首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Tropical mobile mud belts represent a major class of biogeochemical and diagenetic systems characterized by extensive and frequent physical reworking of fine-grained, organic-rich deposits underlying oxygenated waters. Large regions of the Gulf of Papua, Papua New Guinea deltaic complex are dominated by such conditions. A reworked mud belt lies within the inner shelf between 10 and 20 m depth on a sedimentary clinoform derived from coalescing deltas. Deposits across the topset are typically suboxic, nonsulfidic over the upper 0.5–1 m, and have low to moderate maximum pore water concentrations of dissolved Fe(II) and Mn(II) (100–200, but up to 800 μM). Sediments are reactive, with surficial ΣCO2 production 0.1–0.3 mM d−1 and benthic O2 fluxes 23±15 mmol m−2 d−1 (upper 20 cm). The highest rates occur within inner topset deposits (10–20 m) and near the high accumulation rollover region of the topset–foreset beds (40–50 m). Lower rates are found inshore along intertidal channels—mangrove fringe and within scoured or exposed consolidated deposits of the middle topset region. Remineralization rate patterns are independent of relative dominance by terrestrial or marine carbon in sediments. Dissolved O2 usually penetrates 2–5 mm into surface sediments when macrofaunal burrows are absent. More than 75% of the highly reactive sedimentary Fe(III) pool (350–400 μmol g−1) is typically diagenetically reduced in the upper 0.5 m. Pore water can be measureably depleted at depths >0.5 m, but dissolved H2S generally remains below detection over the upper 1–2 m. As in other deltaic topset regions, concentration gradients often indicate that compared to many marine deposits of similar sediment accumulation rates, relatively refractory Corg is supplied to the SO4 reducing zone. Sedimentary C/S ratios are 4–6 within the suboxic topset regions but decrease to <3 in offshore foreset beds where sulfidic diagenesis dominates. Only 15–20% of the diagenetically reduced Fe(II) is pyritic and a maximum of 10–25% is carbonate, implying that most Fe(II) is associated with authigenic or lithogenic silicates or oxides. The dominance of suboxic, nonsulfidic diagenetic processes reflect coupling between delivery of oxide-rich terrestrial debris, remobilization and reoxidation of deposits, and repetitive entrainment/remineralization of both labile and refractory organics. Distinct sedimentary indicators of reactive, suboxic mobile mud belts within tropical climatic zones are: abundant total highly reactive Fe (ΣFeR )>300 μmol g−1; most reactive Fe is diagenetically reduced (ΣFe(II)/ΣFeR0.7–0.8); the proportion of diagenetically reduced Fe present as pyrite is low (Py–Fe(II)<0.2); C/S 4–8; and Corg/particle surface area <0.4 (mg C m−2). These depositional environments must be most common in tropical climates during high sea stand.  相似文献   

2.
Clinoform mechanics in the Gulf of Papua, New Guinea   总被引:1,自引:0,他引:1  
The largest islands of the Indo-Pacific Archipelago are estimated to account for 20–25% of the global sediment discharge to the ocean, and much (>50%) of this sediment is supplied to wide (>150 km) continental shelves. These conditions are conducive to creation of large-scale morphologic features known as clinoforms—sigmoidal-shaped deposits on the continental shelf. The Gulf of Papua (GOP) receives 3.84 ×108 tons of sediment annually from three principal sediment suppliers, the Fly, Kikori and Purari Rivers, and its prograding clinoform is the focus of this study. During three research cruises, 80 cores and 37 CTD/optical backscatter casts were collected, and an instrumented tripod was deployed twice. Sedimentological and radiochemical results indicate that the GOP clinoform has characteristics similar to those seaward of other major rivers (e.g., Amazon, Ganges–Brahmaputra), specifically sand/mud interbedding on the topset, rapidly accumulating muds on the foreset, and siliciclastic mud mixed with carbonate sand on the bottomset.Using core data and field observations, the mechanics of clinoform progradation are examined. Discrete, large sedimentation events are identified as processes building the clinoform feature. X-radiographs from foreset cores reveal thick beds (>5 cm) between bioturbated sections. Detailed 210Pb and grain-size data indicate that low activities and increased clay contents are associated with these beds. They are hypothesized to be formed by fluid–mud deposition in response to periods of large wave-tide bed shear stresses, more likely during the SE-tradewind season, and their regular occurrence produces high rates of mean accumulation (4 cm/y). Bed preservation is determined by the rates of sediment accumulation and bioturbation.To assess the influence of physical oceanographic factors on clinoform shape, bottom shear stresses from tides and surface waves were calculated using available wave and tripod data. This effort reveals that the depth range (25–40 m) of the clinoform rollover point (seaward edge of the topset region) is roughly consistent with the sediment-transport regime. Furthermore, calculations corroborate the core data that suggest possible seasonal sediment storage in the inner topset region (<15-m water depth, during the NW-monsoon winds) with subsequent transfer to foreset beds (more probable during SE-tradewind conditions).A 100-yr sediment budget created with accumulation rate data suggests approximately 20% of the total sediment supplied to the GOP accumulates on the clinoform (creating the clinoform morphology). Less than 5% is believed to escape to the adjacent slope, and much of the remaining 75% is likely trapped on the inner-topset region (<20 m water depth) and within the mangrove forests and flood/delta plains of the northern GOP.  相似文献   

3.
Summary Eleven STD stations by lowering and raising the sensor were occupied about 170 n. miles northeast of Cape Hatteras in June, 1968. The stations were located in the slope water region covered by the upper warm water from the Gulf Stream. Power spectra of temperature and salinity fluctuations at 1-meter depth intervals were computed versus vertical wave numbers for the upper layer (5–320 m) and lower layer (320–1000 m) at each station. The power law coefficients of the spectra about the vertical wave number are between –5/3 and –3. These coefficients indicate that the temperature and salinity fluctuations are influenced by stratification as well as by turbulence.  相似文献   

4.
The MECO hydrodynamic model (MECO Technical Report No. OMR-118/120, CSIRO Marine Research, 1998) was adapted for the Torres Strait–Gulf of Papua region at 0.05° resolution. Validation of the hydrodynamic model was carried out against observed current meter data and calculated tidal sea levels. Dispersal pathways of sediments derived from the Fly River, and from a resuspension event along the northern Great Barrier Reef were investigated using an Eulerian approach. Sediment input into Torres Strait is found to be greater during the Trade season by approximately 10%. Wave data were also obtained, and together with hydrodynamic model output, sediment mobility due to currents, waves and wave–current interactions was considered for both the Trade and Monsoon seasons. Sediment mobility in the Gulf of Papua is dominated by wave motion, whereas Torres Strait is a mixed environment of waves and tidal currents.  相似文献   

5.
Proximal deposits of the 3.3 Ma Grants Ridge Tuff, part of a 5-km3 topaz rhyolite sequence, are composed of basal pyroclastic flow, surge, and fallout deposits, a thick central ignimbrite, and upper surge and fallout deposits. Large lithic blocks (≤2 m) of underlying sedimentary and granitic bedrock that are present in lower pyroclastic flow and fallout deposits indicate that the eruptive sequence began with explosive, conduit-excavating eruptions. The massive, nonwelded central ignimbrite displays evidence for postemplacement deformation. The upper pyroclastic surge deposits are dominated by fine ash, some beds containing accretionary lapilli, soft-sediment deformation features, and mud-coated lithic lapilli, indicating an explosive, hydromagmatic component to these later eruptions. The upper fall and surge deposits are overlain by fluvially reworked volcaniclastic deposits that truncate the primary section with a relatively planar surface. The proximal, upper pyroclastic surge and Plinian fall deposits are preserved only in small grabens (5–8 m deep and wide), where they subsided into the ignimbrite and were protected from reworking. The pyroclastic surge and fall deposits within the grabens are offset by numerous small normal faults. The offset on some faults decreases upward through the section, indicating that the faulting process may have been syn-eruptive. Several graben-bounding faults extend downward into the ignimbrite, but the uppermost, fluvially reworked tephra layers are not cut by these faults. The faulting mechanism may have been related to settling and compaction of the 60 m thick, valley-filling ignimbrite along the axis of the paleovalley. Draping surge contacts against the graben faults and brittle and soft-style disruption of the upper pyroclastic surge beds indicate that subsidence was ongoing during the emplacement of the upper eruptive sequence. Seismicity accompanying the late-stage hydromagmatic explosions may have contributed to the abrupt settling and compaction of the ignimbrite.  相似文献   

6.
Extensive CO2 vents have been discovered in the Wagner Basin, northern Gulf of California, where they create large areas with lowered seawater pH. Such areas are suitable for investigations of long-term biological effects of ocean acidification and effects of CO2 leakage from subsea carbon capture storage. Here, we show responses of benthic foraminifera to seawater pH gradients at 74–207 m water depth. Living (rose Bengal stained) benthic foraminifera included Nonionella basispinata, Epistominella bradyana and Bulimina marginata. Studies on foraminifera at CO2 vents in the Mediterranean and off Papua New Guinea have shown dramatic long-term effects of acidified seawater. We found living calcareous benthic foraminifera in low pH conditions in the northern Gulf of California, although there was an impoverished species assemblage and evidence of post-mortem test dissolution.  相似文献   

7.
Samples collected from the shelf-edge wedge using surface grab samples and the Jago submersible constrain the KwaZulu-Natal shelf-edge wedge to a late Pliocene age on the basis of the absence of Gephyrocapsa oceanica s.l. and Discoaster brouweri, and the presence of Calcidiscus macintyrei. This correlates with proposed Tertiary sea-level curves for southern Africa and indicates relative sea-level fall during the late Pliocene coupled with hinterland uplift. Exposed failure scarps in the upper portions of submarine canyons yield sediment samples of early Pleistocene ages, indicating the uppermost age of deposition of clinoform topsets exposed in the scarp walls. Partially consolidated, interbedded silty and sandy deposits of similar age outcrop in the thalweg of Leven canyon at a depth of 150 m. These sediments provide an upper age limit of the shelf-edge wedge of early Pleistocene, giving a sedimentation rate of this wedge of 162–309 m/Ma. The distribution of widespread basal-most Pleistocene sediments on the upper slope indicates that these sediments escaped major reworking during sea-level falls associated with Pleistocene glaciations and remain as relict upper slope veneers. The absence of more recent sediments suggests that this area has been a zone of sediment bypass or starvation since the early Pleistocene. Areas where younger sediments mantle deposits of early Pleistocene ages represent areas of offshore bedload parting, re-distributing younger Holocene sediment offshore and downslope.  相似文献   

8.
The consequences of a coastal upwelling event on physical and chemical patterns were studied in the central Gulf of Finland. Weekly mapping of hydrographical and -chemical fields were carried out across the Gulf between Tallinn and Helsinki in July–August 2006. In each survey, vertical profiles of temperature and salinity were recorded at 27 stations and water samples for chemical analyses (PO43−, NO2+NO3) were collected at 14 stations along the transect. An ordinary distribution of hydrophysical and -chemical variables with the seasonal thermocline at the depths of 10–20 m was observed in the beginning of the measurements in July. Nutrient concentrations in the upper mixed layer were below the detection limit and nutriclines were located just below or in the lower part of the thermocline. In the first half of August, a very intense upwelling event occurred near the southern coast of the Gulf when waters with low temperature and high salinity from the intermediate layer surfaced. High nutrient concentrations were measured in the upwelled water – 0.4 μmol l−1 of phosphates and 0.6 μmol l−1 of nitrates+nitrites. We estimated the amount of nutrients transported into the surface layer as 238–290 tons of phosphorus (P)-PO43− and 175–255 tons of N-NOx for a 12 m thick, 20 km wide and 100 km long coastal stretch. Taking into account a characteristic along-shore extension of the upwelling of 200 km, the phosphate-phosphorus amount is approximately equal to the average total monthly riverine load of phosphorus to the Gulf of Finland. It is shown that TS-characteristics of water masses and vertical distribution of nutrients along the study transect experienced drastic changes caused by the upwelling event in the entire studied water column. TS-analysis of profiles obtained before and during the upwelling event suggests that while welled up, the cold intermediate layer water was mixed with the water from the upper mixed layer with a share of 85% and 15%. We suggest that the coastal upwelling events contribute remarkably to the vertical mixing of waters in the Gulf of Finland. Intrusions of nutrient-rich waters along the inclined isopycnal surfaces in the vicinity of upwelling front were revealed. The upwelling event widened the separation of phosphocline and nitracline which in turn prevented surfacing of nitrate+nitrite-nitrogen during the next upwelling event observed a week after the upwelling relaxation. A suggestion is made that such widening of nutricline separation caused by similar upwelling events in early summer could create favourable conditions for late summer cyanobacterial blooms.  相似文献   

9.
Dubai Creek is a tidal marine intrusion bisecting Dubai within the United Arab Emirates (UAE). The creek extends 14km inland from its opening into the Arabian Gulf, with a narrow lower creek channel leading to a lagoon section in the upper creek. The creek contains numerous sources of organic pollution including sewage outlet flows and boat waste. A survey of the creek was performed, assessing organic pollution, water properties, and the benthic macrofaunal community. The upper creek was heavily polluted with macrofauna communities commonly associated with organic pollution and eutrophication, while the lower creek contained low pollution and relatively healthy macrofauna communities. There is little net tidal flow of water within the creek and residence time in the lagoon is high, which may account for the high organic pollution levels. However, some evidence of the pollution effect moving into the lower creek was found. The results are considered in light of current and historic organic loading within the creek and future developments in the area.  相似文献   

10.
A three-dimensional mesoscale numerical model is used to investigate mesoscale circulation over a Gulf Stream filament. Two numerical experiments are performed with different initial uniform ambient wind speeds (U=0.1 m s–1, 3.5 m s–1 and 7 m s–1) for a typical winter day. It is found that for both low and moderate winds, a closed mesoscale circulation forms over the Gulf Stream filament. When the Gulf Stream filament was removed, the model did not predict a mesoscale circulation. The modeled circulation over the filament is in agreement with the observations, suggesting that the atmospheric circulations over the filaments may be an important mechanism in the U.S. East Coast cyclogenesis.  相似文献   

11.
We examine macrofaunal and physico-chemical responses to organic enrichment beneath salmon farms in contrasting flow environments, and reveal pronounced flow-related differences in the magnitude and spatial extent of effects. Total macrofaunal abundances at high flow sites were nearly an order of magnitude greater than at comparable low flow sites, representing a significant benthic biomass. These very high abundances occurred in conjunction with moderate-to-high species richness, and were evident in the absence of appreciable organic matter accumulation. Biological responses to increasing sulfide were variable; however a significant biological threshold was evident at 1500 μM. Macrofaunal responses at high flow sites differed substantially from the Pearson–Rosenberg model. The atypical ecological conditions were attributed to (i) limited accumulation of fine sediments, (ii) maintenance of aerobic conditions in near-surface sediments, and (iii) an abundant food supply. Thus, enhanced resilience to organic waste at well-flushed sites appears related to both biological and physical processes.  相似文献   

12.
The Table Rock Complex (TRC; Pliocene–Pleistocene), first documented and described by Heiken [Heiken, G.H., 1971. Tuff rings; examples from the Fort Rock-Christmas Lake valley basin, south-central Oregon. J. Geophy. Res. 76, 5615-5626.], is a large and well-exposed mafic phreatomagmatic complex in the Fort Rock–Christmas Lake Valley Basin, south-central Oregon. It spans an area of approximately 40 km2, and consists of a large tuff cone in the south (TRC1), and a large tuff ring in the northeast (TRC2). At least seven additional, smaller explosion craters were formed along the flanks of the complex in the time between the two main eruptions. The first period of activity, TRC1, initiated with a Surtseyan-style eruption through a 60–70 m deep lake. The TRC1 deposits are dominated by multiple, 1-2 m thick, fining upward sequences of massive to diffusely-stratified lapilli tuff with intermittent zones of reverse grading, followed by a finely-laminated cap of fine-grained sediment. The massive deposits are interpreted as the result of eruption-fed, subaqueous turbidity current deposits; whereas, the finely laminated cap likely resulted from fallout of suspended fine-grained material through a water column. Other common features are erosive channel scour-and-fill deposits, massive tuff breccias, and abundant soft sediment deformation due to rapid sediment loading. Subaerial TRC1 deposits are exposed only proximal to the edifice, and consist of cross-stratified base-surge deposits. The eruption built a large tuff cone above the lake surface ending with an effusive stage, which produced a lava lake in the crater (365 m above the lake floor). A significant repose period occurred between the TRC1 and TRC2 eruptions, evidenced by up to 50 cm of diatomitic lake sediments at the contact between the two tuff sequences. The TRC2 eruption was the last and most energetic in the complex. General edifice morphology and a high percentage of accidental material suggest eruption through saturated TRC1 deposits and/or playa lake sediments. TRC2 deposits are dominated by three-dimensional dune features with wavelengths 200–500 m perpendicular to the flow, and 20–200 m parallel to the direction of flow depending on distance from source. Large U-shaped channels (10–32 m deep), run-up features over obstacles tens of meters high, and a large (13 m) chute-and-pool feature are also identified. The TRC2 deposits are interpreted as the products of multiple, erosive, highly-inflated pyroclastic surges resulting from collapse of an unusually high eruption column relative to previously documented mafic phreatomagmatic eruptions.  相似文献   

13.
The bottom water in the >300 m deep Lower St. Lawrence Estuary (LSLE) is persistently hypoxic in contrast to the normoxic bottom waters in the Gulf of St. Lawrence (GSL). We photographed the seabed at 11 stations in the Estuary and Gulf of St. Lawrence (EGSL) during the summers 2006 and 2007 and analysed the images to identify bioturbation traces (lebensspuren) and benthic macrofauna. The objective was to identify the environmental variables that influence the density and diversity of benthic macrofauna and bioturbation traces, and the differences that exist among regions with high, medium and low oxygen levels in the bottom water. The bottom water oxygen concentration is the variable that best explains the densities of total-traces as well as surface-traces. However, the density of these traces was higher in hypoxic regions than in well-oxygenated regions. The higher density of traces in the hypoxic region of the LSLE is mainly due to the activities of the surface deposit feeder Ophiura sp., which occurs in large numbers in this region. Possible explanations explored are stress behaviour of the organisms in response to hypoxia and different benthic macrofauna community structures between the hypoxic regions of the LSLE and the normoxic regions of the GSL. In the former, surface deposit feeders and low-oxygen tolerant species dominate over suspension feeders and low-oxygen intolerant species.  相似文献   

14.
15.
Sediment traps were deployed in the Gulf of Papua in June–July 1997, to determine fluxes of organic matter and inorganic elements from the photic zone to deeper waters at the base of the continental slope and in the northern Coral Sea. Three stations, ranging from 900 to 1500 m depth, had “shallow” traps at 300 m below the water surface and “deep” traps set 100 m above the bottom. Infiltrex II water samplers collected particulate and dissolved organic matter from the Fly, Purari and Kikori rivers, and near-surface water from the shelf of the Gulf of Papua. Samples were analysed for molecular organic biomarkers to estimate the sources of organic carbon and its cycling processes.Dry weight fluxes from the shallow traps ranged from 115 to 181 mg m−2 day−1 and particulate organic carbon (POC) fluxes ranged from 1.2 to 1.9 mM OC m−2 d−1 with molar organic carbon to particulate nitrogen ratios (C/N) ranging from 6.0 to 6.5. Fluxes in deep traps were likely influenced by both early diagenesis and entrapment of resuspended shelf sediments. Dry weight fluxes in deep traps ranged from 106 to 574 mg m−2 day−1 and POC fluxes ranged from 0.6 to 1.5 mM OC m−2 d−1, with C/N ratios ranging from 8.5 to 10.8. 13C/12C ratios were −20.2‰ to −21.7‰ in all trap samples, indicating that most of the settling POC was “marine-derived”. Shallow traps had δ15N values of 6.3‰ to 7.2‰ while the values in deep traps were 4.9–5.0‰, indicating the N-rich near-surface OC was less degraded than that in the deep traps. The biogenic lipids consisted of hydrocarbon, sterol and fatty acid biomarkers indicative of marine zooplankton, phytoplankton and bacteria. Sterol markers for diatoms and dinoflagellates were abundant in the water samples. Highly branched isoprenoid alkenes, usually attributable to diatoms, were also detected in both water and shallow traps. Traces of C26–C34 n-alcohols indicative of land–plant biomarkers, were found in river water samples and in the shallow sediment traps. A large unresolved complex mixture (UCM) of hydrocarbons, and a uniform distribution of n-alkanes, indicative of petroleum hydrocarbons, were also detected in the traps. Hopane and sterane biomarkers detected in the trap oil were characteristic of a marine carbonate source, and the aromatic hydrocarbon composition distinguished at least two different oil signatures.We concluded that mass and POC fluxes were similar to those reported for other continental shelves and marginal oceans in tropical and subtropical regions. There was a dramatic decrease in POC as particles sank, due to zooplankton repackaging and photochemical and bacterial decomposition. Carbon isotopic and biomarker patterns showed most of the POC in the sediment traps was marine-sourced with only traces of terrestrial input. There was a significant flux of petroleum, which may signal the existence of natural petroleum seeps in this region.  相似文献   

16.
Two nanociliates of the order Prostomatida,Pseudobalanion planctonicum (12–18 µm) andUrotricha furcata (12–21 µm), were found to be the most abundant ciliates in the epilimnion of Piburger See, a small mesotrophic lake. Temperature and food availability were the main factors controlling the sudden increase in abundance, which reached a maximum of 101 cell ml–1 at the beginning of summer. During their exponential development in numbers and biomass, a strong decrease in chlorophylla and in the abundance of phytoplankton, especiallyRhodomonas, was observed. We assume, therefore, thatPseudobalanion planctonicum andUrotricha furcata together with rotifers, mainlyPolyarthra dolichoptera, are able to reduce the phytoplankton biomass in the upper epilimnion to the same level as found during the clearwater phase. Preliminary results of grazing on bacteria suggest that these nanociliates are omnivorous, although their impact on bacterial assemblages was low (3.1% of the standing stock grazed per day). Feeding on the base of the food web combined with their high abudance at certain times makes them an important link for higher trophic levels. This study constitutes the second report onPseudobalanion as an important component of the microbial food web in lakes.  相似文献   

17.
The seasonal variation of microbial biomass and activity in the surface sediments (0–10 cm) of the shallow, eutrophic Lake Vallentunasjön was followed during one year. OverwinteringMicrocystis colonies dominated the microbial community during all seasons, constituting 60–90% of the total microbial biomass. Expressed on an areal basis, the benthic biomass was, throughout the year, larger than or similar to the planktonic biomass during the peak of the summer bloom, indicating an ability of the colonies to survive in the sediments for extended periods. Abundance of other, non-photosynthetic bacteria varied in the range 3.0–15.5 · 1010 cells g–1 d. w. over the year with minimum values in summer and maximum values in autumn in connection with the sedimentation of theMicrocystis bloom. A substantial part of the non-photosynthetic bacteria, up to circa 40%, was associated with the mucilage of healthyMicrocystis colonies. Bacterial production (3H-thymidine incorporation) appeared to be strongly temperature dependent and less influenced by the seasonal sedimentation pattern. Our data indicate an increasing proportion of non-growing cells in autumn and winter. Biomass-bound phosphorus constituted a significant portion, circa 10%, of the phosphorus content in Lake Vallentunasjön sediments. This pool has normally been overlooked in studies on phosphorus dynamics in lake sediments. Different mechanisms whereby organic phosphorus can be released from the sediments are discussed.  相似文献   

18.
Oceanographic studies have been carried out in coastal and riverine waters of the area around Timika, West Papua in November 1999, March–April, July and November 2000. The temperature of the seawater along the coast is around 28 °C in winter (November 99), rising to 30.0 °C (November 00). In the open sea, 30 miles off the coast at 40 m water depth, the temperature is >30 °C with no stratification. Water temperature near the coast is consistently lower than in the open sea. This is thought to be due the cooling effect of the land, being densely covered by mangrove forest. In the upper parts of the Kamora, West Tipuka, East Tipuka, Ajkwa, Minajerwi, Mawati and Otakwa Rivers, at salinity zero psu, water temperature varies between 24.6 and 26.2 °C, which is as cold as the temperature in the upwelling Banda Sea to the NW. Some of these rivers are fed by glacial melt water from the high mountains to the east. At mid estuary, warm seawater is found under the cooler river water.Salinity near this coast varied between 24 and 30, and offshore salinity was 31–33 with no stratification. Inshore surface waters were turbid (11–14 ntu), and near bottom waters were generally much more turbid from river sediment supply and tidal resuspension. The Ajkwa River estuary has the highest turbidity (750 ntu) at zero salinity. Offshore waters were very clear (5.0–6.0 ntu), and there was no increase in turbidity near the bottom.  相似文献   

19.
The objectives of this study were to examine both spatial and temporal changes of particulate major elements and minor metals, as well as dissolved Mn and Cd, in the waters of Thermaikos Gulf. Collections of water and suspended particulate matter (SPM), as depth profiles (5–8 depths), were undertaken at 10 principal stations, essentially on a N–S traverse of the western side of the Gulf.One of the principal aims of the study was to observe if there was any change in the patterning of the elements between the three occupations of the stations: (a) in September 2001, immediately before the commencement of trawling; (b) in October 2001, whilst fishing was active; and (c) in winter/early spring conditions (February 2002), when fishing was still active, but after a change of river/atmospheric conditions.Bottom (20 m) waters were dominated by sediment resuspension; this was identified by concentration changes in the aluminosilicate elements (e.g. Al, Ti, K, Fe) of the SPM. A two- to three-fold increase occurred between September and October, caused probably by trawling; this was sustained at the offshore stations, in February. During February, the western inshore stations showed little sediment resuspension, caused by extreme winter cooling and the sinking of water. Consequently, a N–S density discontinuity existed at all water depths, which prevented the thermohaline cyclonic circulation from penetrating into the western seaboard of the Gulf. The distribution of dissolved and particulate Mn in the lower waters was due to redox cycling of the element at the benthic boundary; this was more intense in the north, where the organic supply was higher.Biogenic element concentrations and Ca/Al, Si/Al ratios showed no evidence that trawling activity promoted higher biological production. Strong correlations of Co, Cr, Ni and V, with Al and K, showed that these elements were associated strongly with detrital aluminosilicates. However, the variable association of Cd, Pb and Zn, with K (and Al), especially in the upper waters, implied an anthropogenic source derived from the rivers and the city of Thessaloniki. Examination of the Kd's of Cd showed a two-order of magnitude decrease with depth, caused by resuspension and possible advection of relatively unpolluted sediments, into the western Gulf.  相似文献   

20.
Sediment samples were recovered from the central equatorial Pacific Ocean, sectioned at 1-mm intervals, and analyzed for porosity, organic carbon, excess210Pb and CaCO3. Steep porosity gradients were measured in the upper 1 cm of the sediment column with extremely high values observed near the sediment surface. Similarly, particulate organic carbon contents are highest at the sediment surface, decrease sharply in the upper 1 cm, and are relatively constant between 1 and 5 cm. CaCO3 values, on the other hand, are lowest at the sediment surface and increase to a constant value below 5–10 mm depth. At the carbonate ooze sites, excess210Pb is present throughout the upper 5 cm of the sediments suggesting relatively rapid particle mixing rates. However, extremely high excess210Pb activities (> 100 dpm/g) are observed at the sediment surface with sharp gradients present in the upper 1 cm which would suggest slow rates of mixing. This apparent contradiction along with the major features of the CaCO3 and particulate organic carbon profiles can be explained by a particle-selective feeding mechanism in which organic carbon, excess210Pb-enriched particles are preferentially maintained at the sediment surface via ingestion and defecation by benthic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号