首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 435 毫秒
1.
The recently discovered Baizhangyan skarn‐porphyry type W–Mo deposit in southern Anhui Province in SE China occurs near the Middle–Lower Yangtze Valley polymetallic metallogenic belt. The deposit is closely temporally‐spatially associated with the Mesozoic Qingyang granitic complex composed of g ranodiorite, monzonitic g ranite, and alkaline g ranite. Orebodies of the deposit occur as horizons, veins, and lenses within the limestones of Sinian Lantian Formation contacting with buried fine‐grained granite, and diorite dykes. There are two types of W mineralization: major skarn W–Mo mineralization and minor granite‐hosted disseminated Mo mineralization. Among skarn mineralization, mineral assemblages and cross‐cutting relationships within both skarn ores and intrusions reveal two distinct periods of mineralization, i.e. the first W–Au period related to the intrusion of diorite dykes, and the subsequent W–Mo period related to the intrusion of the fine‐grained granite. In this paper, we report new zircon U–Pb and molybdenite Re–Os ages with the aim of constraining the relationships among the monzonitic granite, fine‐grained granite, diorite dykes, and W mineralization. Zircons of the monzonitic granite, the fine‐grained granite, and diorite dykes yield weighted mean U–Pb ages of 129.0 ± 1.2 Ma, 135.34 ± 0.92 Ma and 145.3 ± 1.7 Ma, respectively. Ten molybdenite Re–Os age determinations yield an isochron age of 136.9 ± 4.5 Ma and a weighted mean age of 135.0 ± 1.2 Ma. The molybdenites have δ34S values of 3.6‰–6.6‰ and their Re contents ranging from 7.23 ppm to 15.23 ppm. A second group of two molybdenite samples yield ages of 143.8 ± 2.1 and 146.3 ± 2.0 Ma, containing Re concentrations of 50.5–50.9 ppm, and with δ34S values of 1.6‰–4.8‰. The molybdenites from these two distinct groups of samples contain moderate concentrations of Re (7.23–50.48 ppm), suggesting that metals within the deposit have a mixed crust–mantle provenance. Field observation and new age and isotope data obtained in this study indicate that the first diorite dyke‐related skarn W–Au mineralization took place in the Early Cretaceous peaking at 143.0–146.3 Ma, and was associated with a mixed crust–mantle system. The second fine‐grained granite‐related skarn W–Mo mineralization took place a little later at 135.0–136.9 Ma, and was crust‐dominated. The fine‐grained granite was not formed by fractionation of the Qingyang monzonitic granite. This finding suggests that the first period of skarn W–Au mineralization in the Baizhangyan deposit resulted from interaction between basaltic magmas derived from the upper lithospheric mantle and crustal material at 143.0–146.3 and the subsequent period of W–Mo mineralization derived from the crust at 135.0–136.9 Ma.  相似文献   

2.
A granite‐related scheelite deposit has been recently discovered in the Wuyi metallogenic belt of southeast China. The veinlet–disseminated scheelite occurs mainly in the inner and outer contact zones of the porphyritic biotite granite, spatially associated with potassic feldspathization and silicification. Re–Os dating of molybdenite intergrowths with scheelite yield a well‐constrained isochron age of 170.4 ± 1.2 Ma, coeval with the LA–MC–ICP–MS concordant zircon age of porphyritic biotite granite (167.6 ± 2.2 Ma), indicating that the Lunwei W deposit was formed in the Middle Jurassic (~170 Ma). We identify three stages of ore formation (from early to late): (I) the quartz–K‐feldspar–scheelite stage; (II) the quartz–polymetallic sulfide stage; and (III) the quartz–carbonate stage. Based on petrographic observations and microthermometric criteria, the fluid inclusions in the scheelite and quartz are determined to be mainly aqueous two‐phase (liquid‐rich and gas‐rich) fluid inclusions, with minor gas‐pure and CO2‐bearing fluid inclusions. Ore‐forming fluids in the Lunwei W deposit show a successive decrease in temperature and salinity from Stage I to Stage III. The homogenization temperature decreases from an average of 299 °C in Stage I, through 251 °C in Stage II, to 212 °C in Stage III, with a corresponding change in salinity from an average of 5.8 wt.%, through 5.2 wt.%, to 3.4 wt.%. The ore‐forming fluids have intermediate to low temperatures and low salinities, belonging to the H2O–NaCl ± CO2 system. The δ18OH2O values vary from 1.8‰ to 3.3‰, and the δDV‐SMOW values vary from –66‰ to –76‰, suggesting that the ore‐forming fluid was primarily of magmatic water mixed with various amounts of meteoric water. Sulfur isotope compositions of sulfides (δ34S ranging from –1.1‰ to +2.4‰) and Re contents in molybdenite (1.45–19.25 µg/g, mean of 8.97 µg/g) indicate that the ore‐forming materials originated mainly in the crust. The primary mechanism for mineral deposition in the Lunwei W deposit was a decrease in temperature and the mixing of magmatic and meteoric water. The Lunwei deposit can be classified as a porphyry‐type scheelite deposit and is a product of widespread tungsten mineralization in South China. We summarize the geological characteristics of typical W deposits (the Xingluokeng, Shangfang, and Lunwei deposits) in the Wuyi metallogenic belt and suggest that porphyry and skarn scheelite deposits should be considered the principal exploration targets in this area.  相似文献   

3.
The Nuri Cu‐W‐Mo deposit is located in the southern subzone of the Cenozoic Gangdese Cu‐Mo metallogenic belt. The intrusive rocks exposed in the Nuri ore district consist of quartz diorite, granodiorite, monzogranite, granite porphyry, quartz diorite porphyrite and granodiorite porphyry, all of which intrude in the Cretaceous strata of the Bima Group. Owing to the intense metasomatism and hydrothermal alteration, carbonate rocks of the Bima Group form stratiform skarn and hornfels. The mineralization at the Nuri deposit is dominated by skarn, quartz vein and porphyry type. Ore minerals are chalcopyrite, pyrite, molybdenite, scheelite, bornite and tetrahedrite, etc. The oxidized orebodies contain malachite and covellite on the surface. The mineralization of the Nuri deposit is divided into skarn stage, retrograde stage, oxide stage, quartz‐polymetallic sulfide stage and quartz‐carbonate stage. Detailed petrographic observation on the fluid inclusions in garnet, scheelite and quartz from the different stages shows that there are four types of primary fluid inclusions: two‐phase aqueous inclusions, daughter mineral‐bearing multiphase inclusions, CO2‐rich inclusions and single‐phase inclusions. The homogenization temperature of the fluid inclusions are 280°C–386°C (skarn stage), 200°C–340°C (oxide stage), 140°C–375°C (quartz‐polymetallic sulfide stage) and 160°C–280°C (quartz‐carbonate stage), showing a temperature decreasing trend from the skarn stage to the quartz‐carbonate stage. The salinity of the corresponding stages are 2.9%–49.7 wt% (NaCl) equiv., 2.1%–7.2 wt% (NaCl) equiv., 2.6%–55.8 wt% (NaCl) equiv. and 1.2%–15.3 wt% (NaCl) equiv., respectively. The analyses of CO2‐rich inclusions suggest that the ore‐forming pressures are 22.1 M Pa–50.4 M Pa, corresponding to the depth of 0.9 km–2.2 km. The Laser Raman spectrum of the inclusions shows the fluid compositions are dominated in H2O, with some CO2 and very little CH4, N2, etc. δD values of garnet are between ?114.4‰ and ?108.7‰ and δ18OH2O between 5.9‰ and 6.7‰; δD of scheelite range from ?103.2‰ to ?101.29‰ and δ18OH2O values between 2.17‰ and 4.09‰; δD of quartz between ?110.2‰ and ?92.5‰ and δ18OH2O between ?3.5‰ and 4.3‰. The results indicate that the fluid came from a deep magmatic hydrothermal system, and the proportion of meteoric water increased during the migration of original fluid. The δ34S values of sulfides, concentrated in a rage between ?0.32‰ to 2.5‰, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The characters of fluid inclusions, combined with hydrogen‐oxygen and sulfur isotopes data, show that the ore‐forming fluids of the Nuri deposit formed by a relatively high temperature, high salinity fluid originated from magma, which mixed with low temperature, low salinity meteoric water during the evolution. The fluid flow through wall carbonate rocks resulted in the formation of layered skarn and generated CO2 or other gases. During the reaction, the ore‐forming fluid boiled and produced fractures when the pressure exceeded the overburden pressure. Themeteoric water mixed with the ore‐forming fluid along the fractures. The boiling changed the pressure and temperature, oxygen fugacity, physical and chemical conditions of the whole mineralization system. The escape of CO2 from the fluid by boiling resulted in scheelite precipitation. The fluid mixing and boiling reduced the solubility of metal sulfides and led the precipitation of chalcopyrite, molybdenite, pyrite and other sulfide.  相似文献   

4.
The Nuri Cu–W–Mo deposit is a large newly explored deposit located at the southern margin of the Gangdese metallogenic belt. There are skarn and porphyry mineralizations in the deposit, but the formation age of the skarn and the relationship between the skarn and porphyry mineralizations are controversial. Constraints on the precise chronology are of fundamental importance for understanding the ore genesis of the Nuri deposit. To determine the formation age of the skarn, we chose garnets and whole rock skarn samples for Sm–Nd dating. We also selected biotite associated with potassic alteration for Ar–Ar dating to confirm the ore formation age of the porphyry mineralizations. The Sm–Nd ages of the skarn are 25.73 ± 0.92 – 25.2 ± 3.9 Ma, and the age of the potassic alteration is 24.37 ± 0.32 Ma. The results indicate that the skarn and porphyry mineralization are coeval and belong to a unified magmatic hydrothermal system. Combined with a previous molybdenite Re–Os age, we think that the hydrothermal activity of the Nuri deposit lasted for 1.2 – 2.1 Myr, which indicates that the mineralization formed rapidly. The chronologic results indicate that the Nuri deposit formed in the period of transformation from compression to extension in the late collisional stage of the collision between the Indian and Eurasian continents.  相似文献   

5.
The Middle–Lower Yangtze Region (MLYR) is one of the most important metallogenic belts in China that hosts numerous Cu–Fe–Au–S deposits. The Hucunnan deposit in the central part of MLYR is a newly discovered porphyry–skarn‐type copper–molybdenum deposit during recent drilling exploration. Laser ablation ICP–MS analysis carried out in this study yields U–Pb isotopic ages of 137.5 ± 1.2 Ma for the Cu–Mo bearing granodiorite rock and 125.0 ± 1.5 Ma for the Cu‐bearing quartz diorites. The Re–Os isotopic dating of seven molybdenite samples gave an isochron age of 139.5 ± 1.1 Ma, suggesting a syn‐magma mineralization of molybdenite in the Hucunnan deposit. Since porphyry‐type molybdenum deposits are rare in central MLYR, the discovery of the Hucunnan deposit suggests possible molybdenite mineralizations in the deep places of the Cu–Mo bearing granitoids. In addition, the U–Pb isotopic age of 125 Ma for the Cu‐bearing quartz diorites implies a new Cu mineralization period for the MLYR that was rarely reported by previous studies.  相似文献   

6.
安徽桂林郑钼钨矿床位于江南钨矿带北部,是目前区内唯一钼储量达到大型的钼钨矿床。本文在对该矿床地质特征和已有成果总结基础上,详细观察了各代表性矿化蚀变样品的岩相学特征,提出该矿床具镁质矽卡岩矿床特征,是桂林郑花岗斑岩熔体与奥陶系白云质灰岩地层交代的产物。矿石类型可分为靠近岩体(100m)浸染状矿石和远离岩体( 100m)的条带状矿石,分别赋存在接触交代矽卡岩和层控矽卡岩中。桂林郑矿床的矿石矿物为富钼白钨矿(钼钙矿-白钨矿系列),可分为三个世代,分别形成于无水矽卡岩阶段(Sch-Ⅰ)和含水矽卡岩-氧化物阶段(Sch-Ⅱ和Sch-Ⅲ),辉钼矿仅在浸染状矿石富钼白钨矿(Sch-Ⅲ)边部少量发育。不同矿石类型、不同世代富钼白钨矿的电子探针成分分析显示,富钼白钨矿的钼含量(MoO_3%)在5.75%~71.02%之间,均值为46.00%(n=224),总体具有超常富钼的特点;从无水矽卡岩阶段到含水矽卡岩-氧化物阶段(早→晚)、从浅部的条带状矿石到深部的浸染状矿石(浅→深),富钼白钨矿MoO_3含量有降低趋势。桂林郑钼钨矿床是首个以富钼白钨矿为主要矿石矿物的钼-多金属矿床,这一特殊钼钨矿床的发现深化了矽卡岩钼钨矿床的成因认识,同时对江南钨矿带内区域成矿规律与找矿勘探工作的推进提供了依据。  相似文献   

7.
The Xiaoxinancha Au–Cu deposit is located at the eastern segment of the Tianshan–Xingmeng orogenic belt in northeast China. The deposit includes porphyry Au–Cu orebodies, veined Au–Cu orebodies and veined Mo mineralizations. All of them occur within the diorite intrusion. The Late Permian diorite, Late Triassic granodiorite, Early Cretaceous granite and granite porphyry are developed in the ore area. The studies on geological features show that the porphyry Au–Cu mineralization is related to the Late Permian diorite intrusion. New geochronologic data for the Xiaoxinancha porphyry Au–Cu deposit yield Permian crystallization zircon U–Pb age of 257 ± 3 Ma for the diorite that hosts the Au–Cu mineralization. Six molybdenite samples from quartz + molybdenite veins imposed on the porphyry Au–Cu orebodies yield an isochron age of 110.3 ± 1.5 Ma. The ages of the molybdenites coeval to zircon ages of the granite within the errors suggest that the Mo mineralization was genetically related to the Early Cretaceous granite intrusion. The formation of the diorite and the related Au–Cu mineralization were caused by the partial melting of the subduction slab during the Late Palaeozoic palaeo‐Asia Ocean tectonic stage. The Re contents and Re–Os isotopic data indicate that the crustal resource is dominated for the Mo mineralization during the Cretaceous extensional setting caused by the roll‐back of the palaeo‐Pacific plate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Mesozoic ore deposits in Zhejiang Province, Southeast China, are divided into the northwestern and southeastern Zhejiang metallogenic belts along the Jiangshan–Shaoxing Fault. The metal ore deposits found in these belts are epithermal Au–Ag deposits, hydrothermal‐vein Ag–Pb–Zn deposits, porphyry–skarn Mo (Fe) deposits, and vein‐type Mo deposits. There is a close spatial–temporal relationship between the Mesozoic ore deposits and Mesozoic volcanic–intrusive complexes. Zircon U–Pb dating of the ore‐related intrusive rocks and molybdenite Re–Os dating from two typical deposits (Tongcun Mo deposit and Zhilingtou Au–Ag deposit) in the two metallogenic belts show the early and late Yanshanian ages for mineralization. SIMS U–Pb data of zircons from the Tongcun Mo deposit and Zhilingtou Au–Ag deposit indicate that the host granitoids crystallized at 169.7 ± 9.7 Ma (2σ) and 113.6 ± 1 Ma (2σ), respectively. Re–Os analysis of six molybdenite samples from the Tongcun Mo deposit yields an isochron age of 163.9 ± 1.9 Ma (2σ). Re–Os analyses of five molybdenite samples from the porphyry Mo orebodies of the Zhilingtou Au‐Ag deposit yield an isochron age of 110.1 ± 1.8 Ma (2σ). Our results suggest that the metal mineralization in the Zhejiang Province, southeast China formed during at least two stages, i.e., Middle Jurassic and Early Cretaceous, coeval with the granitic magmatism.  相似文献   

9.
豆浩然  张文兰  王汝成  陈文迪 《地质学报》2018,92(11):2269-2300
牛塘界钨矿床是桂北地区苗儿山—越城岭岩体南部的一个大型钨矿床,与矿化密切相关的花岗岩为已绿泥石化的中细粒白云母花岗岩。对花岗岩进行了岩石地球化学研究,认为该岩体为高分异、高演化铝过饱和富钨花岗岩;对岩体中锆石进行了U- Pb定年分析,获得成岩年龄为410±4.9Ma;对与白钨矿共生的磷灰石进行了原位U- Pb定年,测得成矿年龄为418±37Ma,两组年龄数据表明,牛塘界钨矿床的成矿花岗岩及成矿作用都属加里东期。 本文还对牛塘界钨矿床的矿石进行了系统的研究,首先,根据蚀变类型划分出三种不同类型的矿石:矽卡岩化矿石、绿泥石化矿石及石英脉(块)型矿石;其次,根据三种矿石的特征划分出三个不同的成矿阶段,即三种矿石的形成与不同的成矿阶段相对应:矽卡岩化阶段、石英-硫化物阶段及晚期硅化-碳酸盐化阶段;第三,对各成矿阶段形成的白钨矿进行了原位微量元素分析,根据白钨矿中Mo含量的变化及白钨矿REE配分曲线中Eu的异常,阐释了成矿环境氧逸度的变化;根据白钨矿中微量元素Na和Nb含量的变化,结合白钨矿REE配分曲线特征,揭示了REE置换进入白钨矿的机理及成矿流体性质的演化趋势;第四,根据白钨矿氧同位素的分析结果,得出成矿流体为岩浆水混入部分经地层循环的大气水;第五,对成矿母岩中成矿元素W的分析结果表明,牛塘界钨矿成矿物质来源于成矿母岩。因此牛塘界钨矿床其成矿物质来源于矿区内高度分异演化的花岗岩,属加里东期晚期的产物。  相似文献   

10.
Xihuashan tungsten deposit is one of the earliest explored tungsten deposits in southeastern China. It is a vein type deposit genetically associated with the Xihuashan granite pluton. Here we report new dating and zircon geochemistry results. Re–Os isotopic dating for molybdenite intergrowth with wolframite in the oldest generation of the Xihuashan pluton yielded an isochron age of 157.0 ± 2.5 Ma (2σ). Zircon U–Pb laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) dating shows that the pluton crystallized at 155.7 ± 2.2 Ma (2σ). This age is similar to the molybdenite Re–Os age for the ore deposit within error. This, together with published data, suggests that the major W(Mo)‐Sn mineralization occurred between 160–150 Ma in southeastern China. These deposits constitute a major part of the magmatic‐metallogenic belt of eastern Nanlin. The lower Re content in molybdenite of the Xihuashan tungsten deposit shows crustal origin for the ore‐forming material. The limited direct contributions from the subducting slab for the tungsten mineralization in the Nanling region suggest a change of the style of the paleo‐Pacific plate beneath southeastern China.  相似文献   

11.
湖南瑶岗仙矽卡岩型白钨矿床成矿流体演化特征研究   总被引:1,自引:1,他引:0  
湖南瑶岗仙超大型钨矿床位于南岭成矿带中段,主要由石英脉型黑钨矿矿脉和矽卡岩型白钨矿矿体组成.前人对瑶岗仙石英脉型黑钨矿矿体开展了较为详细研究,但对矽卡岩型白钨矿的研究则相对较少,有关其矿体特征、成矿过程及其与石英脉型矿化的成因联系尚不清楚.本文在矿床地质研究基础上,将瑶岗仙矽卡岩型钨矿床分为早期石榴子石-透辉石-白钨矿...  相似文献   

12.
The Lakange porphyry Cu–Mo deposit within the Gangdese metallogenic belt of Tibet is located in the southern–central part of the eastern Lhasa block, in the Tibetan Tethyan tectonic domain. This deposit is one of the largest identified by a joint Qinghai–Tibetan Plateau geological survey project undertaken in recent years. Here, we present the results of the systematic logging of drillholes and provide new petrological, zircon U–Pb age, and molybdenite Re–Os age data for the deposit. The ore‐bearing porphyritic granodiorite contains elevated concentrations of silica and alkali elements but low concentrations of MgO and CaO. It is metaluminous to weakly peraluminous and has A/CNK values of 0.90–1.01. The samples contain low total REE concentrations and show light REE/heavy REE (LREE/HREE) ratios of 17.51–19.77 and (La/Yb)N values of 29.65–41.05. The intrusion is enriched in the large‐ion lithophile elements (LILE) and depleted in the HREE and high field‐strength elements (HFSE). The ore‐bearing porphyritic granodiorite yielded a Miocene zircon U–Pb crystallization age of 13.58 ± 0.42 Ma, whereas the mineralization within the Lakange deposit yielded Miocene molybdenite Re–Os ages of 13.20 ± 0.20 and 13.64 ± 0.21, with a weighted mean of 13.38 ± 0.15 Ma and an isochron age of 13.12 ± 0.44 Ma. This indicates that the crystallization and mineralization of the Lakange porphyry were contemporaneous. The ore‐bearing porphyritic granodiorite yielded zircon εHf(t) values between ?3.99 and 4.49 (mean, ?0.14) and two‐stage model ages between 1349 and 808 Myr (mean, 1103 Myr). The molybdenite within the deposit contains 343.6–835.7 ppm Re (mean, 557.8 ppm). These data indicate that the mineralized porphyritic granodiorite within the Lakange deposit is adakitic and formed from parental magmas derived mainly from juvenile crustal material that partly mixed with older continental crust during the evolution of the magmas. The Lakange porphyry Cu–Mo deposit and numerous associated porphyry–skarn deposits in the eastern Gangdese porphyry copper belt (17–13 Ma) formed in an extensional tectonic setting during the India–Asia continental collision.  相似文献   

13.
The Guposhan–Huashan district is an important W–Sn–Sb–Zn–(Cu) metallogenic area in South China. It is located in the middle‐west segment of the Nanling Range. Granitoids in the Guposhan–Huashan district possess certain properties of A‐type or I‐type granites. The W–Sn–Sb–Zn mineralization in the district is closely associated with magma emplacement. Two igneous biotite and seven hydrothermal muscovite samples from skarn, veins and greisenization ores were analyzed by Ar–Ar methods. Two igneous biotite samples from fine‐grained quartz monzodiorite and fine‐grained biotite granite show plateau ages of 168.7 ± 1.9 Ma and 165.0 ± 1.1 Ma, respectively. Seven hydrothermal muscovite samples from ores yield plateau ages as two groups: 165 Ma to 160 Ma and 104 Ma to 100 Ma. These data suggest that the emplacement of fine‐grained granitoids in this district is coeval with the main phase magma emplacement, different from previous studies. The W–Sn–Sb–Zn mineralization took place in two stages, i.e. the Middle–Late Jurassic and early Cretaceous. W–Sn mineralization in the Guposhan–Huashan district is closely related to the magmatism, which was strongly influenced by underplating of asthenospheric mantle along trans‐lithospheric deep faults and related fractures.  相似文献   

14.
The Ga'erqiong‐Galale skarn–porphyry copper–gold ore‐concentrated area is located in the western part of the Bangong‐Nujiang suture zone north of the Lhasa Terrane. This paper conducted a systematic study on the magmatism and metallogenic effect in the ore‐concentrated area using techniques of isotopic geochronology, isotopic geochemistry and lithogeochemistry. According to the results, the crystallization age of quartz diorite (ore‐forming mother rock) in the Ga'erqiong deposit is 87.1 ± 0.4 Ma, which is later than the age of granodiorite (ore‐forming mother rock) in the Galale deposit (88.1 ± 1.0 Ma). The crystallization age of granite porphyry (GE granite porphyry) in the Ga'erqiong deposit is 83.2 ± 0.7 Ma, which is later than the age of granite porphyry (GL granite porphyry) in the Galale deposit (84.7 ± 0.8 Ma).The quartz diorite, granodiorite, GE granite porphyry and GL granite porphyry both main shows positive εHf(t) values, suggesting that the magmatic source of the main intrusions in the ore‐concentrated area has the characteristics of mantle source region. The Re–Os isochron age of molybdenite in the Ga'erqiong district is 86.9 ± 0.5 Ma, which is later than the mineralization age of the Galale district (88.6 ± 0.6 Ma). The main intrusive rocks in the ore‐concentrated area have similar lithogeochemical characteristics, for they both show the relative enrichment in large‐ion lithophile elements(LILE: Rb, Ba, K, etc.), more mobile highly incompatible lithophile elements(HILE: U, Th) and relatively depleted in high field strength elements (HFSE: Nb, Ta, Zr, Hf, etc.), and show the characteristics of magmatic arc. The studies on the metal sulfides' S and Pb isotopes and Re content of molybdenite indicate that the metallogenic materials of the deposits in the ore‐concentrated area mainly come from the mantle source with minor crustal source contamination. Based on the regional tectonic evolution process, this paper points out that the Ga'erqiong‐Galale copper–gold ore‐concentrated area is the typical product of the Late Cretaceous magmatism and metallogenic event in the collision stage of the Bangong‐Nujiang suture zone.  相似文献   

15.
孙康  曹毅  张伟  赵洋 《现代地质》2021,35(5):1371-1379
安徽青阳铜矿里钼多金属矿床是长江中下游成矿带内近年来新发现的一个夕卡岩型钼多金属矿床。对该矿床的地质特征和流体包裹体特征进行了详细研究,探讨了流体来源与演化过程。基于脉体穿插和矿物交代关系将铜矿里矿床的成矿过程划分为早期夕卡岩、晚期夕卡岩、石英辉钼矿、石英多金属硫化物和碳酸盐矿物5个阶段。显微观察表明铜矿里矿床的流体包裹体类型主要为富液相包裹体、富气相包裹体和含子晶三相包裹体。显微测温结果显示,早期成矿流体具有高温、中高盐度的特征,而晚期成矿流体具有低温、低盐度的特征。结合已有的氢、氧同位素数据,表明铜矿里矿床早期热液为岩浆热液,晚期有大气水加入。石英辉钼矿阶段石英中出现富液相、含子晶三相和富气相包裹体共存的现象,且这些包裹体均一温度相近,但均一方式截然不同,表明流体沸腾作用可能是导致铜矿里钼多金属矿床中钼元素沉淀的主要机制。  相似文献   

16.
The Dawan Mo–Zn–Fe deposit located in the Northern Taihang Mountains in the middle of the North China Craton (NCC) contains large Mo‐dominant deposits. The mineralization of the Dawan Mo–Zn–Fe deposit is associated with the Mesozoic Wanganzhen granitoid complex and is mainly hosted within Archean metamorphic rocks and Proterozoic–Paleozoic dolomites. Rhyolite porphyry and quartz monzonite both occur in the ore field and potassic alteration, strong silicic–phyllic alteration, and propylitic alteration occur from the center of the rhyolite porphyry outward. The Mo mineralization is spacially related to silicic and potassic alteration. The Fe orebody is mainly found in serpentinized skarn in the external contact zone between the quartz monzonite and dolomite. Six samples of molybdenite were collected for Re–Os dating. Results show that the Re–Os model ages range from 136.2 Ma to 138.1 Ma with an isochron age of 138 ± 2 Ma (MSWD = 1.2). U–Pb zircon ages determined by laser ablation inductively coupled plasma mass spectrometry yield crystallization ages of 141.2 ± 0.7 (MSWD = 0.38) and 130.7 ± 0.6 Ma (MSWD = 0.73) for the rhyolite porphyry and quartz monzonite, respectively. The ore‐bearing rhyolite porphyry shows higher K2O/Na2O ratios, ranging from 58.0 to 68.7 (wt%), than those of quartz monzonite. All of the rock samples are classified in the shoshonitic series and characterized by enrichment in large ion lithophile elements; depletion in Mg, Fe, Ta, Ni, P, and Y; enrichment in light rare earth elements with high (La/Yb)n ratios. Geochronology results indicate that skarn‐type Fe mineralization associated with quartz monzonite (130.7 ± 0.6 Ma) formed eight million years later than Mo and Zn mineralization (138 ± 2 Ma) in the Dawan deposit. From Re concentrations in molybdenite and previously presented Pb and S isotope data, we conclude that the ore‐forming material of the deposit was derived from a crust‐mantle mixed source. The porphyry‐skarn type Cu–Mo–Zn mineralization around the Wanganzhen complex is related to the primary magmatic activity, and the skarn‐type Fe mineralization is formed at the late period magmatism. The Dawan Mo–Zn–Fe porphyry‐skarn ores are related to the magmatism that was associated with lithospheric thinning in the NCC.  相似文献   

17.
The Huangsha-Tieshanlong quartz-vein tungsten polymetallic ore deposit, located in the northern Pangushan-Tieshanlong tungsten ore field in eastern Ganxian-Yudu prospecting areas of the Yushan metallogenic belt, is a well-known tungsten deposit in southern Jiangxi province, China. SHRIMP-determined dating of zircons from the Tieshanlong granite yields ages of 168.1±2.1 Ma (n=11, MSWD=1.3). Rhenium and osmium isotopic dating of molybdenite from the Huangsha quartz-vein tungsten deposit determined by ICP-MS yields a weighted average ages of 153±3 Ma and model ages of 150.2±2.1 Ma – 155.4±2.3 Ma. The age of the Huangsha tungsten deposit is 10 to 15 Ma later than the Tieshanlong granite, which shows that there might have been another early Late Jurassic magmatic activity between 150 and 160 Ma, a process which is closely related with tungsten mineralization in this area. The Tieshanlong granite, the Huangsha tungsten deposit and the Pangushan-Tieshanlong ore field were all formed around 150–170 Ma, belonging to products of a Mesozoic second large-scale mineralization. According to the collected molybdenite Re-Os dating results in southern Jiangxi province, the timescale of the associated molybdenum mineralization is 2–6 Ma in the tungsten deposit and the timescale of independent molybdenum mineralization is 1–4 Ma, implying the complexity of tungsten mineralization. Times of molybdenum mineralization are mainly concentrated in the Yanshanian, which includes three stages of 133~135 Ma, 150–162 Ma, and 166–170 Ma, respectively. The 150–162 Ma-stage is in accordance with ages of large-scale W-Sn mineralization, which is mainly molybdenum mineralization characterized by associated molybdenum mineralization with development of an even greater-intensity independent molybdenum mineralization. Independent molybdenum mineralization occurred before and after large-scale W-Sn mineralization, which indicates that favorable prospecting period for molybdenum may be in Cretaceous and early late Jurassic.  相似文献   

18.
江西省香炉山钨矿是江南古陆斑岩-矽卡岩钨多金属成矿带内具有代表性的早白垩世矽卡岩型钨矿床。矿床的WO3储量约为22万t,平均品位约为0.641%。矿床的矿体以似层状和透镜状产出于燕山期黑云母花岗岩和寒武系杨柳岗组泥灰岩的接触带。本文在详细厘定成矿阶段矿物组合的基础上,对不同阶段产出的不同世代的白钨矿开展了原位LA-ICP-MS微量元素的系统测试。香炉山钨矿床可以划分为四个成矿阶段:矽卡岩阶段、退化蚀变阶段、石英-硫化物-白钨矿阶段和方解石-萤石阶段。根据各阶段矿物组合及与白钨矿共生关系,本次研究划分出四个阶段六个世代的白钨矿,分别为阶段Ⅰ白钨矿(产于云英岩中)、阶段Ⅱa和阶段Ⅱb白钨矿(产于退化蚀变岩)、阶段Ⅲa和阶段Ⅲb白钨矿(产于硫化物条带,Ⅲa为白钨矿核部,Ⅲb为白钨矿边部)和阶段Ⅳ白钨矿(产于石英-硫化物-白钨矿脉)。白钨矿的球粒陨石标准化稀土元素配分图有下凹型(阶段Ⅰ、阶段Ⅱa、阶段Ⅲb)、右倾型(阶段Ⅳ)和下凹右倾型(阶段Ⅲa)。各阶段白钨矿的微量元素特征表明,香炉山钨矿床白钨矿的∑REE含量高于世界上绝大部分脉状金和钨矿床,也高于我国华南地区钨多金属矿床。白钨矿中REE3+与Ca2+主要的替代机制为3Ca2+=2REE3++Ca(为一个Ca空位)。白钨矿的REE和Eu异常由流体决定,可以用来示踪流体的演化过程,Eu的活动主要以Eu2+为主。香炉山钨矿床为还原性矿床,不同阶段白钨矿中Mo等元素含量的变化指示流体演化各阶段的还原性强弱有波动。不同阶段白钨矿的稀土和微量元素特征有较大变化。香炉山白钨矿稀土元素的超常富集原因和机制仍有待进一步研究和探讨。  相似文献   

19.
The Woxi Au–Sb–W deposit in the western Hunan Province, China, is of hydrothermal vein type characterized by a rare mineral assemblage of stibnite, scheelite and native gold, of which gold fineness ranges from 998.6 to 1000. The mineralization sequence observed in the deposit is, from early to late, coarse‐grained pyrite – scheelite – stibnite – Pb–Sb–S minerals – sphalerite (+ cubanite) – fine‐grained pyrite. Native gold may have precipitated with scheelte. Microthermometric and LA–ICP–MS analyses of fluid inclusions in scheelite, quartz associated with scheelite and stibnite and barren quartz clarified that there may be at least three types of hydrothermal fluids during the vein formation in the Woxi deposit. Scheelite and native gold precipitated from the fluid of high temperature and salinity with high concentrations of metal elements, followed by stibnite precipitation. The later fluid of the highest temperature and salinity with low concentrations of the elements yielded the sphalerite mineralization. The latest fluid of low temperature and salinity with low concentrations of the elements is observed mainly in barren quartz. The remarkably high Au/Ag concentration ratios determined in the fluid inclusions in scheelite might be the reason for the extremely high gold fineness of native gold.  相似文献   

20.
The Xuebaoding crystal deposit, located in northern Longmenshan, Sichuan Province, China, is well known for producing coarse‐grained crystals of scheelite, beryl, cassiterite, fluorite and other minerals. The orebody occurs between the Pankou and Pukouling granites, and a typical ore vein is divided into three parts: muscovite and beryl within granite (Part I); beryl, cassiterite and muscovite in the host transition from granite to marble (Part II); and the main mineralization part, an assemblage of beryl, cassiterite, scheelite, fluorite, apatite and needle‐like tourmaline within marble (Part III). No evidence of crosscutting or overlapping of these ore veins by others suggests that the orebody was formed by single fluid activity. The contents of Be, W, Sn, Li, Cs, Rb, B, and F in the Pankou and Pukouling granites are similar to those of the granites that host Nanling W–Sn deposits. The calculated isotopic compositions of beryl, scheelite and cassiterite (δD, ?69.3‰ to ?107.2‰ and δ18OH2O, 8.2‰ to 15.0‰) indicate that the ore‐forming fluids were mainly composed of magmatic water with minor meteoric water and CO2 derived from decarbonation of marble. Primary fluid inclusions are CO2? CH4+ H2O ± CO2 (vapor), with or without clathrates and halites. We estimate the fluid trapping condition at T = 220 to 360°C and P > 0.9 kbar. Fluid inclusions are rich in H2O, F and Cl. Evidence for fluid‐phase immiscibility during mineralization includes variable L/V ratios in the inclusions and inclusions containing different phase proportions. Fluid immiscibility may have been induced by the pressure released by extension joints, thereby facilitating the mineralization found in Part III. Based on the geochemical data, geological occurrence, and fluid inclusion studies, we hypothesize that the coarse‐grained crystals were formed by: (i) the high content of ore elements and volatile elements such as F in ore‐forming fluids; (ii) occurrence of fluid immiscibility and Ca‐bearing minerals after wall rock transition from granite to marble making the ore elements deposit completely; (iii) pure host marble as host rock without impure elements such as Fe; and (iv) sufficient space in ore veins to allow growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号