程度的取代进入硫化物,并受流体中它的含量控制; Bi在闪锌矿与黄铜矿易形成固溶体;硫化物中Sb含量受初始流体中它的含量影响,方铅矿中易包裹一定的辉锑矿(Sb_2S_3)或含Sb的硫盐矿物; Ag是否形成独立的矿物相和进入哪些硫化物中,取决于流体中Ag的初始含量和硫化物的沉淀次序;硫化物中Hg的含量受温度影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号