首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
青藏高原形成,演化及动力学研究现状   总被引:4,自引:0,他引:4  
青藏高原是当今世界上最高、最大和最年轻的高原。它独特的岩石圈结构和构造演化、强烈的新构造运动和环境变迁,对我国乃至亚洲大陆的自然环境和人文地理产生巨大的影响,是打开全球地球动力学的一把金钥匙,近年来在国际上持续地掀起了研究青藏高原热,青藏高原是我国具有特色和优势的研究领域,本文简要地介绍青藏高原研究进展及主要成就,并对其地球动力学问题进行了讨论。  相似文献   

2.
“青藏高原岩石圈现今变动与动力学研究”是国家基础研究攀登计划“现代地壳运动和地球动力学”的二级课题,由学部委员国家地震局地质研究所马宗晋教授负责组织,国家地震局地质研究所、地震研究所、分析预报中心和中国科学院测量与地球物理研究所共同参加。 本课题五年研究工作的基本构想是:以横穿青藏高原及高原东缘的两条GPS测线网(平均点距500km)两次以上的复测结果为近期变动的基本参数,并结合大地测量、高精度重复重力测量成果,建立青藏高原岩石圈现今变动的近期格局;结合地震活动分析和高原活动构造调查,分别建立青藏高原岩石圈非均一、非平稳的中期和长期运动学模型;综合分析青藏高原发展、演化及地球物理场特征,辅之以模拟分析,探讨青藏高原岩石圈动力学过程。  相似文献   

3.
青藏高原多向碰撞─揳入隆升地球动力学模式   总被引:3,自引:1,他引:2  
论证了青藏高原形成与隆升过程中的变形构造格局。岩石圈结构、青藏高原隆升与周边前陆沉积盆地耦合关系、高原隆升的地球动力学模式等。提出青藏高原碰撞-隆升过程中,高原边缘以走滑-挤压构造为主,高原内部以伸展构造为主;高原隆升过程中,岩石圈变形总体是:上部以伸展变形为主,中部以挤压变形为主,下部以伸展变形为主。通过青藏高原及周边岩石圈结构及隆升过程变形作用时-空耦合关系的对比研究,建立起青藏高原隆升机制的多向碰撞-入隆升地球动力学模式。  相似文献   

4.
青藏高原多向碰撞─揳入隆升地球动力学模式   总被引:1,自引:1,他引:0  
论证了青藏高原形成与隆升过程中的变形构造格局。岩石圈结构、青藏高原隆升与周边前陆沉积盆地耦合关系、高原隆升的地球动力学模式等。提出青藏高原碰撞-隆升过程中,高原边缘以走滑-挤压构造为主,高原内部以伸展构造为主;高原隆升过程中,岩石圈变形总体是:上部以伸展变形为主,中部以挤压变形为主,下部以伸展变形为主。通过青藏高原及周边岩石圈结构及隆升过程变形作用时-空耦合关系的对比研究,建立起青藏高原隆升机制的多向碰撞-入隆升地球动力学模式。  相似文献   

5.
青藏高原的地幔动力学研究   总被引:3,自引:0,他引:3  
青藏高原的形成是印度板块与欧亚大陆碰撞、挤压的结果,但简单的碰撞模型及南西—北东向的挤压无法解释高原现今所有的构造。因此,其他地球动力学因素,尤其是地幔动力学过程逐渐引起人们的关注。简要回顾青藏高原隆升的地幔动力学机制研究历史;较详细地介绍了青藏高原下深部结构的地幔动力学含义;并重点评述在青藏高原隆升的地幔动力学机制研究领域所取得的主要结果。说明在全球构造格局中,青藏高原不仅仅是印度和欧亚大陆会聚、碰撞以及大陆形变的结果,它也是青藏高原大陆岩石层和下伏地幔物质运动的相互耦合、相互作用的产物。  相似文献   

6.
正伴随着五月的鸟语花香,"印度-欧亚大陆碰撞及其远程效应"栏目即将与大家见面。板块构造理论完美地解释了大洋岩石圈的形成和演化,是地球科学的一场革命。但占地球表面积35%的大陆,其岩石圈的构造和变形并没有在板块构造理论中涉及,这是具有重大科学意义的基础科学问题,而青藏高原被认为是发展板块构造理论的最佳场所。印度大陆与欧亚大陆的碰撞与青藏高原的隆升是中、新生代以来地球科学最重要的构造事件之一,它影响着全球,特别是北半球的气候变化;而青藏高原的壳幔结构、动力学过程及其远程效应控制整个地球动力学体制的形成与演化。然而,由于岩石圈结构的非均一性,青藏高原北向扩展及影响在不同地区或构造带表现不同,甚至活动时间也存在差异。比如,在高原北部,北山和阿拉善地块构造活动性较弱,而更北的南蒙古中西部地区构造活动增强,大型陆内走滑构造及其控制的中强地震活动频繁,那么南蒙古地区的新生代活动构造从什么时候开始的?应力如何通过相对稳定的北山和阿拉善地块传递至南蒙古地区的?大陆碰撞与高原隆升的影响能否到达贝加尔湖地区?由印度欧亚大陆碰撞边界的强烈构造挤压到贝加尔地区的构造伸展是如何过渡的?藏南裂谷系与贝加尔裂谷的深部结构与形成机制有什么差异?……。  相似文献   

7.
青藏高原多向碰撞—Xie入隆升地球动力学模式   总被引:16,自引:0,他引:16  
蔡学升  曹家敏 《地学前缘》1999,6(3):181-189
论证了青藏庙的形成与隆升过程中的变形构造格局,岩石圈结构,青藏高原隆升与周边前陆沉积盆地耦合关系,高原隆升的地球动力学模式等。提出青藏高原碰撞隆升过程中,高原边缘以走滑-挤压构造为主,高原内部以伸展构造为主;高原隆升过程中,岩石圈变形总体是;上部以伸展变形为主,中部以挤压变形为主,下部以伸展变形为主。  相似文献   

8.
青藏高原南部晚新生代板内造山与动力成矿   总被引:14,自引:1,他引:13  
李德威 《地学前缘》2004,11(4):361-370
青藏高原晚新生代构造隆升是板块碰撞成因还是板内造山过程 ,关系到高原形成机制、演化过程以及岩石圈动力学与大陆动力学的关系等一系列重大科学问题。近年来在冈底斯发现多个以斑岩铜矿为主的大型和超大型矿床 ,其成矿时代为 2 0~ 12Ma ,与青藏高原构造隆升时代一致 ,也与笔者10年前以大陆动力学和成矿动力学为理论指导的预测结果吻合。青藏高原南部晚新生代大量的地质、地球物理、矿床等方面的证据根本不支持碰撞造山理论 ,如青藏高原内部伸展边缘逆冲、碰撞与隆升之间时差明显 ,壳内低速层和低阻层发育 ,造山与成盆关系密切 ,板内隆升环境下发生大规模构造变形、岩浆活动和动力成矿等。青藏高原南部晚新生代构造隆升作用是在新特提斯开合转换、碰撞造陆之后 ,在下地壳层流作用的驱动下 ,发生板内造山、地壳增厚、热隆伸展和改造成矿的构造成矿过程 ,大规模的板内金属成矿在 3~ 4Ma以来的均衡隆升、成山过程中进一步改造。  相似文献   

9.
作为地球陆地上最高、最大、最平坦的地貌单元,青藏高原晚第四纪—现今构造变形的运动学状态是研究其深部地球动力作用的重要基础。全球卫星导航系统能够观测几十年时间尺度的地壳运动定量资料,历史记载和仪器观测获得的历史地震资料提供着数百年时间尺度的构造运动和深部变形数据,而上万年时间尺度的活动断裂定量研究数据则揭示着长期、平均构造变形状态。综合这三类不同时间尺度的地表构造变形定量数据,就能够定性推测或定量模拟驱动地表构造变形的深部地球动力作用。本文综合利用上述三类资料,发现青藏高原晚第四纪—现今的运动状态受控于统一的应变场,地表与深部一致,现今与长期一致。最大剪切应变主要分布在高原周边的主要逆冲断裂带和内部的巨型活动走滑断裂带,产生众多的强震;收缩应变和地壳缩短主要发生在周边山系及其伴随的前陆盆地,形成逆冲断裂和逆冲型强震;面膨胀应变和地壳拉张发生在高海拔的青藏高原内部,形成近南北向正断层和北东/北西向共轭剪切断裂系,并控制着正断层型地震的发生;青藏高原的所谓“向东挤出”,不是刚性岩石圈地块在走滑断裂夹持下的向东滑移,而是高原内部岩石圈物质的向东流动和绕喜马拉雅东构造结的顺时针旋转。这种运动状态只能被青藏高原之下岩石圈地幔对流剥离动力学模型很好解释。被对流剥离的岩石圈沉入中下地幔时伴随着负浮力的产生,不仅使得青藏高原发生垂向隆升,还对周边施加水平挤压应力,从而造成高原周边准同期地向外逆冲扩展,导致了起始于晚新生代并延续至今的构造变形,形成所观测到的不同时段的构造变形运动场。  相似文献   

10.
青藏高原位于我国西南边陲,是世界上最高大的高原,面积达240万公里2,海拔平均4000米以上。青藏高原又是地球上最年轻、最活动的隆起带,具有地壳最大的厚度和独特的深部形态,故向为中外学者瞩目。   相似文献   

11.
l.IntroductionAteleseismicprofilingwasconductedjointlybytheChineseAcademyofGeologicalSciencesandtheInstitUteofGeophysicsandInnerTectonics,JosephUniversity,France,alongthemainroadfromGonghetoYushuinQinghai,withanarrayof4Othree-componentMinititanstationsandl3one-componentCEISstations,fromJunetoNovember,1998.ThestUdycoversahugearearangingfromthenofthoftheBangong-NujiangFaulttothesouthoftheMid-QilianFault,andfromtheeastoftheQaidamBasintothewestoftheLongmenShanFault,goingthroughSouthQ…  相似文献   

12.
The 1000-km-long Darlag–Lanzhou–Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4 km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3 km/s are 0.15 km/s lower than the worldwide average of 6.45 km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4 km/s and only 0.5 km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38 km as the crustal thickness increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino–Korean and Gobi Ala Shan platforms.  相似文献   

13.
New results from deep seismic reflection profiling, wide-angle reflection-refraction profiling and broadband seismic experiments reveal that a series of south-dipping reflectors occur on the southern margin of the Tarim block (basin). However, it is these south-dipping structures that are intercepted by another series of north-dipping reflectors at depths from 30 to about 150 km beneath the foreland of the W Kunlun Mountains. No evidence from the above geophysical data as well as geochemical and surface geological data indicate the southward subduction of the Tarim block beneath the W Kunlun Mountains (NW Tibet plateau), forming the so-called "two-sided subduction" model for the Tibet plateau as proposed by previous studies. So the authors infer that the tectonic interaction between the Tarim block and the W Kunlun block was chiefly affected by a "horizontal compression in opposite directions", which brought about "face-to-face contact" between these two lithospheric blocks and led to the thickening, sh  相似文献   

14.
东昆仑大地震的深部构造背景   总被引:4,自引:1,他引:3  
本文以深地震测深剖面资料揭示的地壳结构形态为切入点 ,探讨东昆仑 8.1级大地震的深部构造背景。沱沱河—小柴旦长 5 0 0km的剖面范围内发现两处大的莫霍面错断 ,分别位于东昆仑 柴达木结合带之下和金沙江断裂之下。青藏高原北部的地壳厚度 6 1~ 75km :莫霍面具有一致南倾 ,逐步加深的产状及弱反射性特征 ;下地壳明显增厚 ,但速度未见明显降低 ;上地壳发育逆冲、走滑断裂 ;地壳中部存在低速层。北邻的柴达木盆地地壳相对刚性 ,厚 5 2± 2km。东昆仑及邻区的壳幔结构有利于强地震孕育。在印度板块向北推挤和柴达木地块的向南插入的区域挤压应力场中 ,青藏高原北部较弱的下地壳缩短增厚 ,变形过程中的蠕滑引起地壳浅部的应力放大。但NE向主压应力的作用不是大地震形成的唯一要素 ,与青藏高原北部各地体侧向运动有关。侧向运动速率和幅度的差异使应力在各地体的边界断裂积累并使其复活。而低速层对形成孕育大地震需要的“立交桥式”的局部应力环境是必不可少的条件。  相似文献   

15.
通过深地震反射剖面,宽频天然深地震探测,广角折射、反射剖面,结合地表地质观察、岩石矿物和地球化学研究,以及弹性模拟计算等,对当前国际上流行的所谓高原北缘向南呈A型俯冲,南缘向北俯冲构成的青藏高原地壳加厚、隆升的“双俯冲”(two-sidedsubduction)模式提出质疑,认为高原北缘至少在西昆仑与塔里木(欧亚板块)之间不存在长距离的俯冲,在新生代以来的强劲挤压中,塔里木起到了一定的阻挡作用,在这里呈现南北向挤压应力场,因而青藏高原西北缘陆-陆碰撞造山、盆山的形成受到“南北双向挤压模式”所控制,也是造成青藏高原西北缘新生代期地壳加厚、隆升的重要动力因素  相似文献   

16.
王志  王剑  付修根 《地质论评》2021,67(1):1-12
青藏高原东缘和扬子西缘的构造带是中国特提斯构造域的重要组成部分,该构造域受欧亚板块与印度板块陆—陆碰撞、高原隆升、块体裂解或拼接挤压等强烈构造活动的影响,记录和保存了多期次的特提斯构造演化历史痕迹。同时,该研究区域也是中国西部地区地壳形变最强烈的地区之一,其浅表形变特征与深部构造之间存在怎样的关联和制约机制是目前国际地球科学的一个研究热点。本研究依据作者十多年来持续在该区域开展的地质—地球物理研究,通过深部地球物理多参数结构成像、沉积盆地分析、地壳形变和强震孕育机制等综合对比分析,发现在青藏高原东缘的下地壳存在低速和高泊松比异常带,该异常体与来自青藏高原上涌的软流圈热物质汇聚,导致从扬子西缘到青藏高原的下地壳和上地幔的深部结构发生显著变化。沿着龙门山断裂带,中、下地壳存在交叠相间的低速(高泊松比)和高速(低泊松比)区域,这些深部结构分布特征与地表形变及前陆盆地隆坳格局具有较好的一致性。基于上述认识,提出了青藏高原东缘—扬子板块的深部接触模式及其相应的盆山耦合关系,阐明了板块碰撞—耦合的深部动力学过程对剧烈地壳形变、盆地隆坳格局和强震诱发的制约关系。本研究成果将为深入认识青藏高原东缘高原急剧隆升、盆地基底结构与隆拗格局,以及强烈地壳形变的深部动力学机制提供参考信息。  相似文献   

17.
We herein present a new seismic refraction/wide-angle reflection profile that crosses the Songpan–Ganzi terrane, the Animaqing suture zone and the eastern Kunlun mountains (comprised of the South Kunlun and Middle Kunlun blocks separated by the Middle Kunlun fault). The profile is 380 km long and extends from Moba to Guide in eastern Tibet. The crustal thickness is about 62 km under the Songpan–Ganzi terrane, 62–64 km under the South Kunlun, and 60 km under the Middle Kunlun block. The Songpan–Ganzi flysch seems to be present up to a depth of 15 km south of the Animaqing suture zone, and up to a depth of 10 km in the Middle Kunlun block, with thicknesses elsewhere that depend on assumptions about the likely lithologies. The profile exhibits clear lateral variations both in the upper and lower crust, which are indicative of different crustal blocks juxtaposed by the Kunlun fault system. Whether or not the Songpan–Ganzi flysch was originally deposited on oceanic crust, at the longitude of our profile (100°E) it is now underlain by continental crust, and the presence of continental crust beneath the Songpan–Ganzi terrane and of a continental arc under the South Kunlun block suggest Paleozoic continent–continent arc collision in the eastern Kunlun Mountains. Comparison of crustal velocity columns from all wide-angle seismic profiles across the eastern Kunlun mountains indicates a remarkable west-to-east change in the Moho topography across the Kunlun fault system (15–20 km Moho step at 95°E, but only 2–5 km along our profile at 100°E). Lower-crustal thickness of the Kunlun terranes is rather uniform, about 35 km, from 80°–95°E, which suggests that similar thrust-thickening processes have played a role where the Qaidam Basin abuts the Kunlun fault, but thins to 20–25 km at 100°E, east of the Qaidam Basin. The increased crustal thickness from 93° to 98°E compared to that at 100°E may be due to the differences in the thickness of the crust of the two plates before their collision, and/or largely achieved by thickening of the lower crust, perhaps indicating a crustal flow mechanism operating more strongly in the western region.  相似文献   

18.
青藏高原板内地震震源深度分布规律及其成因   总被引:6,自引:0,他引:6  
青藏高原板内地震以浅源地震为主, 下地壳基本上没有地震, 地震震源多集中在15~40 km的深度范围, 主要在中地壳内, 呈似层状弥散分布.其中30~33 km深度是一个优势层, 与壳内分层有关.总体上青藏高原南、北部的震源面略呈相向倾斜特征.70~100 km深度区间出现了比较集中的震级较小的地震, 可能与壳幔过渡带的拆离作用有关.高原内部的正断层系与板内地震密切相关, 是板内浅源地震的主控构造.总之, 青藏高原地震震源沿着活动的上地壳脆性层与软弱层之间的脆-韧性过渡带分布.这些板内地震活动属于大陆动力学过程, 与板块碰撞和板块俯冲无关.初步认为青藏高原浅层到深层多震层的成因分别是韧性基底与脆性盖层、韧性下地壳与脆性上地壳、韧性下地壳与脆性上地幔的韧-脆性转换、拆离和解耦的产物.   相似文献   

19.
朱炳泉 《地球化学》1982,(3):244-252
青藏高原位于欧亚与印度板块之间的会聚板块边界。两个大陆碰撞以后使地壳发生增厚,从而改变了地表下放射能的分布状态。而这种能量的再分配又使板块的存在状态发生改变。因此,它明显不同于正常的大陆板块和海洋板块。青藏高原具有厚地壳(63—74公里)、薄板块(Lg波明显减弱)和高热流等特征。而正常大陆板块具有中等地壳厚  相似文献   

20.
大陆构造变形与地震活动——以青藏高原为例   总被引:5,自引:0,他引:5  
大陆内部构造变形和地震活动往往突显出复杂的、区域性的特征,很难用板块构造理论来解释。青藏高原是大陆构造变形的典型实例,具有不同构造变形的分区特征,不仅表现在物质组成、地形地貌和断裂组合等方面的不同,而且还表现出不同的地震活动特征。东昆仑断裂带以北的青藏高原北部地块,主要发育一系列挤压环境下的盆岭构造,表现为以连续变形为特征的上地壳挤压缩短变形;高原中北部巴颜喀拉地块,具有整体向东运动的特点,变形主要集中在其边缘,表现为刚性块体运动特征。在东部,由于稳定的四川盆地(扬子地块)的阻挡,位于龙日坝和龙门山断裂带之间相对坚硬的龙门山地区受到东西向强烈挤压,西部边界为伸展变形;在高原中央腹地羌塘地块西部,由于上地壳物质在向东挤出的驱动下不断变形,沿一系列小型正断层和走滑断层以伸展变形为主,表现为弥散型变形特征。相比之下,羌塘地块的东部向东-南东方向挤出,在大型走滑断层之间形成一个刚性块体;高原南部地块以东西向伸展的南北向裂谷系为主要变形特征,高原南缘以南北向挤压的大型逆冲断裂系为特征。历史地震和仪器记录的大地震(M≥8)只发生在高原东北和东南部的大型走滑带,以及东部和南部边缘的大型逆冲断裂上,沿后者更为频发。到目前为止,高原其他地区只发生了8级以下地震。青藏高原这种分区域的地壳变形形式和地震活动分布是大陆构造变形的重要特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号