首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
龙门山地震带的地质背景与汶川地震的地表破裂   总被引:17,自引:0,他引:17  
龙门山位于青藏高原与扬子地台之间, 系由一系列大致平行的叠瓦状冲断带构成, 自西向东发育汶川茂汶断裂、映秀北川断裂和彭县灌县断裂,并将龙门山划分为3个构造地层带,分别为变形变质构造地层带(主要由志留系泥盆系浅变质岩和前寒武系杂岩构成)、变形变位构造地层带(主要由上古生界三叠系沉积岩构成)、变形构造地层带(主要由侏罗系至第三系红层和第四纪松散堆积构成)。 龙门山断裂带属地震危险区,3条主干断裂皆具备发生7级左右地震的能力,其中映秀北川断裂是引发地震的最主要断层,据对彭县灌县断裂青石坪探槽场地的研究结果表明,在该断裂带上最晚的一次强震发生在93040a.B.P.左右,据此,可以初步判定,这3条主干断裂的单条断裂上的强震复发间隔至少应在1000a左右,表明龙门山构造带及其内部断裂属于地震活动频度低但具有发生超强地震的潜在危险的特殊断裂,以逆冲-右行走滑为其主要运动方式。 汶川地震属于逆冲走滑型的地震,地表破裂分布于映秀北川断裂带和彭县灌县断裂带上。根据近南北向的断裂(小鱼洞断层、擂鼓断层和邓家坝断层)和地表断距可将映秀北川断层的地表破裂带划分为两个高值区和两个低值区,两个高值区分别位于南段的映秀-虹口一带和位于中北段的擂鼓北川县城邓家坝一带;两个低值区分别位于中南段的白水河茶坪一带和北段的北川黄家坝至平武石坎子一带,两个高值区分别与小鱼洞断层和擂鼓断层相关。根据保存于破裂面上的擦痕,可将该地震破裂过程划分为两个阶段,早期为逆冲作用,晚期为斜向走滑作用,其与地壳增厚构造模式和侧向挤出摸式在青藏高原东缘的推论具有不吻合性。鉴于龙门山的表层运动速率与深部构造运动速率具有不一致性,初步探讨了龙门山地区的地表过程与下地壳流之间的地质动力模型,认为下地壳物质在龙门山近垂向挤出和垂向运动,从而造成导致龙门山向东的逆冲运动、龙门山构造带抬升和汶川特大地震。在此基础上,根据汶川地震所引发的地质灾害,对地震灾后重建提出了的几点建议。  相似文献   

2.
2008年5月12日汶川地震(Ms8.0)地表破裂带的分布特征   总被引:25,自引:2,他引:23       下载免费PDF全文
2008年5月12日14时28分,青藏高原东缘龙门山地区(四川汶川)发生了Ms8.0级地震。震后野外考察表明,5.12汶川地震发生在NE走向的龙门山断裂带上,该断裂带晚新生代以来的逆冲速率小于1mm/a,GPS观察结果表明其缩短速率小于3mm/a。这次5.12汶川地震造成了多条同震逆冲地表破裂带,总体长约275km,宽约15km,发震断裂机制主要为逆冲作用(由NW向SE逆冲)伴随右旋走滑。地表主破裂带沿龙门山断裂带的映秀—北川断裂发育,长约275km,笔者称为映秀—北川破裂带,破裂带具有逆冲兼右旋走滑性质。地表次级破裂带沿龙门山断裂带的前缘断裂安县—灌县断裂南段发育,长80km,笔者称为汉旺破裂带,破裂带基本为纯逆冲性质。在这两条破裂带之间发育两条更次一级的同震地表破裂带:一条长约20km呈NE走向的地表破裂带,笔者称为深溪沟破裂带,由于这条破裂带靠近主破裂带南段,并且与主破裂带变形特征一致,因此,笔者将深溪沟破裂带划归映秀—北川破裂带;另一条长约6km呈NW走向、由SW向NE逆冲并兼有左旋滑动的地表破裂带,笔者称为小鱼洞破裂带,它连接映秀—北川破裂带和汉旺破裂带,成为侧向断坡。另外,在灌县—安县断裂东侧的四川盆地内,由都江堰的聚源到江油发育一条NE向的沙土液化带,它可能是四川盆地西部深部盲断裂活动的结果。同震地表破裂带的分布特征表明,龙门山断裂带活动断裂具有强烈的逆冲作用并伴随较大的右旋走滑,断裂向四川盆地扩展。在龙门山断裂带上类似2008年5月12日Ms8.0汶川大地震的强震复发周期为3000~6000a。  相似文献   

3.
汶川地震(MS 8.0)地表破裂及其同震右旋斜向逆冲作用   总被引:45,自引:4,他引:41  
2008年5月12日14时28分,青藏高原东缘龙门山地区发生了震惊世界的汶川地震(MS 8.0),地震不仅造成巨大的人员伤亡和财产损失,并形成了迄今为止空间上分布最为复杂、长度最大的逆冲型同震地表破裂带。通过多次野外考查表明,汶川地震(MS 8.0)在龙门山断裂带上至少使两条NE走向、倾向NW的映秀-北川断裂和灌县-安县断裂同时发生地表破裂,并沿映秀-北川断裂产生的地表破裂带长度约275 km,以逆冲运动伴随右旋走滑为其破裂特征,最大垂直位移量约11 m,最大右旋走滑位移量至少约12 m;沿灌县-安县断裂产生的地表破裂带长度约80 km,表现为纯逆冲运动的破裂特征,最大垂直位移量约4 m;另外发育一条长约6 km呈NW走向连接于映秀-北川破裂带和汉旺破裂带的小鱼洞破裂带,以左旋走滑兼有逆冲运动为特征。地表破裂基本沿袭早先活动断裂带上,并使早先抬高的地貌更加抬高,表明龙门山地区地震在同一断裂带上重复发生过,并且无数次地震活动(包括类似汶川MS 8.0地震的强震)的累积,逐渐形成了现今的龙门山。根据同震断裂面以及断裂面上的擦痕分析表明,汶川地震是由两次破裂事件叠加而成,初期破裂以逆冲运动为主,后期破裂以右旋走滑为主,这种破裂过程与地震波数据反演结果(陈运泰等,2008;Ji, 2008;王为民等,2008)一致。在地表破裂带南段(映秀—清平段)叠加了两次不同性质的破裂过程,北段(北川—南坝段)只反映了第二次破裂事件的过程。利用长期滑移速率与汶川地震同震位移对比,估算出在龙门山断裂带上类似汶川地震(MS 8.0)的强震复发周期为3000~6000 a。通过对比研究,西昆仑山、阿尔金山和东昆仑山与龙门山具有很相似的转换挤压构造特征,斜向逆冲作用是青藏高原周缘山脉快速崛起的主要机制。  相似文献   

4.
在区域地质构造研究中,龙门山断裂带也称为龙门山褶皱-冲断带或推覆构造带。许多研究者认为,2008年汶川8级地震的发震构造是这条断裂带或其中央映秀—北川断裂。笔者在深入分析龙门山断裂带的构造演化和岩石圈结构构造特征的基础上,着重探讨8级地震的发震构造,提出不同的认识。龙门山断裂带经历了松潘—甘孜造山带的前陆褶皱-冲断带(T3-J)、造山带(K-E)和青藏高原边缘隆起带(N-Q)3个动力学条件不同的演化阶段,在前两个阶段断裂带递进发展,第三阶段断裂带则被改造。从三维空间看,龙门山断裂带位于松潘—甘孜地块东南缘的上地壳内,并被推覆到扬子陆块上;而松潘—甘孜地块的中—下地壳和岩石圈地幔发生韧性增厚,而且向扬子陆块壳下俯冲,从而使浅、深部构造在垂向上形成"吞噬"扬子地块的"鳄鱼嘴"式结构。虽然在平面上汶川8级地震的主余震分布与映秀—北川断裂一致,但从剖面上看其震源所构成的震源破裂体位于龙门山断裂带之下的扬子陆块内。这种不一致性表明,8级地震的发震构造不是龙门山断裂带,而是扬子陆块内新生的高角度断裂,其走向基本与龙门山断裂带一致。推测这一震源断裂的形成过程是:当松潘—甘孜地块向东南推挤时,其前缘"鳄鱼嘴"构造咬合并错断被吞噬的扬子陆块部分,形成具有右旋逆平移性质的新断裂,导致汶川8级地震的发生。  相似文献   

5.
2008年5月12日在青藏高原东缘龙门山断裂带中段发生汶川8.0级特大地震。大震发生时释放应力并对震源区及外围构造应力场产生影响,受汶川地震断层破裂方式和强度空间差异性的影响,震后龙门山断裂带地壳应力场也应表现差异特征,至今鲜有针对该科学问题深入的分析和讨论。经过系统收集、梳理汶川地震后沿龙门山断裂带水压致裂地应力测量数据与2008年汶川地震中强余震序列震源机制解资料,对汶川地震后龙门山断裂带中上地壳构造应力场进行厘定,通过与震前构造应力场对比,深入探讨了汶川8.0级地震对龙门山断裂带地壳应力场的影响,进而对汶川震后应力调整过程及青藏高原东缘龙门山地区深部构造变形模式进行研究,研究结果表明:受汶川8.0级地震的影响,震后龙门山断裂带地壳构造应力场空间分布具有差异性,近地表至上地壳15 km深度范围,映秀—青川段最大主应力方向为北西西向、地应力状态为逆走滑型,青川东北部最大主应力方向偏转至北东东向、应力状态转变为走滑型;15~25km深度范围,龙门山断裂带最大主应力方向仍为北西—北西西向、应力状态以逆冲型为主。汶川8.0级地震后,龙门山断裂带中地壳北西西向逆冲挤压的构造应力特征进一步支持了青藏高原东缘龙门山地区东西两侧刚性块体碰撞挤压、逆冲推覆的动力学模式。  相似文献   

6.
四川省青川县东河口地震遗址公园发现温泉及天然气溢出   总被引:1,自引:0,他引:1  
2009年1月30-31日,受四川省广元市的邀请,笔者等赴青川县进行地震地质考察,在四川省青川县的东河口地震遗址公园.发现了2处汶川5·12特大地震及其余震引发的地热和可燃气体溢出现象.该区位于龙门山断裂构造带北段,龙门山中央断裂(映秀-北川断裂)穿过该区,处于后龙山滑脱-逆冲推覆构造带内.  相似文献   

7.
2008年5月12日发生在汶川的8.0级地震,震中位于龙门山断裂带的映秀-北川断裂上。通过对震区的现场调查,这次地震在极震区造成的地表破裂带主要在龙门山断裂带的中央断裂即映秀-北川断裂和前山断裂即彭县-灌县断裂。通过调查发现,极震区的地表断层产状多为北东走向,以逆冲运动为主。而在极震区以北的四川平武、青川和陕西宁强等余震分布区,地表也发生破裂,但规模和产生的地表变形明显减弱,主要以地裂缝等地质灾害形式表现。  相似文献   

8.
汶川大地震(MS 8.0)同震变形作用及其与地质灾害的关系   总被引:12,自引:2,他引:10  
2008年5月12日发生于四川盆地西部龙门山断裂带的汶川大地震(MS 8.0)波及半个亚洲,震撼整个中国。本文通过地震后的实地调查,对发育在龙门山断裂带上的同震地表破裂带的分布、产状、继承性复活与变形特征,以及同震变形与地震地质灾害的关系等进行了初步总结,分析表明这次汶川大地震(MS 8.0)沿北川-映秀逆冲断裂和安县-灌县逆冲断裂同时发生地表破裂,前者产生以高角度逆冲兼右旋走滑为特征的地表破裂带长约275 km,后者产生以缓倾角逆冲作用为特征的地表破裂带长约80 km。汶川大地震的同震地表破裂带分布具有分段性特征,并与地表破坏程度的分带性有着一定的内在联系,详细研究表明,同震地表破裂带的产状直接影响地表破坏程度和地震地质灾害的强度,汶川大地震(MS 8.0)沿呈高角度陡倾的北川-映秀逆冲断裂发育的同震地表变形所产生的地表破坏程度和地震地质灾害的强度比沿缓倾角的安县-灌县逆冲断裂要强。从各种类型的地震断裂来看,具有垂直运动的逆冲型地震断裂所造成的地表破坏程度和地质灾害强度比具水平运动的走滑型地震断裂要强。因此,汶川大地震发生的破裂过程和同震地表变形与地震地质灾害的关系值得深入研究。  相似文献   

9.
汶川地震断裂带结构特征与龙门山隆升的关系   总被引:7,自引:2,他引:5  
王焕  李海兵  司家亮  黄尧 《岩石学报》2013,29(6):2048-2060
2008年汶川地震(MW7.9)发生在青藏高原东缘龙门山断裂带上,并沿映秀-北川断裂和灌县-安县断裂分别产生约270km和80km的不同性质的地表破裂带。断裂岩是断裂活动的产物,是断裂带的物质组成,其结构特征记录了断裂活动演化的历史。本文以汶川地震发震断裂映秀-北川断裂带中虹口八角庙地区地表露头和汶川地震科学钻探一号孔(WFSD-1)岩心为主要研究对象,通过详细的野外调研、显微结构及XRD分析等,识别出映秀-北川断裂带由五个次级单元组成,分别为:碎裂岩带、黑色断层泥和角砾岩带、灰色断层角砾岩带、深灰色断层角砾岩带以及断层泥和角砾岩带。断裂岩组合显示映秀-北川断裂带具有多核断裂结构特征。映秀-北川断裂带在地表出露的宽度约为240m,岩心中厚度约为105m,碎裂岩、断层角砾岩、断层泥在地表及岩心中均发育,而假玄武玻璃仅在地表碎裂岩部分出现。汶川地震主滑移带斜切了映秀-北川断裂带,不完全沿袭古地震滑移带,暗示汶川地震断裂带与映秀-北川断裂带可能不是同一个断裂体系。通过断裂岩的研究确定了映秀-北川断裂带存在着摩擦熔融、热增压、动态润滑和机械润滑等多种断裂滑移机制。低温热年代学的研究推断映秀-北川断裂带的形成时代为15~10Ma,自形成以来,映秀-北川断裂带的长期活动控制着龙门山的快速隆升。断裂带五个不同断裂岩组合的内部结构带,可能与龙门山不同的隆升速率期有着一定的联系。  相似文献   

10.
映秀-北川断裂的地表破裂与变形特征   总被引:29,自引:1,他引:28  
2008年5月12日在龙门山映秀北川断裂带发生的8.0级特大地震,属于逆冲—走滑型地震。本文以地表破裂为切入点,在映秀北川断裂的关键部位开展了详细的野外地貌测量,标定了映秀北川断裂带的垂向断距和水平断距,结果表明映秀北川断裂的地表破裂带从映秀向北东延伸达180~190 km,走向介于NE30°~50°之间,倾向北西,地表平均垂向断距为2.9 m, 平均水平断距为3.1 m;地表最大错动量的地点位于北川县擂鼓镇,垂直断错为6.2±0.1 m,水平断错为6.8 ±0.2 m , 逆冲分量与右行走滑分量的比值为3∶1~1∶1,表明该断裂以逆冲—右行走滑为特点,逆冲运动分量略大于或等于右行走滑运动分量。根据近南北向的分段断裂可将映秀北川断层的地表破裂带划分为两个高值区和两个低值区,其中两个高值区分别位于南段的映秀—虹口一带和中北段的擂鼓—北川县城—邓家坝一带。基于保存于破裂面上的擦痕,我们将该地震破裂过程划分为两个阶段,早期为逆冲作用,晚期为斜向走滑作用。  相似文献   

11.
Disaster chains initiated by the Wenchuan earthquake   总被引:3,自引:0,他引:3  
The Wenchuan earthquake caused numerous landslides and avalanches, which initiated causal chains of geological and ecological disasters. Field investigations and field experiments were performed in the earthquake area in 2008 and 2009 to study the disaster chains. Four types of disaster chains have been identified and seven cases have been studied. In the disaster chains, each episode was caused by the previous episode, or the causal episode. In the first chain, landslide created a quake lake, which was followed by landslide dam failure flood and very intensive fluvial process. The last episode of the chain was loss of habitats and destruction of aquatic biocommunities. The Tangjiashan and Huoshigou landslides initiated such a type of disaster chain. The second chain consisted of landslide, drainage system burying, debris flows, and development of new drainage system and intensive fluvial process. The Wenjiagou landslide initiated such a type of disaster chain. The third chain consisted of avalanches, grain erosion (unusual erosion of bare rocks due to insolation and temperature change), slope debris flows, and flying stones. Many such disaster chain events occurred on the mountains by the Minjiang River section from Yingxiu to Wenchuan. The fourth chain has only two episodes: avalanches during the earthquake occurring on elevation between 100 and 800 m from the riverbed, and rock falls or new avalanches due to increased slope angle of high mountains (400–1,500 m from the riverbed). The Chediguan bridge was broken by such avalanches in July 2009, in which six were killed and more than 20 were injured. For all the disaster chains, the volume of mass movement in each episode was much less than the causal episode (previous episode). In other words, there was an attenuation along the causal chains. The attenuation factor is defined as the ratio of the volume of mass movement or affected area in one episode of a chain to the volume or affected area in the causal episode. The study concluded that the attenuation factor ranges from 0.02 to 0.3. Macroinvertebrates were used as indicator species to evaluate the ecological effect of the disaster chains. The number of species was greatly reduced by the causal chains, although the river section was not directly affected by landslides.  相似文献   

12.
在对四川省汶川县地震序列的动态跟踪与对甘肃省震情的动态判定过程中,笔者成功地把握了甘肃震情、一定程度上把握了汶川地震序列的动态发展变化并对5月18日发生在四川省江油市的6.0级地震作出了成功预测。此次成功的地震预测实践为甘肃省的抗震救灾工作提供了正确的科学依据,为减轻地震灾害和稳定被地震扰乱的社会秩序发挥了重要作用,同时也在中国地震预报的历史上写下了新的篇章。从中笔者更加深刻地感悟到,地震预报虽然是一个十分复杂、尚未被攻克的世界性难题,但对于一个特定的地区,如果预报思路和方法得当,要实现一次乃至数次成功的预报是可能的。这对地球科学家们如何认识地震预报问题有一定的意义。  相似文献   

13.
从大量的地震参数分析可知,在由同一主震引发的所有的余震发生的位置都不同。在发生地震之前,地震的震中位置都是一些相互独立、互不连续且发生了弹性应变的单元个体,笔者称这些独立不连续的弹性应变单元称为应变量子。综合前人研究成果,笔者建立了一个地震模型。运用该模型对2008年5月12日发生在中国汶川地震作了解释:由于在龙门山断裂带周围形成了许多的应变量子,这些应变量子的形成阻碍了龙门山断裂的运动,产生滑移亏损,从而造成在地震前测量到的龙门山断裂带速度场变化很不显著。2008年5月12日14时28分时,在龙门山断裂周围已形成应变量子中的其中一应变量子最先达到它的最大储能,释放它所储存的应变能,引发了汶川Ms8.0地震。此次地震产生的地震波引发了龙门山断裂周围地壳应力的重分布,使得其他应变量子提前达到最大储能,释放出能量,于是触发成千上万次余震。此外,我们或许可以通过观测断裂滑移速率的变化情况来预测断裂周围应变量子的形成,从而来预测该断裂是否存在潜在地震的可能。  相似文献   

14.
15.
汶川地震液化土层类型验证及土性分析   总被引:1,自引:0,他引:1  
2008年5月12日汶川特大地震中,除在山区引发了大量山体滑坡、崩塌和泥石流外,在成都平原等地液化现象也十分普遍。液化主要分布在含砂、砾石和卵石等的第四系地层。依据地层分布特征和地震烈度,选择6个典型液化点(带)进行现场勘测和试验,以验证液化土层类型、了解液化土层的土性特征,并检验《建筑抗震设计规范》中液化判别方法的适应性。结果表明:(1) 典型液化点土类包含砂、砾石和卵石等,6个验证点中有2个为砂层液化(其中1个为砾砂)、3个为砾石层液化和1个为卵石层液化;(2) 与非液化地层相比,液化地层结构松散,均匀性差,颗粒大小分布曲线较平缓,不均匀系数较大,其中液化砂土级配良好,砾石和卵石级配不良;(3) 依据《建筑抗震设计规范》液化判别方法,将验证点1中砂液化判为非液化,其余5个验证点由于含较多粗颗粒,因无法进行标准贯入试验而无法进行液化判别。  相似文献   

16.
芦山地震发震构造及其与汶川地震关系讨论   总被引:14,自引:0,他引:14  
芦山地震发生在巴彦喀拉块体与华南块体之间龙门山推覆构造带南段。野外考察表明,芦山地震在震中区没有形成具有构造地质意义的地震地表破裂带,仅在各山前陡坡地带出现平行于山麓陡坡的张性地裂缝、山地基岩崩塌、滑坡等边坡震动失稳现象和震动引起的砂土液化现象。重新定位的芦山地震余震分布、震源机制解和地表构造地质等分析表明,芦山地震的发震断层为一条现今尚未出露地表、其上断点仍埋藏在地下9 km以下地壳中的一条盲逆断层,走向212°,倾向NW,倾角38°±2°,上断点以上至地表的构造变形符合断层扩展背斜模型。根据汶川地震和芦山地震的余震空间分布、地震破裂过程、深浅构造关系等差异反映出它们是分别发生在龙门山推覆构造带中段和南段的两次独立地震破裂事件。  相似文献   

17.
本文在地震滑坡规模(体积)类型5级划分法的基础上,采用数学方法对汶川地震灾区的2个宏观震中(映秀、北川)烈度I0≥XI极震区(10个县市)的地震滑坡震中距进行了讨论。其中地震滑坡随震中距分布基本符合正弦、高斯和指数衰减规律。极震区最大滑坡震中距可达120km,最小滑坡震中距可达0.25km。结果表明,地震诱发滑坡的规模(体积)和分布范围都与震中距具有相关性。  相似文献   

18.
曹学兴  何蕴龙  熊堃  刘斌 《岩土力学》2010,31(11):3542-3548
冶勒大坝为沥青混凝土心墙堆石坝,最大坝高124.5 m,坝址地震烈度高、地质条件复杂。该坝址距离“5.12”汶川大地震震中258 km,地震发生时坝区有强烈震感。坝上布置了由9台强震仪组成的强震监测台阵及埋设有较完整的大坝安全监测仪器,在此次汶川地震中获得了较完整的地震记录和其他监测资料。通过对强震监测资料及地震前后大坝变形、应力、应变及渗流渗压等方面的分析,考察汶川大地震对冶勒大坝工作性态产生的影响。分析结果表明,地震对大坝整体的应力、应变、渗流渗压并未造成明显的不利影响,但对大坝局部结构产生了一些不利的影响。总体而言,整个大坝在遭遇Ms8.0级大地震之后,外观无异常现象,总体运行性态基本稳定。  相似文献   

19.
汶川特大地震发生后,都江堰至汶川公路两侧地质灾害尤为发育,先后多次完全中断震中生命线的交通,严重影响了公路的安全运行和灾后重建的顺利进行。通过汶川地震前后都江堰-汶川公路边坡现场调查资料对比分析,研究了该地段边坡的主要地质灾害类型及其破坏模式、易发性分区和防治建议。研究表明破坏类型主要为碎屑流式、碎裂滑移崩塌,剪断-溃滑型、拉裂-溃滑型、顺层溃滑型滑坡和沟谷型泥石流。都汶公路两侧的边坡灾害以崩塌为主,滑坡、泥石流次之。地震使区内泥石流暴发的频率和规模增大,特大型泥石流主要发生在映秀-北川断裂带的地震烈度较高区域。防治此类地质灾害,应以治理为主,预防和避让相结合。  相似文献   

20.
Uplift of the Longmen Shan range and the Wenchuan earthquake   总被引:20,自引:0,他引:20  
The 12 May 2008 Wenchuan earthquake (Ms=8.0) struck on the Longmen Shan foreland thrust zone. The event took place within the context of long-term uplift of the Longmen Shan range as a result of the extensive eastward-extrusion of crustal materials from the Tibetan plateau against the rheologically strong crust of the Sichuan Basin. The Longmen Shan range is charac- terized by a Pre-Sinian crystalline complex constrained by the Maoxian-Wenchuan-Kangding ductile detach- ment at the western margin and the Yingxiu-Beichuan- Luding ductile thrust at the eastern margin. The Long- men Shan uplift was initiated by intracontinental sub- duction between the Songpan-Ganzi terrane and the Yangtze block during the Pre-Cenozoic. The uplift rate was increased considerably by the collision between the Indian and Eurasian plates since -50 Ma. The Wenchuan earthquake resulted in two major NE-strik- ing coseismic ruptures (i.e., the -275 km long Yingxiu- Beichuan-Qingchuan fault and the -100 km long Anx- ian-Guanxian fault). Field investigations combined with focal solutions and seismic reflection profiles suggest that the coseismic ruptures are steeply dipping close-to- pure reverse or right reverse oblique slip faults in the -15 km thick upper crust. These faults are unfavorably oriented for frictional slip in the horizontally compres- sional regime, so that they need a long recurrence interval to accumulate the tectonic stress and fluid pres- sure to critically high levels for the formation of strong earthquakes at a given locality. It is also found that all the large earthquakes (Ms〉7.0) occurred in the fault zones across which the horizontal movement velocities measured by the GPS are markedly low (〈3 mm/yr). The faults, which constitute the northeastern fronts of the enlarging Tibetan plateau against the strong Sichuan Basin, Ala Shan and Ordos blocks, are very destructive, although their average recurrence intervals are generally long.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号