首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ACHARACTERISTICANALYSISOFAEROSOLSFROMSANDSTORMSYangDongzhen(杨东贞),WangChao(王超)andYuXiaolan(于晓岚)InstituteofAtmosphericChenmistr...  相似文献   

2.
Many recent studies have reported the presence of two types of El Niño events in observation: Cold Tongue (CT) El Niño and Warm Pool (WP) El Niño. We investigate the sensitivity of a model simulating two types of El Niño by changing a convective triggering parameter (Tokioka parameter). When deep convections are highly suppressed with a large Tokioka parameter, the model is capable of simulating distinct two-types of El Niño. However, the model has a problem in simulating two-types of El Niño distinctively when the Tokioka parameter is small, because the location of the maximum precipitation anomaly related to the CT El Niño is significantly shifted westward, leading to an atmospheric response pattern similar to that of the WP El Niño. Our results suggest that the mean precipitation over the eastern equatorial Pacific and the resultant zonal distribution in atmospheric feedback associated with ENSO can be one of the crucial factors for simulating two-types of El Niño.  相似文献   

3.
During summer Monex-79, a variety of observing systems viz. research ships, research aircrafts, constant pressure balloons and geostationary satellite etc. were deployed, besides the regular conventional observations. The purpose of these additional systems was to make the best possible data for the studies on various aspects of monsoon circulation. The present study is aimed at the construction of vertical wind profile using cloud motion vectors obtained from GOES (I-O) satellite and to examine whether the constructed wind profiles improves the representation of the monsoon system, flow pattern etc. in the objective analysis. For this purpose, climatological normals of the wind field are considered as the initial guess and the objective analyses of the wind field are made with, first using only data from conventional observations over land areas, subsequently including the constructed winds from cloud motion vectors. These analyses are then compared with the standard analyses of wind field obtained fro  相似文献   

4.
A method is developed to assess retrievability, namely the retrieval potential for atmospheric temperature profiles, from satellite infrared measurements in clear-sky conditions. This technique is based upon generalized linear inverse theory and empirical orthogonal function analysis. Utilizing the NCEP global temperature reanalysis data in January and July from 1999 to 2003, the retrievabilities obtained with the Atmospheric Infrared Sounder (AIRS) and the High Resolution Infrared Radiation Sounder/3 (HIRS/3) sounding channel data are derived respectively for each standard pressure level on a global scale. As an incidental result of this study, the optimum truncation number in the method of generalized linear inverse is deduced too. The results show that the retrievabilities of temperature obtained with the two datasets are similar in spatial distribution and seasonal change characteristics. As for the vertical distribution, the retrievabilities are low in the upper and lower atmosphere, and high between 400 hPa and 850 hPa. For the geographical distribution, the retrievabilities are low in the low-latitude oceanic regions and in some regions in Antarctica, and relatively high in mid-high latitudes and continental regions. Compared with the HIRS/3 data, the retrievability obtained with the AIRS data can be improved by an amount between 0.15 and 0.40.  相似文献   

5.
ESTIMATIONOFVERTICALWINDFIELDFROMSINGLE-DOPPLERRADARRHIOBSERVATIONSPengHong(彭红)andGeRunsheng(葛润生)InstituteofMesoscaleMeteorol...  相似文献   

6.
Measurements of nitrous oxide emission from agricultural lands were conducted. The results show that nitrous oxide fluxes on several soils are at the range of 2-60 μg . N / m2 h. Factors influencing the production rates of nitrous oxide from the soils, such as soil temperature, soil moisture and fertilization, are discussed. The calculated amount of nitrous oxide emission from China farmlands is 9.8 × 107 Kg . N per year, which accounts for about 10% of the total source strength in China areas.  相似文献   

7.
Reliable paleoclimate reconstructions are needed to assess if the recent climatic changes are unusual compared to pre-industrial climate variability. Here, we focus on one important problem in climate reconstructions: Transfer functions relating proxies (predictors) and target climatic quantities (predictands) can be seriously biased when predictand and predictor noise is not adequately accounted for, resulting in biased amplitudes of reconstructed climatic time series. We argue for errors-in-variables models (EVM) for unbiased identification of linear structural relationships between noisy proxies and target climatic quantities by (1) introducing underlying statistical concepts and (2) demonstrating the potential biases of using the EVM approach, the most commonly used direct ordinary least squares (OLS) regression, inverse OLS regression, or the reduced major axis method (??variance matching??) with a simulation example of artificial noise-disturbed sinusoidal time series. We then develop an alternative strategy for paleoclimate reconstruction from tree-ring and other proxy data, explicitly accounting for the identified problem.  相似文献   

8.
The rainout-removal of SO2 and the acidification of precipitation from stratiform clouds are simulated using a one-dimensional, time-dependent model, parameterized microphysically in which dissolution and dissociation of gaseous SO2 and H2O2, and oxidation reaction in aqueous phase are taken into account. The effects of dynamic fac-tors, including updraft flow and turbulent transport, and the concentration of gaseous SO2 and H2O2 being transported into the clouds on pH value of the precipitation, the conversion rate S(IV)-S (VI) and the wet deposition rate of SO2 are discussed.  相似文献   

9.
Atmosphere–land interactions simulated by an LES model are evaluated from the perspective of heterogeneity propagation by comparison with airborne measurements. It is found that the footprints of surface heterogeneity, though as 2D patterns can be dissipated quickly due to turbulent mixing, as 1D projections can persist and propagate to the top of the atmospheric boundary layer. Direct comparison and length scale analysis show that the simulated heterogeneity patterns are comparable to the observation. The results highlight the model's capability in simulating the complex effects of surface heterogeneity on atmosphere–land interactions.  相似文献   

10.
If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM in order to compensate for uncertainty in either the forcing or the climate response. Feedback might also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. However, in addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a box-diffusion dynamic model of the climate system to understand how changing the properties of the feedback control affect the emergent dynamics of this coupled human–climate system, and evaluate these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain). This is a challenge for policy as a delayed response is needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification of natural variability, results in a limit on how rapidly SRM could respond to changes in the observed state of the climate system.  相似文献   

11.
Summary During the Hartheim Experiment (HartX) 1992 conducted in the Upper Rhine Valley, Germany, we estimated water vapor flux from the understory and the forest floor by several methods. At the vegetation patch level, direct estimates were made with small weighing lysimeters, and water loss was scaled-up to the stand level based on vegetation patchtype distribution. At the leaf level, transpiration flux was determined with a CO2/H2O porometer for the dominant understory plant species,Brachypodium pinnatum, Carex alba, andCarex flacca. Measured leaf transpiration was scaled-up to patch level with a canopy light interception and leaf gas exchange model, and then to stand level as in the case of lysimeter data, but with further consideration of patchtype leaf area index (LAI). On two days, total understory latent heat flux was estimated by eddy correlation methods below the tree canopy.The understory vegetation was subdivided into five major patch-types which covered 62% of the ground area and resulted in a cumulative LAI of approx. 1.54 when averaged over total stand ground area and compared to the average tree canopy LAI of 2.8. The remaining 38% of ground area was unvegetated bare soil and/or covered by moss (mainly byScleropodium purum) or litter. The evapotranspiration from the understory and unvegetated areas equaled approx. 20% of total forest stand transpiration during the HartX period. The understory vegetation transpired about 0.4 mm d–1 (13%) estimated over the period of May 13 to 21, whereas evaporation from moss and soil patches amounted 0.23 mm d–1 (7.0%). On dry, sunny days, total water vapor flux below the tree canopy exceeded 0.66 mm d–1. Using the transpiration rates derived from the GAS-FLUX model together with estimates of evaporation from moss and soil areas and a modified application of the Penman-Monteith equation, the average daily maximum conductance of the understory and the forest floor was 1.7 mm s–1 as compared to 5.5 mm s–1 for the tree canopy.With 6 Figures  相似文献   

12.
We report on the investigation and successful application of the bichromatic correlation of optical and microwave signals for determining the area-averaged correlation of temperature–humidity fluctuations. The additional technical effort is marginal compared to the common ‘two-wavelength method’, which has (in contrast) the restriction that only two of the three relevant meteorological structure parameters can be deduced. Therefore, in the past, it was often assumed that the turbulent humidity and temperature fluctuations are perfectly positively or negatively correlated. However, as shown in this study, over non-homogeneous terrain when the flow conditions are not ideal, this assumption is questionable. The measurements were analysed statistically, and were compared to in situ measurements of the Bowen ratio Bo and the correlation of temperature–humidity fluctuations using eddy-covariance techniques. The latter is in good agreement to that derived by scintillometry. We found that the correlation is not ±1 but as low as −0.6 for Bo smaller than −2, and up to 0.8 for Bo larger than 1.  相似文献   

13.
Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by human scientists.This paper presents the experimental results of an automatic machine learning system which derives forecasting rules from real observational data.We tested the system on the two large real data sets from the areas of centra! China and Victoria of Australia.The experimental results show that the forecasting rules discovered by the system are very competitive to human experts.The forecasting accuracy rates are 86.4% and 78% of the two data sets respectively  相似文献   

14.
Abstract

Diurnal changes in the local atmospheric moisture budget over the Canadian Prairies are computed using sequential radiosonde soundings from the 1991 Regional Evaporation Study (RES‐91). Previous attempts to estimate evapotranspiration with radiosonde data have used either similarity theory or a moisture budget, but have been confined to the boundary layer in either case. These studies, as well as semi‐empiric operational techniques which use surface‐based data, exclude the effects of moisture advection and energy exchanges between the boundary layer and the free atmosphere, assuming negligible effects on evapotranspiration. The moisture budget method adopted here includes horizontal advection explicitly, and treats vertical fluxes implicitly through a total tropospheric moisture budget.

Comparison of the evapotranspiration estimates with those of other techniques are positive only when results are averaged over several days to weeks. While the advection estimates are a major source of error for the “daily” estimates in this particular study, it is shown that neither advection nor moisture flux through the boundary layer can be ignored in estimating daily evapotranspiration, regardless of the technique used. The results also suggest that evapotranspiration is more variable on a daily basis than other techniques have indicated. With an improved synoptic database now available for advection estimates, the moisture budget technique may provide an excellent ground‐truth method for fine‐tuning techniques for remote sensing of evapotranspiration, and could lead to improved parametrization schemes for both NWP models and GCMs.  相似文献   

15.
In this paper, a hailstorm occurring on 9 May 1999 in Huanghuai region was studied by using the combined data from the precipitation radar (PR), microwave image (TMI), and visible infrared scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite. According to the 3-orbit observations of 5-h duration from the TRMM satellite, the variation characteristics of the precipitation structures as well as cloud top temperature and microwave signals of the precipitating cloud were comprehensively analyzed during the evolution of hailstorm. The results show that the precipitation is obviously converted from early hail cloud with strong convection into the later storm cloud with weak convection. For hail cloud, there exists some strong convective cells, and the heavy solid precipitation is shown at the middle-top levels so that the contribution of rainfall amount above the freezing-layer to the column precipitation amount is rather larger than that within the melting-layer. However, for storm cloud, the convective cells are surrounded by the large area of stratiform precipitation, and the precipitation thickness gradually decreases, and the rainfall above the freezing-layer obviously reduces and the contribution of rainfall amount within the melting-layer rapidly increases. Therefore, the larger ratio of rainfall amount above the freezing layer to column precipitation amount is, the more convective the cloud is; reversely, the larger proportion of rainfall below the melting layer is, the more stable the stratiform cloud is. The different changing trends of microwave signals at different precipitation stages show that it is better to consider the structures and stages of precipitating cloud to choose the optimal microwave channels to retrieve surface rainfall.  相似文献   

16.
《大气与海洋》2013,51(4):391-404
Abstract

An experimental study was conducted to investigate the transition of two‐layer stratified flow from the slope of bottom topography to a horizontal channel. Three experiments, with a reduced gravity of g’ = 1.64, 6.47 and 18.0 cm s?2, were performed. Particle image velocimetry and planar laser‐induced fluorescence were used to obtain the measurements of velocity and concentration fields. The flow rate, obtained from the measured velocity field, increases significantly toward the toe of the topography by almost 40% from that at the sill crest due to the interfacial wave activities. In the horizontal channel, however, the flow rate only increases marginally. Estimates of the composite Froude number indicate that the supercritical flow on the slope of the topography goes through the transition to the subcritical flow in the horizontal channel. The transition is mainly due to the increase in the lower‐layer thickness because of increasing interfacial friction caused by the breaking of interfacial waves, and no internal hydraulic jumps are observed. The measured mean concentration field showed the formation of an intermediate layer of medium density, which increased its thickness with g’ and helped to suppress turbulence. Spectral analysis of the density interfacial fluctuations indicated that the interfacial waves that developed on the slope of the topography broke up downstream of the toe into smaller amplitude waves at larger frequencies. The waves at several channel cross‐sections were also examined.  相似文献   

17.
A May–July precipitation nested reconstruction for the period AD 1415–2010 was developed from multi-century tree-ring records of Pinus nigra, Pinus brutia, and Cedrus brevifolia for Cyprus. Calibration and verification statistics for the period 1917–2010 show a good level of skill, and split-sample validation over 1917–2010 supports temporal stability of the tree-ring signal for precipitation. Smoothed annual time series of reconstructed precipitation and a tally of drought events in a moving time window indicate that the calibration period is not representative of the full range of drought variability. While convective precipitation in the warm season may be driven strongly by local factors, composite maps of geopotential height anomaly for dry years and wet years support large-scale atmospheric-flow influence related to height anomalies over the broader region of northeast Africa and the eastern Mediterranean. Emerging positive trend in reconstruction residuals may be an early sign of exacerbation of drought stress on trees by recent warming in May–July. Future warming expected from increases in greenhouse gases poses a threat to forest resources in Cyprus and elsewhere in the Mediterranean.  相似文献   

18.
AModelStudyofThree-DimensionalWindFieldAnalysisfromDual-DopplerRadarDataKongFanyou(孔凡铀);MaoJietai(毛节泰)(DepartmentofGeophysics...  相似文献   

19.
A review of progress over the past 50 years in observing and forecasting of tropical cyclones is presented. Tremendous progress has been made in track forecasting in the past 20 years with the improvement in numerical model guidance and the use of consensus forecasting, and this has contributed to a number of warning centers now issuing five-day track forecasts that are as accurate as three-day forecasts of a decade ago. Techniques are now available to specify the track forecast uncertainty for assessing the risk of a tropical cyclone. With the advent of five-day forecasts, a focus on improved understanding of formation has led to two field experiments. A recent advance has been in extended-range (5–30 days) forecasts of tropical cyclone events (formations and tracks) in the western North Pacific from the ECMWF 32-day ensemble predictions. This advance is a contribution to a goal of seamless forecasting from one day to a season for tropical cyclones. Little progress has been made in intensity forecasting, although the Hurricane Forecast Improvement Project in the United States and recent field experiments may offer some future advances. Some advances in forecasting tropical cyclone impacts such as storm surge, surface waves, and precipitation have been achieved. Future opportunities for continued advances are possible such that improved warnings can lead to reductions in losses of lives and minimizing damages from tropical cyclones.  相似文献   

20.
The present study is focused on examination of the physical processes of convective cell evolved from a MCS occurred on 4 November 2011 over Genoa, Italy. The Quantitative Precipitation Forecasts (QPF) have been performed using WRF v3.6 model under different configurations and cloud permitting simulations. The results indicate underestimation of the amount of precipitation and spatial displacement of the area with a peak 24-h accumulated rainfall in (mm). Our main objective in the research is to test the cloud model ability and performance in simulation of this particular case. For that purpose a set of sensitivity experiments under different model initializations and initial data have been conducted. The results also indicate that the merging process apparently alters the physical processes through low- and middle-level forcing, increasing cloud depth, and enhancing convection. The examination of the microphysical process simulated by the model indicates that dominant production terms are the accretion of rain by graupel and snow, probabilistic freezing of rain to form graupel and dry and wet growth of graupel. Experiment under WRF v3.6 model initialization has shown some advantage in simulation of the physical processes responsible for production and initiation of heavy rainfall compared to other model runs. Most of the precipitation came from ice-phase particles-via accretion processes and the graupel melting at temperature T0 ≥ 0°C. The rainfall intensity and accumulated rainfall calculated by the model closely reflect the amount of rainfall recorded. Thus, the main benefit is to better resolve convective showers or storms which, in extreme cases, can give rise to major flooding events. In such a way, this model may become major contributor to improvements in weather analysis and small-scale atmospheric predictions and early warnings of such subscale processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号