首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.
The properties of waves able to propagate in a relativistic pair plasma are at the basis of the interpretation of several astrophysical observations. For instance, they are invoked in relation to radio emission processes in pulsar magnetospheres and to radiation mechanisms for relativistic radio jets. In such physical environments, pair plasma particles probably have relativistic, or even ultrarelativistic, temperatures. Besides, the presence of an extremely strong magnetic field in the emission region constrains the particles to one-dimensional motion: all the charged particles strictly move along magnetic field lines.
We take anisotropic effects and relativistic effects into account by choosing one-dimensional relativistic Jűttner–Synge distribution functions to characterize the distribution of electrons and/or positrons in a relativistic, anisotropic pair plasma. The dielectric tensor, from which the dispersion relation associated with plane wave perturbations of such a pair plasma is derived, involves specific coefficients that depend on the distribution function of particles. A precise determination of these coefficients, using the relativistic one-dimensional Jűttner–Synge distribution function, allows us to obtain the appropriate dispersion relation. The properties of waves able to propagate in anisotropic relativistic pair plasmas are deduced from this dispersion relation. The conditions in which a beam and a plasma, both ultrarelativistic, may interact and trigger off a two-stream instability are obtained from this same dispersion relation. Two astrophysical applications are discussed.  相似文献   

2.
Using plasma parameters from a typical stormtime ionospheric energy balance model, we have investigated the effects of plasma turbulence on the auroral magnetoplasma. The turbulence is assumed to be comprised of electrostatic ion cyclotron waves. These waves have been driven to a nonthermal level by a geomagnetic field-aligned, current-driven instability. The evolution of this instability is shown to proceed in two stages and indicates an anomalous increase in field-aligned electrical resistivity and cross-field ion thermal conductivity as well as a decrease in electron thermal conductivity along the geomagnetic field. In addition, this turbulence heats ions perpendicular to the geomagnetic field and hence leads to a significant ion temperature anisotropy.  相似文献   

3.
We have applied numerical simulations and modeling to the particle acceleration, magnetic field generation, and emission from relativistic shocks. We investigate the nonlinear stage of theWeibel instability and compare our simulations with the observed gamma-ray burst emission. In collisionless shocks, plasma waves and their associated instabilities (e.g., the Weibel, Buneman and other two-stream instabilities) are responsible for particle (electron, positron, and ion) acceleration and magnetic field generation. 3-D relativistic electromagnetic particle (REMP) simulations with three different electron-positron jet velocity distributions and also with an electron-ion plasma have been performed and show shock processes including spatial and temporal evolution of shocks in unmagnetized ambient plasmas. The growth time and nonlinear saturation levels depend on the initial jet parallel velocity distributions. Simulations show that the Weibel instability created in the collisionless shocks accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The nonlinear fluctuation amplitude of densities, currents, electric, and magnetic fields in the electron-positron shocks are larger for smaller jet Lorentz factor. This comes from the fact that the growth time of the Weibel instability is proportional to the square of the jet Lorentz factor. We have performed simulations with broad Lorentz factor distribution of jet electrons and positrons, which is assumed to be created by photon annihilation. Simulation results with this broad distribution show that the Weibel instability is excited continuously by the wide-range of jet Lorentz factor from lower to higher values. In all simulations the Weibel instability is responsible for generating and amplifying magnetic fields perpendicular to the jet propagation direction, and contributes to the electron’s (positron’s) transverse deflection behind the jet head. This small scale magnetic field structure contributes to the generation of “jitter” radiation from deflected electrons (positrons), which is different from synchrotron radiation in uniform magnetic fields. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks. The detailed studies of shock microscopic process evolution may provide some insights into early and later GRB afterglows.  相似文献   

4.
In this concise review of the recent developments in relativistic shock theory in the Universe we restrict ourselves to shocks that do not exhibit quantum effects. On the other hand, emphasis is given to the formation of shocks under both non-magnetised and magnetised conditions. We only briefly discuss particle acceleration in relativistic shocks where much of the results are still preliminary. Analytical theory is rather limited in predicting the real shock structure. Kinetic instability theory is briefed including its predictions and limitations. A recent self-similar relativistic shock theory is described which predicts the average long-term shock behaviour to be magnetised and to cause reasonable power-law distributions for energetic particles. The main focus in this review is on numerical experiments on highly relativistic shocks in (i) pair and (ii) electron-nucleon plasmas and their limitations. These simulations do not validate all predictions of analytic and self-similar theory and so far they do not solve the injection problem and the self-modification by self-generated cosmic rays. The main results of the numerical experiments discussed in this review are: (i) a confirmation of shock evolution in non-magnetised relativistic plasma in 3D due to either the lepton-Weibel instability (in pair plasmas) or to the ion-Weibel instability; (ii) the sensitive dependence of shock formation on upstream magnetisation which causes suppression of Weibel modes for large upstream magnetisation ratios σ>10−3; (iii) the sensitive dependence of particle dynamics on the upstream magnetic inclination angle θ Bn , where particles of θ Bn >34° cannot escape upstream, leading to the distinction between ‘subluminal’ and ‘superluminal’ shocks; (iv) particles in ultra-relativistic shocks can hardly overturn the shock and escape to upstream; they may oscillate around the shock ramp for a long time, so to speak ‘surfing it’ and thereby becoming accelerated by a kind of SDA; (v) these particles form a power-law tail on the downstream distribution; their limitations are pointed out; (vi) recently developed methods permit the calculation of the radiation spectra emitted by the downstream high-energy particles; (vii) the Weibel-generated downstream magnetic fields form large-amplitude vortices which could be advected by the downstream flow to large distances from the shock and possibly contribute to an extended strong field region; (viii) if cosmic rays are included, Bell-like modes can generate upstream magnetic turbulence at short and, by diffusive re-coupling, also long wavelengths in nearly parallel magnetic field shocks; (ix) advection of such large-amplitude waves should cause periodic reformation of the quasi-parallel shock and eject large-amplitude magnetic field vortices downstream where they contribute to turbulence and to maintaining an extended region of large magnetic fields.  相似文献   

5.
The dispersion relation for longitudinal waves in a one-dimensional ultrarelativistic plasma is calculated. Analytical and numerical results for the growth rate and frequency of the two-stream instability are presented as a function of the energy spread in the denser stream when the dilute stream is cold. The case of energy spreads in both beams is investigated numerically: it is found that relatively small energy spreads in both streams can lead to suppression of the instability.  相似文献   

6.
The release of plasma in the jovian magnetotail is observed in the form of plasmoids, travelling compression regions, field-aligned particle beams and flux-rope like events. We demonstrate that electrons propagate along the magnetic field lines in the plasma sheet boundary layer (PSBL), while close to the current sheet center the electron distribution is isotropic. The evidences of the counterstreaming electron beams in the PSBLs are also presented. Most of the field-aligned energetic ion beams are associated with the field-aligned electron beams and about half of them have the bipolar fluctuation of the meridional magnetic field component. Moreover they often show a normal velocity dispersion for the different species which fits well in the scenario of particle propagation from a single source. All features above are observed during jovian reconfiguration events which are typically bonded with plasma flow reversals. From all these characteristics, which are based on energetic particle and magnetic field measurements, we believe that the reconfiguration processes in the jovian magnetotail are associated with reconnection.  相似文献   

7.
A full particle simulation study is carried out on a perpendicular collisionless shock with a relatively low Alfven Mach number (MA = 5). Recent self-consistent hybrid and full particle simulations have demonstrated ion kinetics are essential for the non-stationarity of perpendicular collisionless shocks, which means that physical processes due to ion kinetics modify the shock jump condition for fluid plasmas. This is a cross-scale coupling between fluid dynamics and ion kinetics. On the other hand, it is not easy to study cross-scale coupling of electron kinetics with ion kinetics or fluid dynamics, because it is a heavy task to conduct large-scale full particle simulations of collisionless shocks. In the present study, we have performed a two-dimensional (2D) electromagnetic full particle simulation with a “shock-rest-frame model”. The simulation domain is taken to be larger than the ion inertial length in order to include full kinetics of both electrons and ions. The present simulation result has confirmed the transition of shock structures from the cyclic self-reformation to the quasi-stationary shock front. During the transition, electrons and ions are thermalized in the direction parallel to the shock magnetic field. Ions are thermalized by low-frequency electromagnetic waves (or rippled structures) excited by strong ion temperature anisotropy at the shock foot, while electrons are thermalized by high-frequency electromagnetic waves (or whistler mode waves) excited by electron temperature anisotropy at the shock overshoot. Ion acoustic waves are also excited at the shock overshoot where the electron parallel temperature becomes higher than the ion parallel temperature. We expect that ion acoustic waves are responsible for parallel diffusion of both electrons and ions, and that a cross-scale coupling between an ion-scale mesoscopic instability and an electron-scale microscopic instability is important for structures and dynamics of a collisionless perpendicular shock.  相似文献   

8.
We investigate the linear stability of a shocked accretion flow on to a black hole in the adiabatic limit. Our linear analyses and numerical calculations show that, despite the post-shock deceleration, the shock is generally unstable to non-axisymmetric perturbations. The simulation results of Molteni, Tóth & Kuznetsov can be well explained by our linear eigenmodes. The mechanism of this instability is confirmed to be based on the cycle of acoustic waves between the corotation radius and the shock. We obtain an analytical formula to calculate the oscillation period from the physical parameters of the flow. We argue that the quasi-periodic oscillation should be a common phenomenon in accretion flows with angular momentum.  相似文献   

9.
Numerical solutions are obtained from analytic dispersion relations for electrostatic waves in a self-consistent, one-dimensional magnetic neutral sheet. The dispersion relations are solved in the real wave number and complex frequency domain. The properties of wave modes will be described, with special emphasis on instability. Several regimes of instability are identified which may generally be divided into two classes. Wave growth is associated firstly with counterstreaming between ions and electrons, giving rise to low frequency waves similar to the usual electrostatic two-stream mode. In addition, high frequency growing waves occur, associated with harmonics of the electron oscillation frequency across the neutral plane.  相似文献   

10.
On the basis of issues raised by observations of BL Lac objects and the qualitative jet model proposed by Bakeret al. in 1988, we have been led to consider the quantitative role of coherent, stimulated emission in jets and construct a new jet model of blazars in which a relativistic electron beam with an axial symmetric, power-law distribution is injected from the central engine into the jet plasma. We study quantitatively the synchrotron emission of the relativistic electron beams. Using the weak turbulent theory of plasma, we discuss the interaction between relativistic electron beams and jet plasma, and the roles of stimulated emission. The main results are:
  1. The synchrotron emission increases sensitively with the increase of the angle between the direction of the beam and the magnetic field. When the direction of the beam is vertical to the magnetic field, the synchrotron emission reaches its maximum, i.e. the emitted waves are beamed in the direction of the jet axis. We suggest that radio selected BL Lac objects belong to this extreme classification.
  2. The synchrotron emission of the relativistic beam increases rapidly with the increase of the Lorentz factor of the relativistic electron,γ, whenγ ≤ 22.5, then decreases rapidly with increase ofγ.
  3. The stimulated emission also increases with increasing Lorentz factorγ of the relativistic electrons whenγ ≤ 35 and then decreases with the increasingγ. The maximum stimulated emission and the maximum synchrotron emission occur at different frequencies. Stimulated emission is probably very important and reasonable flare mechanism in blazars.
  4. The rapid polarization position angle (PA) swings may arise from the interaction between the relativistic electron beam and the turbulent plasma.
  相似文献   

11.
We investigate the problem of determining the plasma composition of relativistic jets in blazars and microquasars from the polarization frequency spectra of their synchrotron radiation. The effect of plasma composition on this radiation is attributable to a change in the structure of the ordinary and extraordinary waves in plasma, depending on the presence of a nonrelativistic electron-proton component in it and on the type of relativistic particles (electrons, positrons). The structure of the normal waves determines the properties of the observed radiation and primarily the shape of the polarization frequency spectrum. Our analytic calculations of the polarization spectra for simple models of jets with a uniform magnetic field and with a magnetic-field shear revealed characteristic features in the polarization spectra. These features allow us to differentiate between the synchrotron radiation from an admixture of relativistic particles in a cold plasma and the radiation from a relativistic plasma. However, definitive conclusions regarding the relativistic plasma composition (electrons or electron-positron pairs) can be reached only by a detailed analysis of the polarization frequency spectra that will be obtained in future radioastronomical studies with high angular and frequency resolutions.  相似文献   

12.
The large differences in drift velocities between the solar wind protons and the picked-up ions of cometary origin cause the Alfvén waves (among others) to become unstable and generate turbulence. A self-consistent treatment of such instabilities has to take into account that these cometary ions affect the solar wind plasma in a decisive way. With the help of a previously developed formalism one finds the correct Alfvén instability criterion, which is here nondispersive, in contrast to recent calculations where the cometary ions are treated as a low-density, high-speed, and non-neutral beam through an otherwise undisturbed solar wind. The true bulk speed of the combined solar wind plus cometary ion plasma clearly shows the mass-loading and deceleration of the solar wind near the cometary nucleus, indicating a bow shock. The instability criterion is also used to determine the region upstream where the Alfvén waves can be unstable, based upon recent observations near comet Halley.  相似文献   

13.
Episodic ejection of plasma blobs has been observed in many black hole systems. While steady, continuous jets are believed to be associated with large-scale open magnetic fields, what causes the episodic ejection of blobs remains unclear. Here by analogy with the coronal mass ejection on the Sun, we propose a magnetohydrodynamical model for episodic ejections from black holes associated with the closed magnetic fields in an accretion flow. Shear and turbulence of the accretion flow deform the field and result in the formation of a flux rope in the disc corona. Energy and helicity are accumulated and stored until a threshold is reached. The system then loses its equilibrium and the flux rope is thrust outward by the magnetic compression force in a catastrophic way. Our calculations show that for parameters appropriate for the black hole in our Galactic centre, the plasmoid can attain relativistic speeds in about 35 min.  相似文献   

14.
This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting magnetic topology is dependent on the details of magnetic helicity injection, namely the force-free state eigenvalue α gun imposed by the coaxial gun.  相似文献   

15.
We study the characteristics of microbursts using a large data base obtained with the multifrequency radioheliograph of the Clark Lake Radio Observatory. Most of the new observations were made during July 29, 1985 to August 2, 1985; we also include for statistical studies the microburst data used in our earlier studies. We perform a statistical analysis of many characteristics such as frequency drift, source size and brightness temperature and compare them with the properties of normal type III bursts. We investigate the coronal structures and surface activities associated with some of the events. We find that (i) the brightness temperature is in the range 6 × 105 K to 6 × 107 K; (ii) the drift rate of the microbursts is slightly smaller than that of normal type III bursts, implying electron beams with speeds 0.2c.We explore various theoretical interpretations of the observed low brightness temperatures. We show that the microbursts can be explained as due to spontaneously emitted Langmuir waves by electron beams whereas normal type III bursts are due to coherently emitted plasma waves in a two-stream instability. We estimate the range of number densities for electron beams responsible for microbursts.On leave from Indian Institute of Astrophysics, Bangalore, India.  相似文献   

16.
Shock surfing acceleration   总被引:1,自引:0,他引:1  
Analytical and numerical analysis identify shock surfing acceleration as an ideal pre-energization mechanism for the slow pick-up ions at quasiperpendicular shocks. After gaining sufficient energy by shock surfing, pick-up ions undergo diffusive acceleration to reach their observed energies. Energetic ions upstream of the cometary bow shock, acceleration of solar energetic particles by magnetosonic waves in corona, ion enhancement in interplanetary shocks, generation of anomalous cosmic rays from interstellar pick-up ions at the termination shock are some of the cases where shock surfing acceleration apply. Inclusion of the lower-hybrid wave turbulence into the laminar model of shock surfing can explain the preferential acceleration of heavier particles as observed by Voyager at the termination shock. At relativistic energies, unlimited acceleration of ions is theoretically possible; because for sufficiently strong shocks main limitation of the mechanism, caused by the escape of accelerated particles downstream of the shock during acceleration no longer exists.  相似文献   

17.
The structure of the hot downstream region below a radiative accretion shock, such as that of an accreting compact object, may oscillate because of a global thermal instability. The oscillatory behaviour depends on the functional forms of the cooling processes, the energy exchanges of electrons and ions in the shock-heated matter, and the boundary conditions. We analyse the stability of a shock with unequal electron and ion temperatures, where the cooling consists of thermal bremsstrahlung radiation which promotes instability, plus a competing process which tends to stabilize the shock. The effect of transverse perturbations is considered also. As an illustration, we study the special case in which the stabilizing cooling process is of order 3/20 in density and 5/2 in temperature, which is an approximation for the effects of cyclotron cooling in magnetic cataclysmic variables. We vary the efficiency of the second cooling process, the strength of the electron–ion exchange and the ratio of electron and ion pressures at the shock, to examine particular effects on the stability properties and frequencies of oscillation modes.  相似文献   

18.
Kinetic Alfvén waves are examined in the presence of ion and electron beams with bi-Maxwellian distribution functions. The theory of particle aspect analysis is used to evaluate the trajectories of charged particles in the electromagnetic field of a kinetic Alfvén wave. The expressions for the field-aligned currents, perpendicular currents (with respect to B0), dispersion relation and growth-rate with marginal instability criteria are derived. The significance of the investigation for the earth's magnetoplasma is discussed.  相似文献   

19.
We have studied the stability of the electrostatic electron cyclotron wave in a plasma composed of hydrogen, oxygen and electrons. To conform to satellite observations in the low latitude boundary layer we model both the ionic components as drifting perpendicular to the magnetic field. Expressions for the frequency and the growth rate of the wave have been derived. We find that the plasma can support electron cyclotron waves with a frequency slightly greater than the electron cyclotron frequency ω ce ; these waves can be driven unstable when the drift velocities of both the ions are greater than the phase velocity of the wave. We thus introduce another source of instability for these waves namely multiple ion beams drifting perpendicular to the magnetic field.  相似文献   

20.
A weakly nonlinear analysis is carried out to derive a Korteweg–de Vries-Burgers-like equation for small, but finite amplitude, ion-acoustic waves in a dissipative plasma consisting of weakly relativistic ions, thermal positrons and nonextensive electrons. The travelling wave solution has been acquired by employing the tangent hyperbolic method. Our results show that in a such plasma, ion-acoustic shock waves, the strength and steepness of which are significantly modified by relativistic, nonextensive and dissipative effects, may exist. Interestingly, we found that because of ion kinematic viscosity, an initial solitonic profile develops into a shock wave. This later evolves towards a monotonic profile (dissipation-dominant case) as the electrons deviate from their Maxwellian equilibrium. Our investigation may help to understand the dissipative structures that may occur in high-energy astrophysical plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号