首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The recent improvement of numerical weather prediction (NWP) models has a strong potential for extending the lead time of precipitation and subsequent flooding. However, uncertainties inherent in precipitation outputs from NWP models are propagated into hydrological forecasts and can also be magnified by the scaling process, contributing considerable uncertainties to flood forecasts. In order to address uncertainties in flood forecasting based on single-model precipitation forecasting, a coupled atmospheric-hydrological modeling system based on multi-model ensemble precipitation forecasting is implemented in a configuration for two episodes of intense precipitation affecting the Wangjiaba sub-region in Huaihe River Basin, China. The present study aimed at comparing high-resolution limited-area meteorological model Canadian regional mesoscale compressible community model (MC2) with the multiple linear regression integrated forecast (MLRF), covering short and medium range. The former is a single-model approach; while the latter one is based on NWP models [(MC2, global environmental multiscale model (GEM), T213L31 global spectral model (T213)] integrating by a multiple linear regression method. Both MC2 and MLRF are coupled with Chinese National Flood Forecasting System (NFFS), MC2-NFFS and MLRF-NFFS, to simulate the discharge of the Wangjiaba sub-basin. The evaluation of the flood forecasts is performed both from a meteorological perspective and in terms of discharge prediction. The encouraging results obtained in this study demonstrate that the coupled system based on multi-model ensemble precipitation forecasting has a promising potential of increasing discharge accuracy and modeling stability in terms of precipitation amount and timing, along with reducing uncertainties in flood forecasts and models. Moreover, the precipitation distribution of MC2 is more problematic in finer temporal and spatial scales, even for the high resolution simulation, which requests further research on storm-scale data assimilation, sub-grid-scale parameterization of clouds and other small-scale atmospheric dynamics.  相似文献   

2.
The hybrid two-way coupled 3DEnsVar assimilation system was tested with the NCMRWF global data assimilation forecasting system. At present, this system consists of T574L64 deterministic model and the grid-point statistical interpolation analysis scheme. In this experiment, the analysis system is modified with a two-way coupling with an 80 member Ensemble Kalman Filter of T254L64 resolution and runs are carried out in parallel to the operational system for the Indian summer monsoon season (June–September) for the year 2015 to study its impact. Both the assimilation systems are based on NCEP GFS system. It is found that hybrid assimilation marginally improved the quality of the forecasts of all variables over the deterministic 3D Var system, in terms of statistical skill scores and also in terms of circulation features. The impact of the hybrid system in prediction of extreme rainfall and cyclone track is discussed.  相似文献   

3.
Measurements of the atmosphere by satellite were first collected in the 1960s. However, it was not until the mid-1990s that these observations were translated into systematic improvements of numerical weather forecasts. We present here the data and methodology of data assimilation that enabled this achievement. Data assimilation is essentially a filtering processing that exploits the (assumed) known error statistical properties of the observations and of the underlying numerical model in which data are assimilated. It is also a process which corrects the state of the numerical model with physical observations of the real world. This part relies on (assumed) known physical laws to relate meteorological quantities (such as temperature, humidity, pressure, and wind) to observables. Atmospheric data collected by satellite all come from the interaction of electromagnetic waves with the atmosphere. Satellite data assimilation has greatly supported the progress in numerical weather prediction and holds promises for climate studies, for example via reanalysis.  相似文献   

4.
An operational atmospheric dispersion prediction system is implemented on a cluster supercomputer for Online Emergency Response at the Kalpakkam nuclear site. This numerical system constitutes a parallel version of a nested grid meso-scale meteorological model MM5 coupled to a random walk particle dispersion model FLEXPART. The system provides 48-hour forecast of the local weather and radioactive plume dispersion due to hypothetical airborne releases in a range of 100 km around the site. The parallel code was implemented on different cluster configurations like distributed and shared memory systems. A 16-node dual Xeon distributed memory gigabit ethernet cluster has been found sufficient for operational applications. The runtime of a triple nested domain MM5 is about 4 h for a 24 h forecast. The system had been operated continuously for a few months and results were ported on the IMSc home page. Initial and periodic boundary condition data for MM5 are provided by NCMRWF, New Delhi. An alternative source is found to be NCEP, USA. These two sources provide the input data to the operational models at different spatial and temporal resolutions using different assimilation methods. A comparative study on the results of forecast is presented using these two data sources for present operational use. Improvement is noticed in rainfall forecasts that used NCEP data, probably because of its high spatial and temporal resolution  相似文献   

5.
Maximum and minimum temperatures are used in avalanche forecasting models for snow avalanche hazard mitigation over Himalaya. The present work is a part of development of Hidden Markov Model (HMM) based avalanche forecasting system for Pir-Panjal and Great Himalayan mountain ranges of the Himalaya. In this work, HMMs have been developed for forecasting of maximum and minimum temperatures for Kanzalwan in Pir-Panjal range and Drass in Great Himalayan range with a lead time of two days. The HMMs have been developed using meteorological variables collected from these stations during the past 20 winters from 1992 to 2012. The meteorological variables have been used to define observations and states of the models and to compute model parameters (initial state, state transition and observation probabilities). The model parameters have been used in the Forward and the Viterbi algorithms to generate temperature forecasts. To improve the model forecasts, the model parameters have been optimised using Baum–Welch algorithm. The models have been compared with persistence forecast by root mean square errors (RMSE) analysis using independent data of two winters (2012–13, 2013–14). The HMM for maximum temperature has shown a 4–12% and 17–19% improvement in the forecast over persistence forecast, for day-1 and day-2, respectively. For minimum temperature, it has shown 6–38% and 5–12% improvement for day-1 and day-2, respectively.  相似文献   

6.
Performance of a hybrid assimilation system combining 3D Var based NGFS (NCMRWF Global Forecast System) with ETR (Ensemble Transform with Rescaling) based Global Ensemble Forecast (GEFS) of resolution T-190L28 is investigated. The experiment is conducted for a period of one week in June 2013 and forecast skills over different spatial domains are compared with respect to mean analysis state. Rainfall forecast is verified over Indian region against combined observations of IMD and NCMRWF. Hybrid assimilation produced marginal improvements in overall forecast skill in comparison with 3D Var. Hybrid experiment made significant improvement in wind forecasts in all the regions on verification against mean analysis. The verification of forecasts with radiosonde observations also show improvement in wind forecasts with the hybrid assimilation. On verification against observations, hybrid experiment shows more improvement in temperature and wind forecasts at upper levels. Both hybrid and operational 3D Var failed in prediction of extreme rainfall event over Uttarakhand on 17 June, 2013.  相似文献   

7.
Kalman滤波在气象数据同化中的发展与应用   总被引:11,自引:5,他引:11  
气象学领域各种观测(特别是遥感遥测等非常规观测)数据的大量增多和数值天气预报模式的不断进步,推动气象数据同化技术不断发展。回顾了Kalman滤波在气象数据同化中的引入和几个发展阶段;介绍了Kalman滤波(尤其是简化Kalman滤波和总体Kalman滤波)在气象数据同化中的重要地位和应用进展。  相似文献   

8.
Quantitative precipitation forecasting (QPF) has been attempted over the Narmada Catchment following a statistical approach. The catchment has been divided into five sub-regions for the development of QPF models with a maximum lead-time of 24 hours. For this purpose the data of daily rainfall from 56 raingauge stations, twice daily observations on different surface meteorological parameters from 28 meteorological observatories and upper air data from 11 aerological stations for the nine monsoon seasons of 1972–1980 have been utilized. The horizontal divergence, relative vorticity, vertical velocity and moisture divergence are computed using the kinematic method at different pressure levels and used as independent variables along with the rainfall and surface meteorological parameters. Multiple linear regression equations have been developed using the stepwise procedure separately with actual and square root and log-transformed rainfall using 8-year data (1972–1979). When these equations were verified with an independent data for the monsoon season of 1980, it was found that the transformed rainfall equations fared much better compared to the actual rainfall equations. The performance of the forecasts of QPF model compared to the climatological and persistence forecasts has been assessed by computing the verification scores using the forecasts for the monsoon season of 1980.  相似文献   

9.
The paper intends to present the development of the extended weather research forecasting data assimilation (WRFDA) system in the framework of the non-hydrostatic mesoscale model core of weather research forecasting system (WRF-NMM), as an imperative aspect of numerical modeling studies. Though originally the WRFDA provides improved initial conditions for advanced research WRF, we have successfully developed a unified WRFDA utility that can be used by the WRF-NMM core, as well. After critical evaluation, it has been strategized to develop a code to merge WRFDA framework and WRF-NMM output. In this paper, we have provided a few selected implementations and initial results through single observation test, and background error statistics like eigenvalues, eigenvector and length scale among others, which showcase the successful development of extended WRFDA code for WRF-NMM model. Furthermore, the extended WRFDA system is applied for the forecast of three severe cyclonic storms: Nargis (27 April–3 May 2008), Aila (23–26 May 2009) and Jal (4–8 November 2010) formed over the Bay of Bengal. Model results are compared and contrasted within the analysis fields and later on with high-resolution model forecasts. The mean initial position error is reduced by 33% with WRFDA as compared to GFS analysis. The vector displacement errors in track forecast are reduced by 33, 31, 30 and 20% to 24, 48, 72 and 96 hr forecasts respectively, in data assimilation experiments as compared to control run. The model diagnostics indicates successful implementation of WRFDA within the WRF-NMM system.  相似文献   

10.
11.
A dynamical downscaling approach based on scale-selective data assimilation (SSDA) is applied to tropical cyclone (TC) track forecasts. The results from a case study of super Typhoon Megi (2010) show that the SSDA approach is very effective in improving the TC track forecasts by fitting the large-scale wind field from the regional model to that from the global forecast system (GFS) forecasts while allowing the small-scale circulation to develop freely in the regional model. A comparison to the conventional spectral-nudging four-dimensional data assimilation (FDDA) indicates that the SSDA approach outperforms the FDDA in TC track forecasts because the former allows the small-scale features in a regional model to develop more freely than the latter due to different techniques used. In addition, a number of numerical experiments are performed to investigate the sensitivity of SSDA’s effect in TC track forecasts to some parameters in SSDA, including the cutoff wave number, the vertical layers of the atmosphere being adjusted, and the interval of SSDA implementation. The results show that the improvements are sensitive in different extent to the above three parameters.  相似文献   

12.
The three dimensional variational data assimilation scheme (3D-Var) is employed in the recently developed Weather Research and Forecasting (WRF) model. Assimilation experiments have been conducted to assess the impact of Indian Space Research Organisation’s (ISRO) Automatic Weather Stations (AWS) surface observations (temperature and moisture) on the short range forecast over the Indian region. In this study, two experiments, CNT (without AWS observations) and EXP (with AWS observations) were made for 24-h forecast starting daily at 0000 UTC during July 2008. The impact of assimilation of AWS surface observations were assessed in comparison to the CNT experiment. The spatial distribution of the improvement parameter for temperature, relative humidity and wind speed from one month assimilation experiments demonstrated that for 24-h forecast, AWS observations provide valuable information. Assimilation of AWS observed temperature and relative humidity improved the analysis as well as 24-h forecast. The rainfall prediction has been improved due to the assimilation of AWS data, with the largest improvement seen over the Western Ghat and eastern India.  相似文献   

13.
In this paper, impact of Indian Doppler Weather Radar (DWR) data, i.e., reflectivity (Z), radial velocity (Vr) data individually and in combination has been examined for simulation of mesoscale features of a land-falling cyclone with Advance Regional Prediction System (ARPS) Model at 9-km horizontal resolution. The radial velocity and reflectivity observations from DWR station, Chennai (lat. 13.0°N and long. 80.0°E), are assimilated using the ARPS Data Assimilation System (ADAS) and cloud analysis scheme of the model. The case selected for this study is the Bay of Bengal tropical cyclone NISHA of 27–28 November 2008. The study shows that the ARPS model with the assimilation of radial wind and reflectivity observations of DWR, Chennai, could simulate mesoscale characteristics, such as number of cells, spiral rain band structure, location of the center and strengthening of the lower tropospheric winds associated with the land-falling cyclone NISHA. The evolution of 850 hPa wind field super-imposed vorticity reveals that the forecast is improved in terms of the magnitude and direction of lower tropospheric wind, time, and location of cyclone in the experiment when both radial wind and reflectivity observations are used. With the assimilation of both radial wind and reflectivity observations, model could reproduce the rainfall pattern in a more realistic way. The results of this study are found to be very promising toward improving the short-range mesoscale forecasts.  相似文献   

14.
An integrated analysis about computational time complexity of the Local Ensemble Transform Kalman Filter (LETKF) was performed. It is found that the calculation step of inverse matrix of the error covariance in ensemble space is the most computationally intensive and time consuming. In a parallel computing environment, the uneven distribution of CPU calculations in this step directly leads to low computational efficiency. To solve this problem, a new load balancing strategy was designed based on the "greedy algorithm". A high-performance parallel ocean data assimilation system based on the LETKF was developed and tested using this strategy. This system was based on the Parallel Ocean Program 2 (POP2) of the Community Earth System Model (CESM). The optimal interpolated sea surface temperature data (OISST) and Argo temperature profile data from January to February, 2004 were assimilated into the POP2. The results show that data assimilation effectively reduces the root mean square error of temperature and salinity. Using the new strategy, the exact same results are obtained but the computation time is reduced by half. At higher resolution (0.1°×0.1°),the computing performance is still doubled, indicating that this load balancing scheme is stable and reliable. In addition, the new method has high scalability and portability with great potential to be applied in operational forecasting.  相似文献   

15.
通过对局地集合变换卡尔曼滤波(LETKF)算法的计算时间复杂度的完整分析,发现计算集合空间分析场误差协方差的逆矩阵这一过程计算量最大,耗时最长。且在并行计算环境下,该步骤CPU计算量分配不均是影响计算效率的直接原因。为解决这一问题,采用“贪心算法”设计了一套新的负载均衡策略,并使用该策略开发了一个基于LETKF和并行海洋模块2(POP2)的高性能并行海洋资料同化系统。将2004年1~2月日平均的最优插值海表温度资料(OISST)和同时期的Argo温盐剖面资料同化进入POP2。结果表明,同化有效降低了温度和盐度的均方根误差。同时,在不改变计算结果的前提下,相比原始同化系统,新系统计算性能提升1倍。在更高分辨率(0.1°×0.1°)下,该系统的计算性能仍然可以提升1倍,说明新设计的负载均衡方案稳定可靠。该方案具有很强的可扩展性和移植性,在业务预报中有广泛的应用前景。  相似文献   

16.
Real-time predictions for the JAL severe cyclone formed in November 2010 over Bay of Bengal using a high-resolution Weather Research and Forecasting (WRF ARW) mesoscale model are presented. The predictions are evaluated with different initial conditions and assimilation of observations. The model is configured with two-way interactive nested domains and with fine resolution of 9?km for the region covering the Bay of Bengal. Simulations are performed with NCEP GFS 0.5° analysis and forecasts for initial/boundary conditions. To examine the impact of initial conditions on the forecasts, eleven real-time numerical experiments are conducted with model integration starting at 00, 06, 12, 18 UTC 4 Nov, 5?Nov and 00, 06, 12 UTC 6 Nov and all ending at 00 UTC 8 Nov. Results indicated that experiments starting prior to 18 UTC 04 Nov produced faster moving cyclones with higher intensity relative to the IMD estimates. The experiments with initial time at 18 UTC 04 Nov, 00 UTC 05 Nov and with integration length of 78?h and 72?h produced best prediction comparable with IMD estimates of the cyclone track and intensity parameters. To study the impact of observational assimilation on the model predictions FDDA, grid nudging is performed separately using (1) land-based automated weather stations (FDDAAWS), (2) MODIS temperature and humidity profiles (FDDAMODIS), and (3) ASCAT and OCEANSAT wind vectors (FDDAASCAT). These experiments reduced the pre-deepening period of the storm by 12?h and produced an early intensification. While the assimilation of AWS data has shown meagre impact on intensity, the assimilation of scatterometer winds produced an intermittent drop in intensity in the peak stage. The experiments FDDAMODIS and FDDAQSCAT produced minimum error in track and intensity estimates for a 90-h prediction of the storm.  相似文献   

17.
An analysis system experiment was conducted for the month of June 2008 with Gridpoint Statistical Interpolation (GSI) analysis scheme using NCMRWF’s (National Centre for Medium Range Weather Forecasting) T254L64 model. Global analyses were carried out for all days of the month and respective forecast runs are made up to 120-hr. These analyses and forecasts are inter-compared with the operational T254L64 model outputs which uses Spectral Statistical Interpolation (SSI) analysis scheme. The prime objective of this study is to assess the impact of GSI analysis scheme with special emphasis on Indian summer monsoon as compared to SSI.  相似文献   

18.
Incorporation of cloud- and precipitation-affected radiances from microwave satellite sensors in data assimilation system has a great potential in improving the accuracy of numerical model forecasts over the regions of high impact weather. By employing the multiple scattering radiative transfer model RTTOV-SCATT, all-sky radiance (clear sky and cloudy sky) simulation has been performed for six channel microwave SAPHIR (Sounder for Atmospheric Profiling of Humidity in the Inter-tropics by Radiometry) sensors of Megha-Tropiques (MT) satellite. To investigate the importance of cloud-affected radiance data in severe weather conditions, all-sky radiance simulation is carried out for the severe cyclonic storm ‘Hudhud’ formed over Bay of Bengal. Hydrometeors from NCMRWF unified model (NCUM) forecasts are used as input to the RTTOV model to simulate cloud-affected SAPHIR radiances. Horizontal and vertical distribution of all-sky simulated radiances agrees reasonably well with the SAPHIR observed radiances over cloudy regions during different stages of cyclone development. Simulated brightness temperatures of six SAPHIR channels indicate that the three dimensional humidity structure of tropical cyclone is well represented in all-sky computations. Improved correlation and reduced bias and root mean square error against SAPHIR observations are apparent. Probability distribution functions reveal that all-sky simulations are able to produce the cloud-affected lower brightness temperatures associated with cloudy regions. The density scatter plots infer that all-sky radiances are more consistent with observed radiances. Correlation between different types of hydrometeors and simulated brightness temperatures at respective atmospheric levels highlights the significance of inclusion of scattering effects from different hydrometeors in simulating the cloud-affected radiances in all-sky simulations. The results are promising and suggest that the inclusion of multiple scattering radiative transfer models into data assimilation system can simulate the cloud-affected microwave radiance data which provide detailed information on three dimensional humidity structure of the atmosphere in the presence of cloud hydrometeors.  相似文献   

19.
Meteorological phenomena evolve according to both external influences and their own internal physical processes. Nevertheless, multivariate analysis ignores the evolution of individual meteorological events overtime, while time series analysis does not make full use of the implicit information on influencing factors. Instead, the threshold autoregressive model considers not only the additive effects of influencing factors, but also the processes controlling the evolution of the meteorological phenomena. Meanwhile, this approach deals with the nonlinear problems of meteorological processes through piecewise linearization, yielding improved fit to observations and better forecasts. The pooled variance, mean square error, and maximum fitted error of TARSO(2, (1, 1), (1, 3)) are all smaller than those obtained using TAR(2, 1, 2). The errors of the landfall number associated with TARSO(2, (1, 1), (1, 3)) are smaller than those associated with TAR(2, 1, 2). At present, however, time series data for meteorological processes are generally short, such that the corresponding information system is incomplete. Therefore, extrapolation should not be too far-ranging. It is strongly suggested that the current information system should be supplemented by the addition of new information each year, in the hope of improving future model accuracy and forecast skill.  相似文献   

20.
The present study describes an analysis of Asian summer monsoon forecasts with an operational general circulation model (GCM) of the European Centre for Medium Range Weather Forecasts (ECMWF), U.K. An attempt is made to examine the influence of improved treatment of physical processes on the reduction of systematic errors. As some of the major changes in the parameterization of physical processes, such as modification to the infrared radiation scheme, deep cumulus convection scheme, introduction of the shallow convection scheme etc., were introduced during 1985–88, a thorough systematic error analysis of the ECMWF monsoon forecasts is carried out for a period prior to the incorporation of such changes i.e. summer monsoon season (June–August) of 1984, and for the corresponding period after relevant changes were implemented (summer monsoon season of 1988). Monsoon forecasts of the ECMWF demonstrate an increasing trend of forecast skill after the implementation of the major changes in parameterizations of radiation, convection and land-surface processes. Further, the upper level flow is found to be more predictable than that of the lower level and wind forecasts display a better skill than temperature. Apart from this, a notable increase in the magnitudes of persistence error statistics indicates that the monsoon circulation in the analysed fields became more intense with the introduction of changes in the operational forecasting system. Although, considerable reduction in systematic errors of the Asian summer monsoon forecasts is observed (up to day-5) with the introduction of major changes in the treatment of physical processes, the nature of errors remain unchanged (by day-10). The forecast errors of temperature and moisture in the middle troposphere are also reduced due to the changes in treatment of longwave radiation. Moreover, the introduction of shallow convection helped it further by enhancing the vertical transports of heat and moisture from the lower troposphere. Though, the hydrological cycle in the operational forecasts appears to have enhanced with the major modifications and improvements to the physical parameterization schemes, certain regional peculiarities have developed in the simulated rainfall distribution over the monsoon region. Hence, this study suggests further attempts to improve the formulations of physical processes for further reduction of systematic forecast errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号