首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
穆穆  王强  段晚锁  姜智娜 《气象学报》2014,72(5):1001-1011
对近年来用条件非线性最优扰动法研究大气与海洋目标观测问题的部分工作进行了总结,主要涉及厄尔尼诺-南方涛动(ENSO)事件、黑潮路径变异事件以及阻塞事件。通过研究这些事件发生的最优前期征兆(OPR)和最快增长初始误差(OGE),发现这些事件的最优前期征兆和最快增长初始误差分别具有空间的高度相似性及其伴随的局地性特征。理想回报试验表明,如果在ENSO事件和黑潮路径变异事件的最快增长初始误差和最优前期征兆所确定的扰动大值区减小初始场误差,上述事件的预报技巧会大幅度提高;最优前期征兆和最快增长初始误差的空间相似性使得在同一敏感区域增加额外观测,不仅有助于捕捉上述异常事件的前期信号,还可以有效减小初始误差,从而提高对该事件的预报技巧。阻塞事件爆发的最优前期征兆和最快增长初始误差的空间相似性和局地性特征在其目标观测研究中的应用,应该是深入研究的课题。  相似文献   

2.
With the Zebiak–Cane model, the relationship between the optimal precursors (OPR) for triggering the El Niño/Southern Oscillation (ENSO) events and the optimally growing initial errors (OGE) to the uncertainty in El Niño predictions is investigated using an approach based on the conditional nonlinear optimal perturbation. The computed OPR for El Niño events possesses sea surface temperature anomalies (SSTA) dipole over the equatorial central and eastern Pacific, plus positive thermocline depth anomalies in the entire equatorial Pacific. Based on the El Niño events triggered by the obtained OPRs, the OGE which cause the largest prediction errors are computed. It is found that the OPR and OGE share great similarities in terms of localization and spatial structure of the SSTA dipole pattern over the central and eastern Pacific and the relatively uniform thermocline depth anomalies in the equatorial Pacific. The resemblances are possibly caused by the same mechanism of the Bjerknes positive feedback. It implies that if additional observation instruments are deployed to the targeted observations with limited coverage, they should preferentially be deployed in the equatorial central and eastern Pacific, which has been determined as the sensitive area for ENSO prediction, to better detect the early signals for ENSO events and reduce the initial errors so as to improve the forecast skill.  相似文献   

3.
张星  穆穆  王强  张坤 《山东气象》2018,38(1):1-9
对近年来利用条件非线性最优扰动(Conditional Nonlinear Optimal Perturbation,CNOP)方法开展的黑潮目标观测研究进行了总结,主要包括日本南部黑潮路径变异的目标观测研究、黑潮延伸体模态转变的目标观测研究和源区黑潮流量变化的目标观测研究。通过计算这些事件的CNOP型扰动,发现这些事件的CNOP型扰动具有局地特征,可以作为实施目标观测的敏感区。理想回报试验结果表明,如果在由CNOP方法识别的敏感区内实施目标观测,则会大幅度提高上述事件的预报技巧。  相似文献   

4.
穆穆  段晚锁 《大气科学》2013,37(2):281-296
本文总结了近年来条件非线性最优扰动方法的应用研究的主要进展.主要包括四个方面:(1)将条件非线性最优扰动(CNOP)方法拓展到既考虑初始扰动又考虑模式参数扰动,形成了拓展的CNOP方法.拓展的CNOP方法不仅能够应用于研究分别由初始误差和模式参数误差导致的可预报性问题,而且能够用于探讨初始误差和模式参数误差同时存在的情形;(2)将拓展的CNOP方法分别应用于ENSO和黑潮可预报性研究,考察了初始误差和模式参数误差对其可预报性的影响,揭示了初始误差在导致ENSO和黑潮大弯曲路径预报不确定性中的重要作用;(3)考察了阻塞事件发生的最优前期征兆(OPR)以及导致其预报不确定性的最优增长初始误差(OGR),揭示了OPR和OGR空间模态及其演变机制的相似性及其局地性特征;(4)研究了台风预报的目标观测问题,用CNOP方法确定了台风预报的目标观测敏感区,通过观测系统模拟试验(OSSEs)和/或观测系统试验(OSEs),表明了CNOP敏感区在改进台风预报中的有效性.具体地,台风OGR的主要误差分布在某一特定区域,空间分布具有明显的局地性特征,在台风OGR的局地性区域增加观测,有效改进了台风的预报技巧,该区域代表了台风预报的初值敏感区.事实上,上述El Ni(n)o事件、黑潮路径变异以及阻塞事件的OGR的空间分布也具有明显的局地性特征,这些事件的OGR刻画的局地性区域可能也代表了初值敏感区.  相似文献   

5.
A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations.The results show that the model was able to capture the essential features of these path variations.We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method.Because of their relatively large uncertainties,three model parameters were considered:the interfacial friction coefficient,the wind-stress amplitude,and the lateral friction coefficient.We determined the CNOP-Ps optimized for each of these three parameters independently,and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm.Similarly,the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method.Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days.But the prediction error caused by CNOP-I is greater than that caused by CNOP-P.The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored.Hence,to enhance the forecast skill of the KLM in this model,the initial conditions should first be improved,the model parameters should use the best possible estimates.  相似文献   

6.
With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOPtype errors, we find that for the normal states and the relatively weak E1 Nifio events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong E1 Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of E1 Nifio in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.  相似文献   

7.
With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOP- type errors, we find that for the normal states and the relatively weak EI Nino events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong EI Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of EI Nino in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.  相似文献   

8.
The initial errors constitute one of the main limiting factors in the ability to predict the El Nio–Southern Oscillation(ENSO) in ocean–atmosphere coupled models. The conditional nonlinear optimal perturbation(CNOP) approach was employed to study the largest initial error growth in the El Nio predictions of an intermediate coupled model(ICM). The optimal initial errors(as represented by CNOPs) in sea surface temperature anomalies(SSTAs) and sea level anomalies(SLAs) were obtained with seasonal variation. The CNOP-induced perturbations, which tend to evolve into the La Nia mode, were found to have the same dynamics as ENSO itself. This indicates that, if CNOP-type errors are present in the initial conditions used to make a prediction of El Nio, the El Nio event tends to be under-predicted. In particular, compared with other seasonal CNOPs, the CNOPs in winter can induce the largest error growth, which gives rise to an ENSO amplitude that is hardly ever predicted accurately. Additionally, it was found that the CNOP-induced perturbations exhibit a strong spring predictability barrier(SPB) phenomenon for ENSO prediction. These results offer a way to enhance ICM prediction skill and, particularly,weaken the SPB phenomenon by filtering the CNOP-type errors in the initial state. The characteristic distributions of the CNOPs derived from the ICM also provide useful information for targeted observations through data assimilation. Given the fact that the derived CNOPs are season-dependent, it is suggested that seasonally varying targeted observations should be implemented to accurately predict ENSO events.  相似文献   

9.
Within a theoretical ENSO model, the authors investigated whether or not the errors superimposed on model parameters could cause a significant ``spring predictability barrier' (SPB) for El Nino events. First, sensitivity experiments were respectively performed to the air--sea coupling parameter, α and the thermocline effect coefficient μ. The results showed that the uncertainties superimposed on each of the two parameters did not exhibit an obvious season-dependent evolution; furthermore, the uncertainties caused a very small prediction error and consequently failed to yield a significant SPB. Subsequently, the conditional nonlinear optimal perturbation (CNOP) approach was used to study the effect of the optimal mode (CNOP-P) of the uncertainties of the two parameters on the SPB and to demonstrate that the CNOP-P errors neither presented a unified season-dependent evolution for different El Nino events nor caused a large prediction error, and therefore did not cause a significant SPB. The parameter errors played only a trivial role in yielding a significant SPB. To further validate this conclusion, the authors investigated the effect of the optimal combined mode (i.e. CNOP error) of initial and model errors on SPB. The results illustrated that the CNOP errors tended to have a significant season-dependent evolution, with the largest error growth rate in the spring, and yielded a large prediction error, inducing a significant SPB. The inference, therefore, is that initial errors, rather than model parameter errors, may be the dominant source of uncertainties that cause a significant SPB for El Nino events. These results indicate that the ability to forecast ENSO could be greatly increased by improving the initialization of the forecast model.  相似文献   

10.
The limits of predictability of El Niño and the Southern Oscillation (ENSO) in coupled models are investigated based on retrospective forecasts of sea surface temperature (SST) made with the National Centers for Environmental Prediction (NCEP) coupled forecast system (CFS). The influence of initial uncertainties and model errors associated with coupled ENSO dynamics on forecast error growth are discussed. The total forecast error has maximum values in the equatorial Pacific and its growth is a strong function of season irrespective of lead time. The largest growth of systematic error of SST occurs mainly over the equatorial central and eastern Pacific and near the southeastern coast of the Americas associated with ENSO events. After subtracting the systematic error, the root-mean-square error of the retrospective forecast SST anomaly also shows a clear seasonal dependency associated with what is called spring barrier. The predictability with respect to ENSO phase shows that the phase locking of ENSO to the mean annual cycle has an influence on the seasonal dependence of skill, since the growth phase of ENSO events is more predictable than the decay phase. The overall characteristics of predictability in the coupled system are assessed by comparing the forecast error growth and the error growth between two model forecasts whose initial conditions are 1 month apart. For the ensemble mean, there is fast growth of error associated with initial uncertainties, becoming saturated within 2 months. The subsequent error growth follows the slow coupled mode related the model’s incorrect ENSO dynamics. As a result, the Lorenz curve of the ensemble mean NINO3 index does not grow, because the systematic error is identical to the same target month. In contrast, the errors of individual members grow as fast as forecast error due to the large instability of the coupled system. Because the model errors are so systematic, their influence on the forecast skill is investigated by analyzing the erroneous features in a long simulation. For the ENSO forecasts in CFS, a constant phase shift with respect to lead month is clear, using monthly forecast composite data. This feature is related to the typical ENSO behavior produced by the model that, unlike the observations, has a long life cycle with a JJA peak. Therefore, the systematic errors in the long run are reflected in the forecast skill as a major factor limiting predictability after the impact of initial uncertainties fades out.  相似文献   

11.
用Zebiak-Cane模式和季节内振荡(Madden-Julian Oscillation,MJO)的参数化表述以及条件非线性最优扰动(Conditional Nonlinear Optimal Perturbation,CNOP)方法,分析了以ENSO事件为基态的CNOP型初始误差的空间结构增长规律。结果表明,参数化的MJO对CNOP型初始误差的发展影响较小,其影响主要是使中东太平洋的海表面温度异常增大。CNOP型初始误差比由MJO不确定性产生的模式误差的影响大,前者可能是造成ENSO事件预报不确定性的主要误差来源。由于CNOP型初始误差的局地性,本结论可用来指导ENSO的目标观测和适应性资料同化。  相似文献   

12.
Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article. Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types:(1) progress based on the analysis of solutions of simplified control equations, such as the dynamics of NAO, the optimal precursors for blocking onset, and the behavior of nonlinear waves, and (2) progress based on data analyses, such as the nonlinear analyses of fluctuations and recording-breaking temperature events, the long-range correlation of extreme events, and new methods of detecting abrupt dynamical change. Major achievements in the study of predictability include the following:(1) the application of nonlinear local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition nonlinear optimal perturbation (CNOP) to the studies of El Nin o-Southern Oscillation (ENSO) predictions, ensemble forecasting, targeted observation, and sensitivity analysis of the ecosystem; and (3) new strategies proposed for predictability studies. The results of these studies have provided greater understanding of the dynamics and nonlinear mechanisms of atmospheric motion, and they represent new ideas for developing numerical models and improving the forecast skill of weather and climate events.  相似文献   

13.
Effect of Stochastic MJO Forcing on ENSO Predictability   总被引:2,自引:0,他引:2  
Within the frame of the Zebiak-Cane model,the impact of the uncertainties of the Madden-Julian Oscillation(MJO) on ENSO predictability was studied using a parameterized stochastic representation of intraseasonal forcing.The results show that the uncertainties of MJO have little effect on the maximum prediction error for ENSO events caused by conditional nonlinear optimal perturbation(CNOP);compared to CNOP-type initial error,the model error caused by the uncertainties of MJO led to a smaller prediction uncertainty of ENSO,and its influence over the ENSO predictability was not significant.This result suggests that the initial error might be the main error source that produces uncertainty in ENSO prediction,which could provide a theoretical foundation for the data assimilation of the ENSO forecast.  相似文献   

14.
Initial errors in the tropical Indian Ocean (IO-related initial errors) that are most likely to yield the Spring Prediction Barrier (SPB) for La Ni?a forecasts are explored by using the CESM model. These initial errors can be classified into two types. Type-1 initial error consists of positive sea temperature errors in the western Indian Ocean and negative sea temperature errors in the eastern Indian Ocean, while the spatial structure of Type-2 initial error is nearly opposite. Both kinds of IO-related initial errors induce positive prediction errors of sea temperature in the Pacific Ocean, leading to under-prediction of La Ni?a events. Type-1 initial error in the tropical Indian Ocean mainly influences the SSTA in the tropical Pacific Ocean via atmospheric bridge, leading to the development of localized sea temperature errors in the eastern Pacific Ocean. However, for Type-2 initial error, its positive sea temperature errors in the eastern Indian Ocean can induce downwelling error and influence La Ni?a predictions through an oceanic channel called Indonesian Throughflow. Based on the location of largest SPB-related initial errors, the sensitive area in the tropical Indian Ocean for La Ni?a predictions is identified. Furthermore, sensitivity experiments show that applying targeted observations in this sensitive area is very useful in decreasing prediction errors of La Ni?a. Therefore, adopting a targeted observation strategy in the tropical Indian Ocean is a promising approach toward increasing ENSO prediction skill.  相似文献   

15.
The predictability of El Ni?o?Southern Oscillation (ENSO) has been an important area of study for years. Searching for the optimal precursor (OPR) of ENSO occurrence is an effective way to understand its predictability. The CNOP (conditional nonlinear optimal perturbation), one of the most effective ways to depict the predictability of ENSO, is adopted to study the optimal sea surface temperature (SST) precursors (SST-OPRs) of ENSO in the IOCAS ICM (intermediate coupled model developed at the Institute of Oceanology, Chinese Academy of Sciences). To seek the SST-OPRs of ENSO in the ICM, non-ENSO events simulated by the ICM are chosen as the basic state. Then, the gradient-definition-based method (GD method) is employed to solve the CNOP for different initial months of the basic years to obtain the SST-OPRs. The experimental results show that the obtained SST-OPRs present a positive anomaly signal in the western-central equatorial Pacific, and obvious differences exist in the patterns between the different seasonal SST-OPRs along the equatorial western-central Pacific, showing seasonal dependence to some extent. Furthermore, the non-El Ni?o events can eventually evolve into El Ni?o events when the SST-OPRs are superimposed on the corresponding seasons; the peaks of the Ni?o3.4 index occur at the ends of the years, which is consistent with the evolution of the real El Ni?o. These results show that the GD method is an effective way to obtain SST-OPRs for ENSO events in the ICM. Moreover, the OPRs for ENSO depicted using the GD method provide useful information for finding the early signal of ENSO in the ICM.  相似文献   

16.
A method for selecting optimal initial perturbations is developed within the framework of an ensemble Kalman filter (EnKF). Among the initial conditions generated by EnKF, ensemble members with fast growing perturbations are selected to optimize the ENSO seasonal forecast skills. Seasonal forecast experiments show that the forecast skills with the selected ensemble members are significantly improved compared with other ensemble members for up to 1-year lead forecasts. In addition, it is found that there is a strong relationship between the forecast skill improvements and flow-dependent instability. That is, correlation skills are significantly improved over the region where the predictable signal is relatively small (i.e. an inverse relationship). It is also shown that forecast skills are significantly improved during ENSO onset and decay phases, which are the most unpredictable periods among the ENSO events.  相似文献   

17.
条件非线性最优扰动方法在适应性观测研究中的初步应用   总被引:12,自引:3,他引:12  
穆穆  王洪利  周菲凡 《大气科学》2007,31(6):1102-1112
针对适应性观测中敏感性区域的确定问题,考虑初始误差对预报结果的影响, 比较了条件非线性最优扰动(CNOP)与第一线性奇异向量(FSV)在两个降水个例中的空间结构的差异,考察了它们总能量范数随时间发展演变的异同。结合敏感性试验的分析,揭示了预报结果对CNOP类型的初始误差的敏感性要大于对FSV类型的初始误差的敏感性,因而减少初值中CNOP类型误差的振幅比减少FSV类型的收益要大。这一结果表明可以把CNOP方法应用于适应性观测来识别大气的敏感区。关于将CNOP方法有效地应用于适应性观测所面临的挑战及需要采取的对策等也进行了讨论。  相似文献   

18.
This paper summarizes recent progress at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences in studies on targeted observations, data assimilation, and ensemble prediction, which are three effective strategies to reduce the prediction uncertainties and improve the forecast skill of weather and climate events. Considering the limitations of traditional targeted observation approaches, LASG researchers have developed a conditional nonlinear optimal perturbation-based targeted observation strategy to optimize the design of the observing network. This strategy has been employed to identify sensitive areas for targeted observations of the El Niño–Southern Oscillation, Indian Ocean dipole, and tropical cyclones, and has been demonstrated to be effective in improving the forecast skill of these events. To assimilate the targeted observations into the initial state of a numerical model, a dimension-reducedprojection- based four-dimensional variational data assimilation (DRP-4DVar) approach has been proposed and is used operationally to supply accurate initial conditions in numerical forecasts. The performance of DRP-4DVar is good, and its computational cost is much lower than the standard 4DVar approach. Besides, ensemble prediction, which is a practical approach to generate probabilistic forecasts of the future state of a particular system, can be used to reduce the prediction uncertainties of single forecasts by taking the ensemble mean of forecast members. In this field, LASG researchers have proposed an ensemble forecast method that uses nonlinear local Lyapunov vectors (NLLVs) to yield ensemble initial perturbations. Its application in simple models has shown that NLLVs are more useful than bred vectors and singular vectors in improving the skill of the ensemble forecast. Therefore, NLLVs represent a candidate for possible development as an ensemble method in operational forecasts. Despite the considerable efforts made towards developing these methods to reduce prediction uncertainties, much challenging but highly important work remains in terms of improving the methods to further increase the skill in forecasting such weather and climate events.  相似文献   

19.
In this study, the initial perturbations that are the easiest to trigger the Kuroshio Extension(KE) transition connecting a basic weak jet state and a strong, fairly stable meandering state, are investigated using a reduced-gravity shallow water ocean model and the CNOP(Conditional Nonlinear Optimal Perturbation) approach. This kind of initial perturbation is called an optimal precursor(OPR). The spatial structures and evolutionary processes of the OPRs are analyzed in detail. The results show that most of the OPRs are in the form of negative sea surface height(SSH) anomalies mainly located in a narrow band region south of the KE jet, in basic agreement with altimetric observations. These negative SSH anomalies reduce the meridional SSH gradient within the KE, thus weakening the strength of the jet. The KE jet then becomes more convoluted, with a high-frequency and large-amplitude variability corresponding to a high eddy kinetic energy level; this gradually strengthens the KE jet through an inverse energy cascade. Eventually, the KE reaches a high-energy state characterized by two well defined and fairly stable anticyclonic meanders. Moreover, sensitivity experiments indicate that the spatial structures of the OPRs are not sensitive to the model parameters and to the optimization times used in the analysis.  相似文献   

20.
Xia LIU  Qiang WANG  Mu MU 《大气科学进展》2018,35(11):1362-1371
Based on the high-resolution Regional Ocean Modeling System(ROMS) and the conditional nonlinear optimal perturbation(CNOP) method, this study explored the effects of optimal initial errors on the prediction of the Kuroshio large meander(LM) path, and the growth mechanism of optimal initial errors was revealed. For each LM event, two types of initial error(denoted as CNOP1 and CNOP2) were obtained. Their large amplitudes were found located mainly in the upper 2500 m in the upstream region of the LM, i.e., southeast of Kyushu. Furthermore, we analyzed the patterns and nonlinear evolution of the two types of CNOP. We found CNOP1 tends to strengthen the LM path through southwestward extension. Conversely,CNOP2 has almost the opposite pattern to CNOP1, and it tends to weaken the LM path through northeastward contraction.The growth mechanism of optimal initial errors was clarified through eddy-energetics analysis. The results indicated that energy from the background field is transferred to the error field because of barotropic and baroclinic instabilities. Thus, it is inferred that both barotropic and baroclinic processes play important roles in the growth of CNOP-type optimal initial errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号