首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater discharge along a channelized Coastal Plain stream   总被引:1,自引:1,他引:0  
In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.  相似文献   

2.
This study uses landform curvature as an approach for channel network extraction. We considered a study area located in the eastern Italian Alps where a high‐quality set of LiDAR data was available and where channel heads and related channel network were mapped in the field. In the analysis, we derived 1‐m DTMs from different ground LiDAR point densities, and we used different smoothing factors for the landscape curvature calculation in order to test the suitability of the LiDAR point density and the derived curvature maps for the recognition of channel network. This methodology is based on threshold values of the curvature calculated as multiples (1–3 times) of the standard deviation of the curvature. Our analyses suggested that (i) the window size for curvature calculations has to be a function of the size of the features to be detected, (ii) a coarse ground LiDAR point density could be as useful as a finer one for the recognition of main channel network features and (iii) rougher curvature maps are not optimal as they do not explore a sufficient range at which features occur, while smoother curvature maps overcome this problem and are more appropriate for the extraction of surveyed channels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A new method for estimating low flows in ungauged rivers from minimum discharge of perennial springs is proposed. This spring-based approach (SBA) is tested in 21 catchments from the northern Apennines, Italy. First, the hydrogeological behaviour of each geological formation and superficial deposit is related to the spatial distribution and discharge of perennial springs in a test area using a Bayesian approach, weight of evidence (WoE). Second, the observed river flow exceeded for 95% of the observation period is related to the type of geological formations outcropping within the catchment. Finally, the q95 low flows are estimated from the WoE weights. The SBA performance is assessed by leave-one-out cross-validation and compared with the results of a multiple regression (MR) model that accounts for selected catchment characteristics, but no springs. The results show that the SBA outperforms MR. The better performance of the SBA may be related to its ability to capture bedrock characteristics, which are the main controls of low flows in the study area.  相似文献   

4.
A system has been installed to automatically monitor rainfall, streamflow, bedload discharge and suspended sediment concentration in the arid to hyper‐arid setting of Nahal Rahaf, Southern Judean Desert in Israel. The Rahaf gauging station is located in a relatively steep, wide channel with an unsteady bed driven by flash floods. It is an attempt to deploy modern automatic equipment for continuous sediment transport monitoring in harsh, arid fluvial environments. Unit bedload discharges are the highest recorded hitherto, suggesting they may represent an upper end member in the worldwide climate–bedload discharge relationship. Suspended sediment concentration is much higher than is typical of perennial fluvial humid environments. There is high correlation between suspended sediment concentration and water discharge on an event scale, with diverse intra‐event relations. The sediment yield of individual events is large, but the small number of floods limits the mean annual sediment yield to low values in this arid environment. This also has environmental implications, as large‐scale quarrying requires a long period of self‐restoration in such an arid fluvial setting. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Although temporal variation in headwater stream chemistry has long been used to document baseline conditions and response to environmental drivers, less attention is paid to fine scale spatial variations that could yield clues to processes controlling stream water sources. We documented spatial and temporal variation in water composition in a headwater catchment (41 ha) at the Hubbard Brook Experimental Forest, NH, USA. We sampled every 50 m along an ephemeral to perennial stream network as well as groundwater from seeps and 35 shallow wells across varying flow conditions. Groundwater influences on surface water in this region have not been considered to be important in past studies as relatively coarse soils were assumed to be well drained in steep catchments with flashy runoff response. However, seeps displayed perennial discharge, upslope accumulated areas (UAA) smaller than those for channel initiation sites and higher pH, Ca and Si concentrations than streams, suggesting relatively long groundwater residence time or long subsurface flow paths not bound by topographic divides. Coupled with a large range in groundwater chemistry seen in wells, these results suggest stream chemistry variation reflects the range of connectivity with, and quality of, groundwater controlled by hillslope hydropedological processes. The magnitude of variations of solute concentrations seen in the first order catchment was as broad as that seen at the fifth order Hubbard Brook Valley (3519 ha). Reduction in variation in solute concentrations with increasing UAA suggested a representative elementary area (REA) value of less than 3 ha in the first order catchment, compared with 100 ha for the fifth order basin. Thus, the REA is not necessarily an elementary catchment property. Rather, the partitioning of variation between highly variable upstream sources and relatively homogenous downstream characteristics may have different physical significance depending on the scale and complexity of the catchment under examination. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
First-order drainage basin morphology consists of two complementary regions: a headwater region, the valley head; and a stream region, the channelway (Figure 1). Each subbasin's morphology is represented by a set of principal components factors that include the properties of area, length, slope, relief, elongation, and plan curvature. The channelway region is a highly-integrated morphological unit that is dominated by a size-shape factor, indicative of an organized flow system and the presence of a permanent channel. The valley head region shows little integration of its morphological factor set, and this is reflected by its lack of a permanent channel. The valley head-channelway definition is utilized to classify first-order basins into three morphological groups or types. Basin type is related to basin location within the larger drainage network, and this relation helps to explain variations in subbasin morphology. The channelway's morphologic properties are influenced by the location of the first-order basin's bifurcation or junction within the higher-ordered network; and valley head morphology is related to the location of the basin's divide position within the drainage net.  相似文献   

7.
Abstract

Among various factors that have influence on the meandering of an alluvial channel, the most significant are valley slope, discharge, bed material, and time. The necessary condition for the origin and development of meandering of an alluvial channel is the erosion of bed material and deposition of the eroded material downstream. The criterion for the development of the meandering is that the discharge must be equal to or greater than the critical discharge (i.e., discharge corresponding to critical shear velocity). The initial channel section has an effect on the development of meandering. The meandering in the V-shaped channels starts from the center (deepest point) of the channel and works inside the banks (inside meandering) before it windens the banks, While the meandering in the rectangular channels starts with the widening of the banks (outside meandering). Maender width increases with the increase in the increase discharge and slope, and decreases with the increase in size of bed material. The meander development continues with time the meander reaches the final stage and equilibrium condition.  相似文献   

8.
It is widely recognized nowadays that there are at least two different phases of bedload sediment transport in gravel‐bed rivers. However, the transition between these phases is still poorly or subjectively defined, especially at bends in rivers, where cross‐stream sediment transport can strongly influence changes in the texture of the transported sediment. In this paper, we use piecewise models to identify objectively, at two points in the cross‐section of a river bend, the discharge at which the transition between bedload transport phases occurs. Piecewise models were applied to a new bedload data set collected during a wide range of discharges while analysing the associated changes in sediment texture. Results allowed the identification of two well‐differentiated phases of sediment transport (phase I and phase II), with a breakpoint located around bankfull discharge. Associated with each phase there was a change in bedload texture. In phase I there was non‐dominance in the transport of fine or coarse fractions at a particular sampling point; but in phase II bedload texture was strongly linked to the position of the sampling point across the channel. In this phase, fine particles tended to be transported to the inner bank, while coarse sizes were transferred throughout the middle parts of the channel. Moreover, bedload texture at the inner sampling point became bimodal while the transport of pebble‐sized particles was increasing in the central parts of the river channel. It is suggested that this general pattern may be related both to secondary currents, which transfer finer particles from the outer to the inner bank, and to the progressive dismantling of the riverbed surface layer. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
Dominant discharge may be defined as that discharge which transports most bed sediment in a stream that is close to steady-state conditions. The concept is examined in relation to two single thread gravel-bedded streams. One stream is alluvial and free to adjust its geometry whilst in the other, channel capacity and form are partially constrained by cohesive till-banks and a heavily compacted bed. The total quantity of bedload and its calibre were measured for every flood over a six year period, so that the relationship between the grain-size of bedload and the most effective discharge could be examined in the context of thresholds for channel change. The dominant discharge concept was applicable to the alluvial stream in that the bankfull value is an effective discharge for maintaining channel capacity. The concept applied less well to the ‘non-alluvial’ stream. Although in both streams the bankfull value was exceeded for less than 0.34 per cent of the time, overbank flows are important in instigating channel change. It is only during overbank flows that the largest bed material is entrained in quantity. For within-channel flows a threshold separates flows which winnow fine matrix from those which entrain the finer bed gravels. This threshold occurred at 60 per cent bankfull. It was concluded that the dominant discharge concept can be applied to streams close to steady-state which are alluvial, competent, and free to adjust their boundaries. An important proviso is that two channel-stability domains can be recognized. These domains represent channel maintenance and channel adjustment and are defined by intrinsic thresholds in the bed material entrainment function.  相似文献   

10.
Hydrological process in arid zones differs substantially from that in better documented humid environments. The ponding point for infiltration is reached within 10 mins of first rain and overland flow forms the major component of basin runoff. Drainage densities are high, approaching 100 km.km?2, maximising the opportunity for both water and eroded soil to reach the channel network. The typical flood bore is not as abrupt as the mythology of desert streams would suggest. Nevertheless, the time of rise of the flood hydrograph is usually between 4 and 16 mins, giving credance to the notion of ‘flash flood’. Measured flows remain subcritical in the main, though Froude number exceeds unity for short periods around peak discharge. Flow is exceedingly turbulent, with Reynolds number > 105 even for much of the recession limb. As a result, suspended sediment concentrations by size grade are shown to be hydraulically controlled. However, the high degree of turbulence and wide availability of sediment from hillslope and channel sources also means that the mean size of the suspended load varies systematically with flow parameters. In this respect, ephemeral streams differ from perennial counterparts in humid environments where no clear-cut relationships exist. There is greater prospect of deriving a physically deterministic model of suspended sediment transport in desert streams. Implications for soil erosion and reservoir siltation are discussed, and sediment is traced from its source to its various sinks within the drainage basin.  相似文献   

11.
《水文科学杂志》2013,58(2):401-408
Abstract

Knowledge of peak discharge is essential for safe and economical planning and design of hydraulic structures. In India, as in most developing countries, the majority of river basins are either sparsely gauged or not gauged at all. The gauged records are also of short length (generally 15–30 years), therefore development of robust models is necessary for estimation of streamflows. Various studies reveal that flood estimation through channel geometry is an alternative method for ungauged catchments. It is appropriate for use where flow characteristics are poorly related to catchment area and other catchment characteristics. In the present study, stream geometry parameters for 42 river sites in central-south India were used; calibration equations were developed with data for 35 stations and tested on data for the remaining seven stations. The relationships developed between mean discharge and channel geometry parameters provide an alternative technique for estimation of mean annual channel discharge.  相似文献   

12.
The high dynamism and complexity of braided networks poses a series of open questions, significant for river restoration and management. The present work is aimed at the characterization of the morphology of braided streams, in order to assess whether the system reaches a steady state under constant flow conditions and, in that case, to determine how it can be described and on which parameters it depends. A series of 14 experimental runs were performed in a laboratory physical model with uniform sand, varying the discharge and the longitudinal slope. Planimetric and altimetric configurations were monitored in order to assess the occurrence of a steady state. A set of parameters was considered, such as the braid‐plain width and the number and typology of branches and nodes. Results point out that a relationship exists between braiding morphology and two dimensionless parameters, related to total water discharge and stream power. We found that network complexity increases at higher values of water discharge and a larger portion of branches exhibits morphological activity. Results are then compared to the outputs of a simple one‐dimensional model, that allows to easily predict the average network complexity, once the bed topography is known. Model computations permit also the investigation of the effect of water discharge variations and to compare different width definitions. The at‐a‐station variability of planimetric parameters shows a peculiar behaviour, both regarding number of branches and wetted width. In particular, the analysis of the relationship between width and discharge highlighted relevant differences in comparison to single thread channel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In a basin developed on a stream table, effluent subsurface flow supported a channel network that evolved by a combination of headward growth, lateral widening and divide decay. The area occupied by the developing network increased with time. Circularity was used to characterize network evolution which occurred in three phases (initiation, extension and abstraction). Basin sediment discharge declined exponentially with time. Pronounced quasi-cyclic variability was superimposed upon this general trend. Some of the variability was directly linked to changes in the amount of sediment supplied to the channel. The variation of mean network sediment yield (mean sediment discharge scaled by network area) with time adequately described the general decline in sediment discharge as the network evolved.  相似文献   

14.
Construction of large dams is attractive because of their great benefits in flood control,hydropower generation,water resources utilization,navigation improvement,etc.However,dam construction may bring some negative impacts on sediment transport and channel dynamics adjustments.Due to the effects of recent water and soil conservation projects,sediment retention in the newly constructed large upstream reservoirs,and other factors,the sedimentation in the Three Gorges Reservoir(TGR)is quite different from the amount previously predicted in the demonstration stage.Consequently,based on the measured data,characteristics of sedimentation and the related channel deformation in the TGR were analyzed.The results imply that sediment transport tended to be reduced after the Three Gorges Project(TGP).Sedimentation slowed dramatically after 2013 and indicated obvious seasonal characteristics.Due to the rising water level in the TGR in the flood season,the yearly sediment export ratio(Eratio)was prone to decrease.The water level near the dam site should be reasonably regulated according to the flow discharge to improve the sediment delivery capacity and reduce sedimentation in the TGR,and to try to avoid situations where the flood retention time is close to 444 h.The depositional belt was discontinuous in the TGR and was mainly distributed in the broad reaches,and only slight erosion or deposition occurred in the gorge reaches.Sedimentation in the broad and gorge reaches accounted for 93.8% and 6.2% of the total sedimentation,respectively.The estuarine reach located in the fluctuating backwater area experienced alternate erosion-deposition,with a slight accumulative deposition in the curved reach.Sedimentation mainly occurred in the perennial backwater area.The insight gained in this study can be conducive to directly understanding of large reservoir sedimentation and mechanism of channel adjustment in the reservoir region in the main channel of large river.  相似文献   

15.
IINTRODUCTIONIntherecentdecadesfrequentflooddisasterscausedseriousdamagesandclaimedthousandsoflives,suchasthe1998floodintheYangtzeRiverandthe1996floodintheYellowRiver.The1998floodintheYangtzeandtheSonghuaRiversbroughtdirectlossesofmorethan$30billions.Lowdischargehighstageisthemaincharacterofthefloods.Forexample,thehighestfloodstagein1998wasI.sinhigheranddischargewas14000m3/slowerthanthosein1954atLuoshanStationoftheVangtzeRiver.Anewmodelisrequiredtobedevelopedforaccuratepredictionoffl…  相似文献   

16.
An empirical relation between volume and peak of runoff (VPR) was utilized to determine peak discharge reduction effectiveness of flood retarding structures. The effectiveness was evaluated by comparing the predam VPR relation with and a pre and post dam channel length frequency distribution (CLFD) for the point of interest. The procedure involved well related hydrologic and geomorphic variables and thus could be a practical prediction tool.  相似文献   

17.
Mountainous headwater streams represent a substantial proportion of the global stream network. These small streams may flow episodically, seasonally, or perennially, providing diverse values and services. Given their broad importance and growing pressures on terrestrial and aquatic resources, we must improve our understanding of the drivers of flow permanence to facilitate informed land and water management decisions. We used field observations from >10 cross-sections in each of 101 non-fish bearing, headwater streams across four geomorphic provinces in Northern California to quantify flow permanence and network connectivity during the summer low flow period in 2018. At each stream cross-section, we noted the presence or absence of streamflow and used this information to classify streams as perennial (continuous streamflow in all cross-sections) or non-perennial and connected (surface water in the most downstream cross-section) or disconnected. At each cross-section, we also quantified channel size (width and depth) and grain size. We coupled field observations with geospatial data of catchment physiography, hydrology, and climate in random forest models to investigate controls of flow permanence and network connectivity. Potential drivers of flow permanence or network connectivity included in our models were channel geometry, grain size, slope, aspect, elevation, annual and seasonal precipitation, air temperature, and topographic wetness index. We found more perennial streams in the Klamath Mountains and Sierra Nevada than in the Cascades and N. Coast regions. Streams in the Klamath were the most connected followed by streams in the N. Coast, Sierra Nevada, and Cascades. The most important variables for predicting flow permanence were channel grain size, winter 2018 precipitation, and drainage area. Comparatively, the most important variables for predicting network connectivity were winter and spring 2018 precipitation, grain size, and bankfull depth. Our study illustrated the complexity of the processes that drive flow permanence and highlighted the uncertainty in projecting the precense of water in streams across diverse regions.  相似文献   

18.
Shang Gao  Zheng N. Fang 《水文研究》2019,33(21):2729-2744
A synthetic storm generator—Dynamic Moving Storm (DMS)—is developed in this study to represent spatio‐temporal variabilities of rainfall and storm movement in synthetic storms. Using an urban watershed as the testbed, the authors investigate the hydrologic responses to the DMS parameters and their interactions. In order to reveal the complex nature of rainfall–run‐off processes, previously simplified assumptions are relaxed in this study regarding (a) temporal variability of rainfall intensity and (b) time‐invariant flow velocity in channel routing. The results of this study demonstrate the significant contribution of storm moving velocity to the variation of peak discharge based on a global sensitivity analysis. Furthermore, a pairwise sensitivity analysis is conducted to elucidate not only the patterns in individual contributions from parameters to hydrologic responses but also their interactions with storm moving velocity. The intricacies of peak discharges resulting from sensitivity analyses are then dissected into independent hydrologic metrics, that is, run‐off volume and standard deviation of run‐off timings, for deeper insights. It is confirmed that peak discharge is increased when storms travel downstream along the main channel at the speed that corresponds to a temporal superposition of run‐off. Spatial concentration of catchment rainfall is found to be a critical linkage through which characteristics of moving storms affect peak discharges. In addition, altering peak timing of rainfall intensity in conjunction with storm movement results in varied storm core locations in the channel network, which further changes the flow attenuation effects from channel routing. For future directions, the DMS generator will be embedded in a stochastic modelling framework and applied in rainfall/flow frequency analysis.  相似文献   

19.
The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water‐surface width and average depth, were measured at 58 to 888 equally spaced cross‐sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two‐dimensional structure of a channel link which is the fundamental unit of a channel network. The morphological variables have nearly log‐normal probability distributions. A general relation was determined which relates the means of the log‐transformed variables to the logarithm of discharge similar to previously published downstream hydraulic geometry relations. The spatial variability of the variables is described by two properties: (1) the coefficient of variation which was nearly constant (0·13–0·42) over a wide range of discharge; and (2) the integral length scale in the downstream direction which was approximately equal to one to two mean channel widths. The joint probability distribution of the morphological variables in the downstream direction was modelled as a first‐order, bivariate autoregressive process. This model accounted for up to 76 per cent of the total variance. The two‐dimensional morphological variables can be scaled such that the channel width–depth process is independent of discharge. The scaling properties will be valuable to modellers of both basin and channel dynamics. Published in 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Comprehensive empirical data of the response of unstable streams over a range of environmental conditions are unavailable. In this study, as a substitute for empirical data, a physically based numerical model of channel evolution is used in a range of numerical simulation experiments designed to predict the sensitivity of channel response to changes in control variables. The scope of the study is limited by the scope of the numerical model which applies to straight, sand-bed streams with cohesive bank materials that have been destabilized by sediment starvation and evolve towards equilibrium through bed degradation followed by channel widening. Results are presented for stable and unstable channel conditions. Stable channel depths are most sensitive to channel discharge, though the critical threshold shear stress for the entrainment of cohesive bank materials and discharge are both significant in determining the width. The sediment load, channel gradient, bank material cohesion, size of failed bank material aggregates and the initial bank height have sensitivities an order of magnitude smaller than discharge for both width and depth. Variations in bed material characteristics within the sand-size range are found to have little impact on simulated stable channel morphology. For unstable channels, the relative dominance of parameter sensitivities is examined in the context of an empirical-conceptual model of channel evolution proposed by Thorne and Osman (1988), to highlight the relationships between parameter dominance, time, and the processes and forms characterizing individual stages of channel evolution. Rates of change with time of width and depth sensitivity parameters for five tested independent variables (discharge, sediment supply, channel gradient, bank material cohesion and bed material size) are found to vary as a function of time, such that different stages of channel evolution are characterized by variations in the relative dominance of tested variables. The results support the hypothesis proposed by Thorne and Osman (1988) that the critical bank height required to initiate mass-wasting and widening may be regarded as a geomorphic threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号