首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on low-spectral resolution observations of Comet 9P/Tempel 1 from 1983, 1989, 1994 and 2005 using the 2.7 m Harlan J. Smith telescope of McDonald Observatory. This comet was the target of NASA's Deep Impact mission and our observations allowed us to characterize the comet prior to the impact. We found that the comet showed a decrease in gas production from 1983 to 2005, with the decrease being different factors for different species. OH decreased by a factor 2.7, NH by 1.7, CN by 1.6, C3 by 1.8, CH by 1.4 and C2 by 1.3. Despite the decrease in overall gas production and these slightly different decrease factors, we find that the gas production rates of OH, NH, C3, CH and C2 ratioed to that of CN were constant over all of the apparitions. We saw no change in the production rate ratios after the impact. We found that the peak gas production occurred about two months prior to perihelion. Comet Tempel 1 is a “normal” comet.  相似文献   

2.
We present an analysis of OH, CN, and C2 jets observed in thecoma of Comet Hale–Bopp on UT April 22, 23, and 25, 1997. Monte Carlomodels designed to simulate the gas jets were employed to analyze thenuclear active areas responsible for the observed coma gas jets. Ourresults indicate that four active areas are necessary to reproduce theCN and C2 jets while five active areas are required to simulatethe OH jets. The additional OH active area must produce significantlevels of OH, but cannot emit measurable quantities of either carbonradical. This difference suggests that the nucleus of Comet Hale–Boppis chemically heterogeneous.  相似文献   

3.
Column density profiles for CN, C3, C2 and NH have been determined from a long-slit CCD spectrum of periodic comet P/Schaumasse (1992x). Comparisons of these profiles with Haser models indicate that the ratios of the CN, C3 and C2 production rates are typical for a short-period comet. Although the scale lengths for NH and its parent species are uncertain, the results indicate that the production rate for NH is much greater than for either C2 or CN.  相似文献   

4.
S.M. Lederer  H. Campins  D.J. Osip 《Icarus》2009,199(2):484-504
We present an analysis of OH, CN, and C2 jets observed in Comet Hale-Bopp during April 22-26, 1997. We conclude that an extended source, which peaks in productivity after a certain amount of time has passed after being released from the nucleus (8.5, 2.5, and 42.6×104 s, respectively) is responsible for the observed coma jet morphology in all three species. Sub-micron organic grains are the favored explanation for the extended source. Our models indicate that this extended source produces approximately 40% of the OH, 50% of the C2, and 75% of the CN. The balance for each species is created by a diffuse nuclear gas source. Compared with the nuclear gas source and normalized to the CN abundance, the composition of the extended source is depleted in OH by a factor of ∼6, and depleted in C2 by a factor of ∼2. The existence of anti-sunward jets do not require production of radicals throughout the cometary night. Instead, our model demonstrates that active areas exposed to near-twilight conditions throughout the comet's rotational period can produce the observed anti-sunward morphology.  相似文献   

5.
A critical analysis of CH, NH, OH, C2, and CN molecules/radicals has been made in twenty-four F- and early G-type dwarfs at different effective temperature as well as in new constructed model atmosphere. Molecular indices of bandheads ofA-X system of CH, NH, OH, C2, and CN have been obtained by using the data available in the literature (thirteen-colour and eight-colour photometry).Besides, some interesting plots of the molecular indices vs eff, molecular abundances and molecular indices vs dissociation energy, reduced equivalent widths and FCF's vs dissociation energy for respective molecules have also been enumerated. It is found that the molecular indices at bandheads ofA-X system of CH, NH, OH, C2, and CN are approximately constant (5810–6570 K). It is to be noted that the molecular indices decrease in the order OH, NH, CH, C2, and CN at a given temperature.The dissociation equilibrium of CH, NH, OH, C2, and CN is considered at 5810, 6570, and 7160 K phases in model atmosphere. At standard scale of abundance the molecular abundance and molecular index decrease in the order OH, NH, CH, C2, and CN at any given phase, however, CN abundance and index increase (eff=0.867-0.767). The amplitude of abundance and index variation decrease in the order NH, OH, CH, C2, and CN (eff=0.767-0.704).The reduced equivalent width decrease in the order OH, NH, CH, and C2 and FCF's decrease in the order CH, OH, NH, CN, and C2.The confrontation of models and observations of spectra of F- and early G-type dwarfs of parent molecules is of primary importance to investigate the physical conditions within atmospheres. Reliable excitation models are also requisite for interpreting spectroscopic observations of parent molecules and deriving molecular abundances.  相似文献   

6.
We present analyses and results from both narrowband photometry and CCD imaging of Comet 81P/Wild 2 from multiple apparitions, obtained in support of the Stardust mission. These data include photometric measurements from 12 days before the encounter and imaging from 3 days after. Using narrowband photometry from the different apparitions, we analyzed the dust and gas production rates as a function of heliocentric distance, finding a substantial seasonal effect where the production of OH, NH, and dust peaks 11-12 weeks before perihelion. The CN, C2, and C3 production show no such asymmetry, suggesting that there may be heterogeneities among different sources on the nucleus. The water production peaked at a level of approximately in 1997. A comparison of the relative abundances of minor gas species places Wild 2 in the “depleted” category in the A'Hearn et al. (1995, Icarus 118, 223) taxonomic classifications. Continuum measurements at multiple wavelengths indicate that the comet has a low dust-to-gas ratio, with moderately reddened dust. In our images we see a dust tail, an anti-tail and two well-defined jets. The primary jet, which persists for several months and is roughly aligned with the spin axis, has a source latitude >+75°, while the secondary jet is located on the opposite hemisphere between −37° and −62°. We used the apparent position angle of the primary jet to determine the pole orientation, α=281±5°, δ=+13±7°, and surmise that the nucleus is likely in a state of simple rotation. The primary source is continuously illuminated when Wild 2 is inbound and turns away from the Sun at about the time that the comet reaches perihelion, explaining the seasonal effects in the production rates. We measured lightcurves on several observing runs but saw no significant modulation, so no constraints can be set on the rotation rate. Images at different wavelengths show that the jets have the same colors as the dust in other regions in the coma and tail, indicating that the grain properties are similar throughout the coma. Radial profiles of the coma were measured in various directions on a number of different observing runs, and we discuss the findings from these measurements. Finally, we compare our results with other published data and attempt to predict future times at which observations should be obtained to help constrain additional properties.  相似文献   

7.
The paper presents the results of the spectral observations of comet C/2001 Q4 (NEAT) acquired with the Zeiss-600 telescope of the Andrushevka astronomical observatory in May 2004. The spectrum of the comet was obtained in the range of 3600–8200 Å. We identified a number of emission features in the spectrum of comet C/2001 Q4 (NEAT). The emission bands of C2, C3, CN, CH, NH2, H2O+ were detected in the spectrum of the comet, and their intensities were determined. The ratios of gas-production rates Q(C2)/Q(CN) = 0.23, Q(C3)/Q(CN) = ?0.79, and Q(NH2)/Q(CN) = ?0.029 were determined with the Haser model.  相似文献   

8.
Absolute spectrophotometry of the coma of Comet Kohoutek 1973f during post-perihelion period has been presented for seven nights in January 1984. Moderately wide range of heliocentric distance (0.436–0.799 AU) covered during observations allowed us to study the flux variation of emission bands with heliocentric distance. The emission features of CN, CH, C2, C3, and NaI have been identified in this comet. The abundances of CN and C2 have been estimated and the production rates of CN, C2 and C3 have been derived. Production rates of CN and C2 seem to vary as r –0.33 and r –3.50 respectively. The continuum of the comet became more and more redder as the heliocentric distance of the comet increased and phase angle decreased.  相似文献   

9.
We report high-spectral resolution observations of Comet 9P/Tempel 1 before, during and after the impact on 4 July 2005 UT of the Deep Impact spacecraft with the comet. These observations were obtained with the HIRES instrument on Keck 1. We observed brightening of both the dust and gas, but at different rates. We report the behavior of OH, NH, CN, C3, CH, NH2 and C2 gas. From our observations, we determined a CN outflow velocity of at least 0.51 km s−1. The dust color did not change substantially. To date, we see no new species in our spectra, nor do we see any evidence of prompt emission. From our observations, the interior material released by the impact looks the same as the material released from the surface by ambient cometary activity. However, further processing of the data may uncover subtle differences in the material that is released as well as the time evolution of this material.  相似文献   

10.
Post-perihelion observed emission fluxes at 388 nm (CN) and 516 nm (C2) of the coma of comets Austin (1982g) and Bradfield (1980t) are analysed in the framework of the Haser model. Ratios of Haser model CN and C2 parent production rates with expansion velocity show that each comet behaves normally. For comet Austin (1982g), the Q CN/v and Q c2/v values decrease with increase of heliocentric distance of comet. For an assumed %; activity of the total spherical surface area of the nucleus, the water vaporization theory coupled with derived water production rates from the International Ultraviolet Explorer H and OH flux data yields a nuclear diameter of about 6 km for comet Austin (1982g). For comet Bradfield (1980t), the derived nuclear diameter is expected to be of about 1 km. In each comet, the dust mass production rates as well as ratio of dust-to-gas mass production rates decrease with increase of heliocentric distance of comet.  相似文献   

11.
We present the results of a program of comet long-slit spectroscopy with the Kast Dual Spectrograph on the 3-m Shane Telescope at Lick Observatory. A total of 26 comets, from a variety of dynamical families, were observed on 39 different nights from 1996 to 2007. A new statistical method extracted the twilight sky from comet frames, because traditional sky subtraction techniques were inadequate. Because previously published Haser model parent and daughter scale lengths did not fit the data well, unbiased ranges of scale lengths were searched for the best-fitting pairs. Coma gas production rates for OH, CN, C2, C3, NH, NH2, and OH confirmed the widely reported carbon-chain depletion for a sub-class of comets, most notably high-perihelion Jupiter-family comets observed at rh > 1.5 AU, with different behaviors for C2 and C3. Our long-slit spectroscopy data was also adapted for the A(θ) dust production parameter. The assumption that A(θ) is constant throughout the nucleus was not upheld. High dust-to-gas ratios for comets with large perihelia were not a selection effect, and suggest that the dust was released earlier in the formation of the coma than the gas. The dust-to-gas ratio did not exhibit any evolutionary traces between different comet dynamical families. The comet survey illuminates the diversity among comets, including the unusually carbon poor Comet 96P/Machholz.  相似文献   

12.
Spectral scans of the head of periodic Comet Halley (1982i) have been presented in the optical region (3200–7000 Å) for six nights. Emission features due to NH, CN, CH, C3, C2 and NH2 molecules have been identified. It is found that the comet exhibits night-to-night variation of emission bands. The abundances and production rates of CN and C2 species have been derived.  相似文献   

13.
We present the results of the preliminary study of the comet Hale-Bopp spectrum obtained April 17, 1997 by K. Churyumov and F. Mussayev with the help of the 1-meter Zeiss reflector and the echelle spectrometer (spectral resolutionλ/Δ λ ≈ 50000), CCD and the long slit, oriented along the radius-vector(“Sun-comet direction”). Energy distributions for three selected regions including the C3, C2 (0-0) and CN(Δ ν = 0) molecules emissions of the comet Hale-Bopp spectrum were built. The rotational lines of the CN(Δ ν = 0) band were identified. The nature of the high emission peak near λ 4020 Å in the C3 band is discussed. The presence of the cometary continuum of the nonsolar origin is assumed.  相似文献   

14.
We show results for some new bands of C2, CN, N2 +, CO+, NH, OH, and CH hitherto unidentified, but expected to be present in the spectrum of comets by the analysis of Franck-Condon factors. Vibrational transition probabilities, Franck-Condon factors have been evaluated by an approxximate analytical method for the A-X system of C2, A-X, and B-X systems of CN, B-X system of N2 +, A-X, and B-A systems of CO + , A-X system of NH and A–X system of OH.  相似文献   

15.
Spectral scans of the head of periodic Comet Halley (1982i) have been presented and analysed in detail in the optical region (3200–7000 Å); for ten nights during pre-perihelion period. Emission features due to NH, CN, CH, C3, and C2 molecules have been identified. The behaviour of the variation of different emission lines strength as a function of heliocentric distance has been investigated. It is found that the comet exhibits night-to-night variation of brightness. The abundances and production rates of CN and C2 species have also been derived.  相似文献   

16.
Scanner observations of the coma of periodic comet Encke (P/Encke) are presented for four nights in March 1984 during its post-perihelion period. The strong emission features of CN and C2 molecules have been identified and the abundances of CN and C2 are estimated. The production rates of these molecules have also been derived from their band luminosities. No trace of sodium emission has been found in this comet.  相似文献   

17.
We compare images of Comet Hale-Bopp (1995 O1) in HCN and CN taken near perihelion (April 1, 1997) to determine the origin of CN in comets. We imaged the J=1→0 transition of HCN at λ=3 mm with the BIMA Array. Data from two weeks around perihelion were summed within four phase bins based on the rotational period of the comet. This increases both the signal-to-noise ratio and the u-v coverage while decreasing the smearing of the spatial features. The similarly phased narrowband CN images were taken at Lowell Observatory within the same range of dates as the HCN images. We find that there is a better correlation between HCN and CN than between HCN and the optically dominant dust. If the CN in jets does have a dust source it would have to have a very low albedo and/or small particle size. The production rates are consistent with HCN being a primary parent of CN, although there are discrepancies between the HCN destruction scalelength and the CN production scalelength which we discuss.  相似文献   

18.
Bockelée-Morvan  D.  Wink  J.  Despois  D.  Colom  P.  Biver  N.  Crovisier  J.  Gautier  D.  Gérard  E.  Lellouch  E.  Moreno  R.  Paubert  G.  Rauer  H.  Davies  J. K.  Dent  W. R. F. 《Earth, Moon, and Planets》1997,78(1-3):67-67
Spectroscopic observations of comet Hale-Boppwere undertaken near perihelion at millimetre wavelengths with the Institut de Radioastronomie Millimétrique (IRAM) telescopes at Plateau de Bure (France)and Pico Veleta (Spain). They resulted in the first detections of HCOOH,SO2, NH2CHO and HCOOCH3 in a comet. HDO was detected through its312–221 line at 225.897 GHz,complementing the observation of the 101–000 line at 464.925 GHz at the James Clerk Maxwell Telescope (Meier et al., 1998,Science 279, 842).Several unidentified lines are present in the spectra. Observations of HC3N, HNCO, OCS, SO, CN, CO+, HCO+, in addition to more ‘classical’species CO, HCN, HNC, CH3CN, CH3OH, H2CO, CS and H2S (Biveret al., this issue) permit us to make out an extensive inventory of the composition of the coma of comet Hale-Bopp at its perihelion. It presents strong analogies with gas-phase abundances measured in interstellar hot cores and bipolar flows, which are believed to reflect the composition of interstellar grains. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Photopolarimetric observations of comet Austin with the IAU/IHW filter system were obtained on the 2.34 m Vainu Bappu Telescope (VBT) of the Indian Institute of Astrophysics, at Kavalur, India, during pre-perihelion phase on February 20,1990 and on the 1.2 m telescope of the Physical Research Laboratory at Gurusikhar, Mount Abu during postperihelion phase on May 2 and 4, 1990. The comet appeared bluer than a solar analog during post-perihelion phase on May 2 and 4. The percent polarization shows a sharp increase towards the red on May 2 and 4. The dominant sizes of the dust particles appear to lie in a narrow range of 0.1 to 0.5 Μm. Regarding the molecular band emission, CN and C2 bands are quite strong; C3 emission was also found to be strong though the observations on May 2 and 4 show significant variation as compared to C2 emission. Molecular band polarization for CN, C3, C2 and H2 O+ have been calculated. It has been found that emission polarization in CN, C2 and C3 is between 1–7% (phase angle between 107.4–109 degrees). For CN and C2 the polarization values are close to the theoretically predicted values, but for C3 the polarization value falls much below the theoretically predicted value. A similar result was found for comet Halley.  相似文献   

20.
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer and the Dust Impact Detection System onboard the Giotto spacecraft taken during the fly-by at Comet 1P/Halley in 1986. We also show that our model is in good agreement with contemporaneous measurements obtained by the International Ultraviolet Explorer, sounding rocket experiments, and various ground based observations.The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique (Tenishev, V., Combi, M., Davidsson, B. [2008]. Astrophys. J. 685, 659-677) by tracking trajectories of gas molecules and dust grains under the influence of the comet’s weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO) from the comet’s surface all the way out to 106 km.As a result we are able to further constrain cometary the gas production rates of CO (13%), CO2 (2.5%), and H2CO (1.5%) relative to water without invoking unknown extended sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号