首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Five kinds of UHP metamorphic rocks, including eclogite, orthogneiss, paragneiss, schist and quartzite are exposed in the Qinglongshan roadcut, southern Sulu orogenic belt of eastern central China. They comprise metamorphic supracrustal rocks with bimodal volcanic characteristics and continental affinity, and granitic intrusive associations. The preservation of coesite inclusions and/or its pseudomorphs in eclogite and other rocks indicate that they have been subjected to in-situ UHP metamorphism. Four stages of metamorphism were recognized by combining petrographic observations and compositions of minerals from various UHP rocks. Prograde epidote-amphibolite facies, UHP coesite–eclogite facies, post UHP quartz–eclogite facies, and retrograde amphibolite facies assemblages delineate an inferred PT path with a clockwise trajectory and a retrograde event characterized by the coupling of decompression with a temperature decrease. Garnet porphyroblasts in UHP eclogites display a complex growth zoning and mineral distribution, and record a crucial segment of the prograde and retrograde metamorphic evolution. The preservation of growth zoning in eclogitic and gneissic garnets suggests that the UHP rocks had a short residence time before retrograde metamorphism and a very high uplift rate in order to preserve the prograde growth zoning.  相似文献   

2.
ThereisanunanimousunderstandingthattheUHPmetamorphisminDabie-SuluareaswasformedduringtheTri-assiccollisioneventbetweentheYangtzeandNorthChinacratons(Congetal.,l994$Zhouetal-,l996;Liouetal.,l994)-Eclogiteisthemostimportantrocktypeamongtheul-trahigh-pressure(UHP)metamorphicrocks.Accordingtotheiroccurrencethereare3typesofeclogites:typeIisen-clavesinultramaficintrusionsandasmembersinthelayeredmafic-ultramaficcomplex(Jahnl998);typeIispodsorlay-ersinthehighlymetamorphicsupracrustals(mainlying…  相似文献   

3.
First-order factors controlling the textural and chemical evolution of metamorphic rocks are bulk composition and pressure–temperature–time (PTt) path. Although it is common to assume that major element bulk composition does not change during regional metamorphism, rocks with reaction textures such as corona structures record evidence for major changes in effective bulk composition (EBC) and therefore provide significant insight into the scale, pathways, and mechanisms of element transport during metamorphism. Quantifying changes in EBC is essential for petrologic applications such as calculation of phase diagrams (pseudosections). The progressive growth of complex corona structures on garnet and Al2SiO5 porphyroblasts in orthoamphibole-cordierite gneiss Thor-Odin dome (British Columbia, Canada) reduced the EBC volume of the rock during metamorphism and therefore had a dramatic effect on the evolution of the stable mineral assemblage. These rocks contain a chemical and textural record of metamorphic reactions and preserve 3D networks (reaction pathways) connecting corona structures. These coronal networks record long (>cm) length scales of localized element transport during metamorphism. PT, TX, and PX pseudosections are used to investigate the control of effective bulk composition on phase assemblage evolution. Despite textural complexity and evidence for disequilibrium, mineral assemblages and compositions were successfully modeled and peak metamorphic conditions estimated at 750°C and 9 kbar. These results illustrate how textural and chemical changes during metamorphism can be evaluated using an integrated petrographic and pseudosection approach, highlight the importance of effective bulk composition choice for application of phase equilibria methods in metamorphic rocks, and show how corona structures can be used to understand the scale of compositional change and element transport during metamorphism.  相似文献   

4.
翟明国  从柏林 《岩石学报》1995,11(3):257-272
蓝晶石在大别山含柯石英和不含柯石英的榴辉岩、高压变质的副片麻岩、非高压变质的宿松群的变质沉积岩中都是重要的变质矿物。它们多有冠状或其它的变质反应结构,形成多样化的退变质反应矿物。有些退变质反应是十分罕见的。本文报道了8种蓝晶石的矿物组合和退变质反应,推测和计算了变质反应的温度-压力条件,从而探讨了它们代表的近等温降压、升温降压和流体为重要因素的降温降压的不同的动力学过程。这些数据与用其它变质矿物所得到的温度压力条件和PTt演化基本一致。为探讨大别山超高压变质带的构造演化提供了新的依据。  相似文献   

5.
Granulite facies magnesian metapelites commonly preserve a wide array of mineral assemblages and reaction textures that are useful for deciphering the metamorphic evolution of a terrane. Quantitative pressure, temperature and bulk composition constraints on the development and preservation of characteristic peak granulite facies mineral assemblages such as orthopyroxene + sillimanite + quartz are assessed with reference to calculated phase diagrams. In NCKFMASH and its chemical subsystems, peak assemblages form mainly in high‐variance fields, and most mineral assemblage changes reflect multivariant equilibria. The rarity of orthopyroxene–sillimanite–quartz‐bearing assemblages in granulite facies rocks reflects the need for bulk rock XMg of greater than approximately 0.60–0.65, with pressures and temperatures exceeding c. 8 kbar and 850 °C, respectively. Cordierite coronas mantling peak minerals such as orthopyroxene, sillimanite and quartz have historically been used to infer isothermal decompression P–T paths in ultrahigh‐temperature granulite facies terranes. However, a potentially wide range of P–T paths from a given peak metamorphic condition facilitate retrograde cordierite growth after orthopyroxene + sillimanite + quartz, indicating that an individual mineral reaction texture is unable to uniquely define a P–T vector. Therefore, the interpretation of P–T paths in high‐grade rocks as isothermal decompression or isobaric cooling may be overly simplistic. Integration of quantitative data from different mineral reaction textures in rocks with varying bulk composition will provide the strongest constraints on a P–T path, and in turn on tectonic models derived from these paths.  相似文献   

6.
In western Vanoise (French Alps), karstic pockets of Triassic‐to‐Jurassic metabauxites embedded in carbonate rocks and containing several generations of metamorphic veins were studied. During blueschist facies metamorphism, a cumulative amount of ~13 vol% of water is inferred to have been produced locally by successive dehydration reactions, and part of this fluid remained in the bauxitic lenses during most of the metamorphic cycle. Field and geochemical evidence show that these rocks have been isolated from large‐scale fluid flow (closed‐system behaviour). It is proposed that the internally derived fluid has promoted the opening of fluid‐filled open spaces (as attested by the euhedral habits of vein minerals) and served as medium for mass transfer from rock to vein. Indeed, the vein infill is obviously the result of chemical interactions, at the millimetre‐to‐centimetre scale, between the rock minerals and the locally produced aqueous fluid. Two vein types can be distinguished based on mineralogical and textural features: (i) some veins are filled with newly formed products of either prograde (chloritoid) or retrograde (chlorite) metamorphic reactions; in this case, fluid‐filled open spaces seem to offer energetically favourable nucleation/growth sites; (ii) the second vein type is infilled with cookeite or pyrophyllite, that were present in the host rock prior to the vein formation. In this closed chemical system, the components for the vein infill minerals have been transferred from rock to vein through the fluid, in a dissolution–transport–precipitation process, possibly stress‐assisted. These different vein generations all contain Al‐rich mineral infills, suggesting that Al was a mobile element (cm scale) during metamorphism. In these HP rocks, fluid flow may have been restricted, and if so mass transfer occurred by diffusion in an almost stagnant fluid. Metamorphic veins can be seen as witnesses of fluid and mass redistribution that partly accommodate the rock deformation (lateral segregation).  相似文献   

7.
Chemically zoned porphyroblasts in metamorphic rocks indicate that diffusional processes could not maintain equilibrium conditions on a grain scale during porphyroblast growth or establish it afterwards. An effect of this inability to maintain equilibrium is the progressive removal of elements forming garnet cores from any metamorphic reaction that occurs at the porphyroblast boundaries or in the matrix of the rock. To examine this effect on mineral assemblages, the Bence–Albee matrix correction was applied to X‐ray intensity maps collected using eclogite samples from northern New Caledonia in order to determine the chemical composition of all parts of the sample. The manipulation of these element maps allows a quantitative analysis of the fractionation of the bulk rock composition between garnet cores and the matrix. A series of calculated equilibrium‐volume compositions represents the change in matrix chemistry with progressive elemental fractionation as a consequence of prograde garnet growth under high‐P conditions. Pressure–temperature pseudosections are calculated for these compositions, in the CaO–Na2O–FeO–MgO–Al2O3–SiO2–H2O system. Assemblages, modal proportions and mineral textures observed in the New Caledonian eclogites can be closely modelled by progressively ‘removing’ elements forming garnet cores from the bulk rock composition. The pseudosections demonstrate how chemical fractionation effects the peak metamorphic assemblage, prograde textures and the development of retrograde assemblages.  相似文献   

8.
Troctolitic gabbros from Valle Fértil and La Huerta Ranges, San Juan Province, NW‐Argentina exhibit multi‐layer corona textures between cumulus olivine and plagioclase. The corona mineral sequence, which varies in the total thickness from 0.5 to 1 mm, comprises either an anhydrous corona type I with olivine|orthopyroxene|clinopyroxene+spinel symplectite|plagioclase or a hydrous corona type II with olivine|orthopyroxene|amphibole|amphibole+spinel symplectite|plagioclase. The anhydrous corona type I formed by metamorphic replacement of primary olivine and plagioclase, in the absence of any fluid/melt phase at <840 °C. Diffusion controlled metamorphic solid‐state replacement is mainly governed by the chemical potential gradients at the interface of reactant olivine and plagioclase and orthopyroxene and plagioclase. Thus, the thermodynamic incompatibility of the reactant minerals at the gabbro–granulite transition and the phase equilibria of the coronitic assemblage during subsequent cooling were modelled using quantitative μMgO–μCaO phase diagrams. Mineral reaction textures of the anhydrous corona type I indicate an inward migration of orthopyroxene on the expense of olivine, while clinopyroxene+spinel symplectite grows outward to replace plagioclase. Mineral textures of the hydrous corona type II indicate the presence of an interstitial liquid trapped between cumulus olivine and plagioclase that reacts with olivine to produce a rim of peritectic orthopyroxene around olivine. Two amphibole types are distinguished: an inclusion free, brownish amphibole I is enriched in trace elements and REEs relative to green amphibole II. Amphibole I evolves from an intercumulus liquid between peritectic orthopyroxene and plagioclase. Discrete layers of green amphibole II occur as inclusion‐free rims and amphibole II+spinel symplectites. Mineral textures and geochemical patterns indicate a metamorphic origin for amphibole II, where orthopyroxene was replaced to form an inner inclusion‐free amphibole II layer, while clinopyroxene and plagioclase were replaced to form an outer amphibole+spinel symplectite layer, at <770 °C. Calculation of the possible net reactions by considering NCKFMASH components indicates that the layer bulk composition cannot be modelled as a ‘closed’ system although in all cases the gain and loss of elements within the multi‐layer coronas (except H2O, Na2O) is very small and the main uncertainties may arise from slight chemical zoning of the respective minerals. Local oxidizing conditions led to the formation of orthopyroxene+magnetite symplectite enveloping and/or replacing olivine. The sequence of corona reaction textures indicates a counter clockwise P–T path at the gabbro–granulite transition at 5–6.5 kbar and temperatures below 900 °C.  相似文献   

9.
The interpretation of whether a dated metamorphic zircon generation grew during the prograde, peak or retrograde stage of a metamorphic cycle is critical to geological interpretation. This study documents a case at Aktyuz metamorphic terrain, in the southern of Kokchetav‐North Tianshan belt, involving progressive metamorphic recrystallization of mafic rock to eclogite and associated behavior of zircon. Zircons in eclogites are mainly fine grains (5 to 20 μm), and preferentially concentrated with rutile/ilmenite. They also occur as individual grains or clusters in amphibole coronas of garnet. A few larger grains commonly preserve inherited cores and evidence of dissolution and metamorphic outgrowths. Zircon grains separated from amphibolites show inherited zircons with typically magmatic feature, although this become progressively blurred in response to resorption and recrystallization. Mineral inclusions represent epidote‐amphibolite facies in the prograde metamorphism, and the embayed boundary between recrystallized domains and inherited zircons suggest fluid/melt participation. The metamorphic domains are mainly simple overgrowth around the inherited cores or recrystallization domains. The absence of peak metamorphic mineral inclusions and steep pattern of MREE‐HREE indicate no sufficient garnet formed before the metamorphic zircon overgrowth. A tiny rim with homogeneously bright CL image can be distinguished in most zircons. Amphibole inclusions have similar compositions to those in the coronas of garnets, suggesting a retrograde metamorphic origin. The inherited zircon crystallized at 880‐730 Ma, revealing similar age range to the gneiss in Aktyuz area, whereas metamorphic zircon dates prograde metamorphism at 497.9 ±1.4 Ma. In this case, the bulk Zr budget in rocks will become locked into Zr‐bearing minerals during the mafic magma intrusion, when the inherited zircon melting and resorption. The texture shows that metamorphic zircon grew both in the prograde and retrograde stage, and Zr‐bearing magmatic minerals and rutile/ilmenite are by far the main source of Zr for the two stages, respectively.  相似文献   

10.
The phosphate and sulfate-phosphate minerals in the sillimanite-bearing rocks of the Kyakhta deposit are considered. The mineral assemblages of the high-Al rocks were formed during prograde and retrograde stages of metamorphism. The first stage is characterized by the formation of sillimanite, corundum, muscovite, quartz, rutile, titanohematite, magnetite, feldspar, biotite, lazulite, and wagnerite. The muscovite composition showed that sillimanite paragenesis was formed at temperatures above 510–600°C. According to oxygen isotope thermometry, the minimum metamorphic temperature for quartz and titanohematite is 690°C. Andalusite, diaspore, quartz, pyrophyllite, muscovite, and a wide range of phosphates and sulfate-phosphates crystallized during the retrograde stage. The decrease in temperature and increase in the water content led to the following sequence of mineral formation: Mg-Fe-Al-Ca-REE-rich phosphates (lazulite, scorzalite, augelite, apatite, and monazite) → Ca-Sr sulfate-phosphates (woodhouseite and svanbergite) → sulfate (barite) → Sr-Ca-Ba aluminophosphates (goyazite, crandallite, and gorceixite). The chemical compositions of phosphates and sulfate-phosphates minerals and their formation conditions are discussed.  相似文献   

11.
The paper presents data on the mineral assemblages and chemical composition of minerals in rocks from the eastern part of the Pana Massif, Kola Peninsula, and the results obtained by studying the amphibolization of rocks of this massif genetically related to metamorphism. The rocks contain four amphibole populations, which can be used as good indicators for metamorphic facies. The amphiboles show broad compositional variability. Their evaluated P-T crystallization conditions indicate that the prograde stage of the overprinted metamorphic processes occurred at temperatures increasing from 382 to 473°C and pressures from 1.7 to 4.3 kbar. The retrograde stage (biotitization, chloritization, silification, and carbonatization) took place at temperatures of about 370°C and pressures of approximately 1 kbar. The fluid regime of the metamorphic transforms was also controlled by the temperature: the fluids were oxidizing early in the course of the process and gradually became more reducing with decreasing temperature.  相似文献   

12.
Zircon is the best mineral to record the complex evolution history of ultrahigh-pressure (UHP) metamorphic rocks as mineralogical and geochemical tracers of UHP metamorphism are almost obliterated in matrix assemblages resulted from subsequent retrogression during exhumation. Zircons from Dabie–Sulu UHP rocks, including outcrop and core samples from drill holes ranging from 432 to 5158 m in depth contain abundant mineral inclusions of protolith, prograde, peak (UHP) and retrograde minerals in different domains; these minute inclusions were identified by laser Raman spectroscopy and/or electronic microprobe analysis. Systematic studies on inclusions in zircons from previous and present studies indicate that the Dabie–Sulu UHP terrane extends for >2000 km, is about 50 km wide, and has at least 10 km thick, probably the largest UHP terrane recognized in the world thus far. The internal structure of zircon revealed by cathodoluminescence (CL) imaging displays a distinct zonation, which comprises an inherited (magmatic or detrital) core, prograde, peak (UHP), and outmost retrograde domains, each with distinctive mineral inclusion assemblages. Low-pressure, igneous mineral inclusions are common in the inherited (magmatic or detrital) zircon cores. In contrast, quartz eclogite-facies inclusion assemblages occur in prograde domains, coesite eclogite-facies inclusion assemblages are preserved in UHP domains, and amphibolite-facies inclusion assemblages are enclosed in outmost retrograde rims. Parageneses and compositions of inclusion minerals preserved in distinct zircon domains were used to constrain the metamorphic PT path of many Dabie–Sulu UHP rocks. The results indicate that Neoproterozoic supracrustal rocks together with minor mafic-ultramafic rocks were subjected to a prograde subduction-zone metamorphism at 570–690 °C and 1.7–2.1 GPa, and UHP metamorphism at 750–850 °C and 3.4–4.0 GPa, following by rapid decompression to amphibolite-facies retrograde metamorphism at 550–650 °C and 0.7–1.05 GPa. Sensitive high-resolution ion microprobe (SHRIMP) U–Pb spot analyses of the zoned zircons show four discrete and meaningful ages of the Dabie–Sulu metamorphic evolution: (1) Neoproterozoic protolith ages (800–750 Ma); (2) 246–244 Ma for early-stage quartz eclogite-facies prograde metamorphism; (3) 235–225 Ma for UHP metamorphism; and (4) 215–208 Ma for late-stage amphibolite-facies retrogression. This indicates that Neoproterozoic voluminous igneous protoliths of orthogneiss in response to the breakup of Rodinia supercontinent, together with various sedimentary rocks, and minor mafic-ultramafic intrusive and extrusive rocks, were subjected to coeval Triassic subduction to mantle depths and exhumation during the collision between the South China Block and North China Block. The estimated subduction and exhumation rates for the Dabie–Sulu UHP terrane would be up to 4.7–9.3 km Myr?1 and 5.0–11.3 km Myr?1, respectively. The zonal distribution of mineral inclusions and the preservation of index UHP minerals such as coesite imply that zircon is the best mineral container for each metamorphic stage, particular for supracrustal rocks as their metamorphic evolution and UHP evidence have been almost or completely obliterated. Similar conclusions have been documented elsewhere for other UHP terranes.  相似文献   

13.
Summary The polymetamorphic evolution of metamorphosed Mesozoic ophiolitic rocks in NE Hungary was studied by microtextural and mineral chemical analyses of metagabbros and metabasalts. Both rock types preserved their original textures remarkably well. By contrast, magmatic minerals (especially clinopyroxene) were preserved only in the metagabbros. The original magmatic whole-rock and mineral chemical features had a strong influence on the formation and preservation of the various metamorphic assemblages as testified by the chemically different amphiboles (and other major minerals) formed in various microdomains. The calculated metamorphic P-T conditions are in part different for metabasalts and metagabbros. These results are in accordance with the observed petrographic features, among which the sequence of crystallisation of Na-amphibole and actinolite in the two rock types is most characteristic. Crystallisation of actinolite is followed by Na-amphibole in metabasalts, while Na-amphibole formed first in the metagabbros. Overall equilibrium conditions were not attained throughout the NE Hungarian Mesozoic ophiolite unit during Alpine metamorphic evolution. Additionally, various disequilibrium metamorphic assemblages with several generations of chemically complex amphiboles were formed even on the thin section scale. Various P-T paths during the tectonic evolution of the accretionary wedge were experienced by parts of the dismembered ophiolite sequence, which originally formed a coherent unit, and were brought back into close spatial relationship only during the post-metamorphic exhumation processes.  相似文献   

14.
L. G. Medaris  Jr. 《Lithos》1980,13(4):339-353
Core and rim compositions of minerals in garnet-bearing assemblages in the Lien peridotite define a retrograde metamorphic trend from 820° C, 28.1 kbar, to 645° C, 17.6 kbar. Eclogites in Basal Gneiss near the peridotite contain a record of prograde metamorphism which converges with the retrograde trend of the ultramafic rocks. The Lien peridotite appears to have been derived from the upper mantle under eclogite facies conditions and emplaced into unusually thick continental crust during a Caledonian eclogite facies metamorphic event.  相似文献   

15.
A detailed petrological analysis of the marble assemblages observed within the M2 metamorphic complex on Naxos is presented. Two distinct periods of mineral growth are documented; the first is associated with prograde M2 metamorphism and the second with retrograde M2 metamorphism occurring during ductile extensional thinning of the complex. The textural and miner-alogical characteristics and the carbon and oxygen isotope compositions of each generation are described, and the P-T-X CO 2 conditions at which these two mineral generations were stable, and the compositions of the fluids present during metamorphism are characterised. Whereas the low variance and stable isotope compositions of prograde siliceous dolomite assemblages are consistent with internally buffered fluid evolution, the retrograde mineral generation is shown to have grown as a result of the infiltration of a water-rich fluid phase that transported silica, Al2O3, Na2O and FeO into the host rocks. This observation, together with the stable isotope compositions of the retrograde calcite, and the fact that occurrences of veins of this type are limited to marbles in the highest grade areas (T>600° C) of the metamorphic complex, suggests that the fluids responsible for vein formation were generated during the crystallisation of melts as the metamorphic complex cooled from peak temperatures. The existence of this second generation of minerals has significant implications for previous studies of heat transport by fluid flow on Naxos, because many of the unusually low 18O compositions of pelites at high grades may be ascribable to the effects of interaction with retrograde M2 fluids, rather than with prograde fluids.  相似文献   

16.
Meta‐anorthosite bodies are typical constituents of the Neoproterozoic Eastern Granulites in Tanzania. The mineral assemblage (and accessory components) is made up of clinopyroxene, garnet, amphibole; scapolite, epidote, biotite, rutile, titanite, ilmenite and quartz. Within the feldspar‐rich matrix (70–90% plagioclase), mafic domains with metamorphic corona textures were used for P–T calculations. Central parts of these textures constitute high‐Al clinopyroxene – which is a common magmatic mineral in anorthosites – and is therefore assumed to be a magmatic relict. The clinopyroxene rims have a diopsidic composition and are surrounded by a garnet corona. Locally the pyroxene is surrounded by amphibole and scapolite suggesting that a mixed CO2–H2O fluid was present during their formation. Thermobarometric calculations give the following conditions for the metamorphic peak of the individual meta‐anorthosite bodies: Mwega: 11–13 kbar, 850–900 °C; Pare Mountains: 12–14 kbar, 850–900 °C; Uluguru Mountains: 12–14 kbar, 850–900 °C. The P–T evolution of these bodies was modelled using pseudosections. The amount and composition of the metamorphic fluid and <0.5 mol.% fluid in the bulk composition is sufficient to produce fluid‐saturated assemblages at 10 kbar and 800 °C. Pseudosection analysis shows that the corona textures most likely formed under fluid undersaturated conditions or close to the boundary of fluid saturation. The stabilities of garnet and amphibole are dependent on the amount of fluid present during their formation. Mode isopleths of these minerals change their geometry drastically between fluid‐saturated and fluid‐undersaturated assemblages. The garnet coronae developed during isobaric cooling following the metamorphic peak. The cooling segment is followed by decompression as indicated by the growth of amphibole and plagioclase. The estimated of the metamorphic fluid is ~0.3–0.5. Although the meta‐anorthosites have different formation ages (Archean and Proterozoic) they experienced the same Pan‐African metamorphic overprint with a retrograde isobaric cooling path. Similar P–T evolutionary paths are known from the hosting granulites. The presented data are best explained by a tectonic model of hot fold nappes that brought the different aged anorthosites and surrounding rocks together in the deep crust followed by an isobaric cooling history.  相似文献   

17.
深刻理解同位素在超高压变质及退变质过程中的地球化学行为对获得超高压变质岩准确并有明确意义的年龄值是非常重要的。对 Sm-Nd,Rb-Sr 同位素体系,只有变质矿物同位素体系达到平衡才能给出精确有意义的等时线年龄。研究表明,与副变质岩互层的细粒榴辉岩的高压变质矿物之间,或者强退变质岩石的退变质矿物之间,其 Nd,Sr 同位素可以达到平衡;然而高压变质矿物与退变质矿物之间 Nd,Sr 同位素不平衡。由于全岩样品总是含有数量不等的退变质矿物,因此石榴石 全岩 Sm-Nd 法或多硅白云母 全岩 Rh-Sr 法将有可能给出无地质意义的年龄。通常低温榴辉岩的高压变质矿物之间存在Nd 同位素不平衡。超高压变质岩多硅白云母所含过剩 Ar 主要源于榴辉岩原岩中角闪石在变质分解时释放出来的放射成因 Ar。因此,不含榴辉岩的花岗片麻岩多硅白云母基本不含过剩 Ar。对变质锆石成因的准确判断是正确理解锆石 U-Ph 年龄意义的关键。本文对不同成因锆石的判别标志及年龄意义做了总结,并指出将阴极发光图形,锆石痕量元素组成及矿物包裹体鉴定相结合是进行锆石成因鉴定的有效方法。高压变质或退变质增生锆石组成单一,是理想变质定年对象。然而变质重结晶锆石域常是重结晶锆石和继承晶质锆石的混合区,因而给出混合年龄。只有完全变质重结晶锆石才能给出准确变质时代。  相似文献   

18.
The study provides geological, structural, mineralogical, petrological, and geochronological evidence for polymetamorphic evolution of gneisses from the Garevka complex of the Yenisei Ridge. The results of the study provide significant insight into the geochemical behavior of major and trace elements in zoned garnet crystals and mineral inclusions formed during prograde and retrograde metamorphism of pelitic rocks. It was shown that the concentrations of Y and HREE in garnet decrease with increasing P and T and increase with decreasing pressure and temperature. The combined study of multicomponent chemical zoning patterns of coexisting minerals and metamorphic mineral reactions in metapelites was conducted. The results show that the main reason for a drastic increase in CaO content in garnets during collisional metamorphism is a mass exchange between garnet and plagioclase. The deviation from this trend, as indicated by the concurrent increase inthe grossular content of garnet and anorthite content of plagioclase, arises from the breakdown of epidote. The calculated metamorphic reactions, mass balance analysis, and changes in mineral chemistry during metamorphism reinforce the evidence for the isochemical character of processes with respect to most components of the system. The minimum volume of the system in which chemical exchange between reacting phases is balanced for all major and trace elements did not exceed ~ 1 mm3. The total HREE balance requires a greater reaction volume (up to ~ 8 mm ) involved in the redistribution of these elements, which provide evidence for their relatively higher mobility during metamorphism relative to other rare earth elements. The specific distribution and quite substantial mass transport of HREE are controlled by heterovalent isomorphic substitution between these elements and CaO in garnet.  相似文献   

19.
在滇西鲁甸地区金沙江结合带新发现退变榴辉岩,其在野外呈透镜体状产于石榴子石白云母石英片岩中.利用电子探针及激光拉曼分析发现石榴子石和锆石中残留绿辉石包体.石榴子石及基质中的白云母为多硅白云母(Si(p.f.u)=3.27~3.53),指示岩石经历了高压变质作用过程.石榴子石发育进变质生长成分环带.岩相学及矿物化学特征显示,退变榴辉岩大致经历了进变质角闪岩相、峰期榴辉岩相、早期退变质以及晚期强退变这4个世代矿物组合,各阶段典型的矿物组合依次为Grt+AmpI+Qtz、Grt+Omp+Rt+Qtz+Phe、Pl+Di+AmpⅡ+Ilm+Spn+Qtz、AmpⅢ+Pl+Czo+Ilm+Qtz.该新发现对金沙江结合带复杂的变质演化P-T-t轨迹样式及年代格架、以金沙江洋为代表的整个西南三江地区古特提斯洋-陆俯冲-碰撞-造山的复杂构造演化历史以及微陆块的拼贴机制等关键科学问题的解决提供了极为重要的素材和更多的约束,具有重要的科学意义.   相似文献   

20.
利用阴极发光仪对一些前寒武纪变质岩(河北,内蒙等地)和西藏及其它地区的后寒武变质岩,以及不同时代和成因的花岗岩类岩石的样品进行了观察。阴极发光与某些过渡元素的含量有关,可以揭示岩石的构造,间接地反映矿物化学成分的特点。本文介绍了阴极发光在变质岩和花岗岩类岩石的以下几个方面的应用:1) 间接地确定变质级;2) 揭示原岩的变余构造,3) 鉴别细粒和发光矿物;4) 研究矿物之间的反应;5) 重建变形构造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号