首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Erika L. Barth  Owen B. Toon 《Icarus》2006,182(1):230-250
Theoretical arguments point to and recent observations confirm the existence of clouds in Titan's atmosphere, yet we possess very little data on their particle size, composition and formation mechanism. A time-dependent microphysical model is used to study the evolution of ice clouds in Titan's atmosphere. The model simulates nucleation, condensational growth, evaporation, coagulation, and transport of particles in a column of atmosphere. A variety of cloud compositions are studied, including pure ethane clouds, pure methane clouds, and mixed methane-ethane clouds (all with tholin cores). The abundance of methane cloud particles may be limited by the number of ethane coated tholin nuclei rather than the number of tholins with hydrocarbon coatings. However, even the condensation of methane onto these relatively sparse ethane/tholin cloud particles is sufficient to keep the methane close to saturation. Typical methane supersaturations are of order 0.06 on the average. For simulations which take into account recent lab measurements indicating it is relatively easy for methane to nucleate onto tholin particles without an ethane-layer present, the three types of clouds (methane, ethane, and mixed) exist simultaneously. Pure methane clouds are the most abundant cloud type and serve to lower the supersaturation to about 0.04. Cloud production does not require a continuous surface source of methane. However, clouds produced by mean motions are not the visible methane clouds seen in recent Cassini and ground-based observations. Ethane clouds in the troposphere almost instantaneously nucleate methane to form mixed clouds. However, a thin ethane ‘haze’ remains just above the tropopause for some scenarios and the mixed clouds at the tropopause remain ?50% ethane by mass. Also, evaporation of methane from the mixed cloud particles near the surface leaves a thicker layer of ethane cloud particles at ∼10 km. Nevertheless, the precipitation rate of methane to Titan's surface is between 0.001 and 0.5 cm/terrestrial-year, depending on various initial conditions such as critical saturation, size and abundance of cloud condensation nuclei, surface sources and eddy diffusion.  相似文献   

2.
Chia C. Wang  Ruth Signorell 《Icarus》2010,206(2):787-264
Layered methane clouds in Titan’s troposphere with an upper methane ice cloud, a lower liquid methane-nitrogen cloud, and a gap in between were suggested from in situ measurements and ground-based observations. Here we report laboratory investigations under conditions that mimic Titan’s troposphere providing a detailed picture of the cloud layers. A solid methane cloud with a nitrogen content of less than 14% and a liquid methane-nitrogen cloud with a nitrogen content of ∼30% form above ∼19 km and below ∼16 km altitude, respectively. Contrary to previous assertions, long-lived supercooled liquid methane-nitrogen droplets can be sustained in the region in between. The results demonstrate that a cloud gap could only form in the presence of high amounts of other traces species (ethane nuclei, tholin particles, etc.).  相似文献   

3.
Condensation in Titan’s atmosphere at the Huygens landing site   总被引:1,自引:0,他引:1  
P. Lavvas  C.A. Griffith  R.V. Yelle 《Icarus》2011,215(2):732-750
  相似文献   

4.
The appearance of convective clouds in Titan’s troposphere has been documented from ground-based observation for more than a decade. Cloud tops have been reported between 14 and 25 km. Higher resolution Cassini data have shown smaller portions of the cloud system can reach up to 42 km. We use the Titan Regional Atmospheric Modeling System (TRAMS) to explore environments which allow convective clouds to reach the tropopause. In general, cloud tops remain below 30 km, but for environments where the surface humidity of methane is greater than 50%, a small portion at the center of the cloud rises briefly to higher altitudes; for ?65% humidity, the cloud top reaches nearly to the tropopause (∼40 km). A number of other parameters also have noticeable affects on cloud top such as nucleation critical saturation, haze abundance, and collisional growth of cloud particles.  相似文献   

5.
Titan, Saturn's largest moon, has a thick nitrogen/methane atmosphere. The temperature and pressure conditions in Titan's atmosphere are such that the methane vapor should condense near the tropopause to form clouds. Several ground-based measurements have observed sparse cloud-like features in Titan's atmosphere, while the Cassini mission to Saturn has provided large scale images of the clouds. However, Titan's cloud formation conditions remain poorly constrained. Heterogeneous nucleation (from the vapor phase onto a solid or liquid aerosol surface) greatly enhances cloud formation relative to homogeneous nucleation. In order to elucidate the cloud formation mechanism near the tropopause, we have performed laboratory measurements of the adsorption of methane and ethane onto solid organic particles (tholins) representative of Titan's photochemical haze. We find that monolayers of methane adsorb onto tholin particles at saturation ratios less than unity. We also find that solid methane nucleates onto the adsorbed methane at a saturation ratio of S=1.07±0.008. This implies that Titan's methane clouds should form easily. This is consistent with recent measurements of the column of methane ruling out excessive methane supersaturation. In addition, we find ethane adsorbs onto tholin particles in a metastable phase prior to nucleation. However, ethane nucleation onto the adsorbed ethane occurs at a relatively high saturation ratio of S=1.36±0.08. These findings are consistent with the recent report of polar ethane clouds in Titan's lower stratosphere.  相似文献   

6.
R. de Kok  P.G.J. Irwin 《Icarus》2010,209(2):854-857
We use Cassini far-infrared limb and nadir spectra, together with recent Huygens results, to shed new light on the controversial far-infrared opacity sources in Titan’s troposphere. Although a global cloud of large CH4 ice particles around an altitude of 30 km, together with an increase in tropospheric haze opacity with respect to the stratosphere, can fit nadir and limb spectra well, this cloud does not seem consistent with shortwave measurements of Titan. Instead, the N2-CH4 collision-induced absorption coefficients are probably underestimated by at least 50% for low temperatures.  相似文献   

7.
We report high-spectral-resolution (λ/δλ = 800-2300) near-infrared mapping observations of Mars at Ls = 130° (April 1999), which were obtained by drift-scanning the cryogenic long-slit spectrometer at the KPNO 2.2-m telescope across the disk. Data were reformatted into calibrated spectral image cubes (x,y,λ) spanning 2.19 to 4.12 μm, which distinguish atmospheric CO2 features, solar lines, and surface and aerosol features. Maps of relative band depth between 3.0 and 3.5 μm trace water ice clouds and show the diurnal evolution of features in the persistent northern summer aphelion cloud belt, which was mapped contemporaneously but at fixed local time by the Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES). Cloud optical depth, particle sizes, and ice aerosol content were estimated using a two-stream, single-layer scattering model, with Mie coefficients derived from recently published ice optical constants, followed by a linear spectral deconvolution process. A comparison of data and model spectra shows evaporating nighttime clouds in the morning followed by afternoon growth of a prominent orographic cloud feature on the west flank of Elysium Mons. Cloud optical depth at 3.2 μm evolved to 0.28 ± 0.13 and ice aerosol column abundance to 0.9 ± 0.3 pr μm in the afternoon. Column abundances as large as 0.17 pr μm were retrieved in nonorographic clouds within the aphelion cloud band around midday. These clouds exhibit a modest decline in optical depth during the afternoon. Results show that ice particle radii from <2 μm to >4 μm exist in both cloud types. However, large particles dominate the spectra, consistent with recent MGS/TES emission phase function measurements of aphelion cloud aerosol properties.  相似文献   

8.
Here we present the first quantitative study of the gas to solid particle conversion in a Radio Frequency dusty plasma experiment simulating the complex atmospheric reactivity on Titan.Analogs of Titan’s aerosols have been produced in different N2-CH4 gas mixtures. Using in situ mass spectrometry, it has been found that, by varying the initial methane concentration, aerosols could be produced in methane steady state concentrations similar to Titan’s atmospheric conditions. In our experiment, an initial ∼5% methane concentration is necessary to ensure a ∼1.5% methane steady state concentration in the plasma.The tholin mass production rate has been quantified as a function of the initial methane concentration. A maximum was found for a steady state CH4 concentration in agreement with Titan’s atmospheric CH4 concentrations. At this maximum, the tholin C/N ratio is about 1.45 and the carbon gas to solid conversion yield is about 35%.We have modeled the mass production rate by a parabolic function, highlighting two competitive chemical regimes controlling the tholin production efficiency: an efficient growth process which is proportional to the methane consumption, and an inhibiting process which opposes the growth process and dominates it for initial methane concentrations higher than ∼5%. To explain these two opposite effects, we propose two mechanisms: one involving HCN patterns in the tholins for the growth process, and one involving the increasing amount of atomic hydrogen in the plasma as well as the increase in aliphatic contributions in the tholins for the inhibiting process. This study highlights new routes for understanding the chemical growth of the organic aerosols in Titan’s atmosphere.  相似文献   

9.
Since Saturn orbital insertion in July 2004, the Cassini orbiter has been observing Titan throughout most of the northern winter season (October 2002–August 2009) and the beginning of spring, allowing a detailed monitoring of Titan’s cloud coverage at high spatial resolution with close flybys on a monthly basis. This study reports on the analysis of all the near-infrared images of Titan’s clouds acquired by the Visual and Infrared Mapping Spectrometer (VIMS) during 67 targeted flybys of Titan between July 2004 and April 2010.The VIMS observations show numerous sporadic clouds at southern high and mid-latitudes, rare clouds in the equatorial region, and reveal a long-lived cloud cap above the north pole, ubiquitous poleward of 60°N. These observations allow us to follow the evolution of the cloud coverage during almost a 6-year period including the equinox, and greatly help to further constrain global circulation models (GCMs). After 4 years of regular outbursts observed by Cassini between 2004 and 2008, southern polar cloud activity started declining, and completely ceased 1 year before spring equinox. The extensive cloud system over the north pole, stable between 2004 and 2008, progressively fractionated and vanished as Titan entered into northern spring. At southern mid-latitudes, clouds were continuously observed throughout the VIMS observing period, even after equinox, in a latitude band between 30°S and 60°S. During the whole period of observation, only a dozen clouds were observed closer to the equator, though they were slightly more frequent as equinox approached.We also investigated the distribution of clouds with longitude. We found that southern polar clouds, before disappearing in mid-2008, were systematically concentrated in the leading hemisphere of Titan, in particular above and to the east of Ontario Lacus, the largest reservoir of hydrocarbons in the area. Clouds are also non-homogeneously distributed with longitude at southern mid-latitudes. The n = 2-mode wave pattern of the distribution, observed since 2003 by Earth-based telescopes and confirmed by our Cassini observations, may be attributed to Saturn’s tides.Although the latitudinal distribution of clouds is now relatively well reproduced and understood by the GCMs, the non-homogeneous longitudinal distributions and the evolution of the cloud coverage with seasons still need investigation. If the observation of a few single clouds at the tropics and at northern mid-latitudes late in winter and at the start of spring cannot be further interpreted for the moment, the obvious shutdown of the cloud activity at Titan’s poles provides clear signs of the onset of the general circulation turnover that is expected to accompany the beginning of Titan’s northern spring. According to our GCM, the persistence of clouds at certain latitudes rather suggests a ‘sudden’ shift in near future of the meteorology into the more illuminated hemisphere. Finally, the observed seasonal change in cloud activity occurred with a significant time lag that is not predicted by our model. This may be due to an overall methane humidity at Titan’s surface higher than previously expected.  相似文献   

10.
We analyze the thermal infrared spectra of Jupiter obtained by the Cassini-CIRS instrument during the 2000 flyby to infer temperature and cloud density in the jovian stratosphere and upper troposphere. We use an inversion technique to derive zonal mean vertical profiles of cloud absorption coefficient and optical thickness from a narrow spectral window centered at 1392 cm−1 (7.18 μm). At this wavenumber atmospheric absorption due to ammonia gas is very weak and uncertainties in the ammonia abundance do not impact the cloud retrieval results. For cloud-free conditions the atmospheric transmission is limited by the absorption of molecular hydrogen and methane. The gaseous optical depth of the atmosphere is of order unity at about 1200 mbar. This allows us to probe the structure of the atmosphere through a layer where ammonia cloud formation is expected. The results are presented as height vs latitude cross-sections of the zonal mean cloud optical depth and cloud absorption coefficient. The cloud optical depth and the cloud base pressure exhibit a significant variability with latitude. In regions with thin cloud cover (cloud optical depth less than 2), the cloud absorption coefficient peaks at 1.1±0.05 bar, whereas in regions with thick clouds the peak cloud absorption coefficient occurs in the vicinity of 900±50 mbar. If the cloud optical depth is too large the location of the cloud peak cannot be identified. Based on theoretical expectations for the ammonia condensation pressure we conclude that the detected clouds are probably a system of two different cloud layers: a top ammonia ice layer at about 900 mbar covering only limited latitudes and a second, deeper layer at 1100 mbar, possibly made of ammonium hydrosulfide.  相似文献   

11.
Up to now, there has been no corroboration from Cassini CIRS of the Voyager IRIS-discovery of cyanoacetylene (HC3N) ice in Titan’s thermal infrared spectrum. We report the first compelling spectral evidence from CIRS for the ν6 HC3N ice feature at 506 cm−1 at latitudes 62°N and 70°N, from which we derive particle sizes and column abundances in Titan’s lower stratosphere. We find mean particle radii of 3.0 μm and 2.3 μm for condensed HC3N at 62°N and 70°N, respectively, and corresponding ice phase molecular column abundances in the range 1-10 × 1016 mol cm−2. Only upper limits for cloud abundances can be established at latitudes of 85°N, 55°N, 30°N, 10°N, and 15°S. Under the assumption that cloud tops coincide with the uppermost levels at which HC3N vapor saturates, we infer geometric thicknesses for the clouds equivalent to 10-20 km or so, with tops at 165 km and 150 km at 70°N and 62°N, respectively.  相似文献   

12.
We report on mid-resolution (R∼2000) spectroscopic observations of Titan, acquired in November 2000 with the Very Large Telescope and covering the range 4.75-5.07 μm. These observations provide a detailed characterization of the CO (1-0) vibrational band, clearly separating for the first time individual CO lines (P10 to P19 lines of 13CO). They indicate that the CO/N2 mixing ratio in Titan’s troposphere is 32±10 ppm. Comparison with photochemical models indicates that CO is not in a steady state in Titan’s atmosphere. The observations confirm that Titan’s 5-μm continuum geometric albedo is ∼0.06, and further indicates a ∼20% albedo decrease over 4.98-5.07 μm. Nonzero flux is detected at the 0.01 geometric albedo level in the saturated core of the 12CO (1-0) band, at 4.75-4.85 μm, providing evidence for backscattering on the stratospheric haze. Finally, emission lines are detected at 4.75-4.835 μm, coinciding in position with lines from the CO(1-0) and/or CO(2-1) bands. Matching them by thermal emission would require Titan’s stratosphere to be much warmer (by ∼ 25 K at 0.1 mbar) than indicated by the methane 7.7-μm emission and the Voyager radio-occultation. We show instead that a nonthermal mechanism, namely solar-excited fluorescence, is a more plausible source for these emissions. Improved observations and laboratory measurements on the vibrational-translational relaxation of CO are needed for further interpretation of these emissions in terms of a CO stratospheric mixing ratio.  相似文献   

13.
The formation, evolution and properties of noctilucent clouds are studied using a timedependent one-dimensional model of ice particles at mesospheric altitudes. The model treats ice crystals, meteoric dust, water vapor and air ionization as fully interactive cloud elements. For ice particles, the microphysical processes of nucleation, condensation, coagulation and sedimentation are included; the crystal habits of ice are also accounted for. Meteoric dust is analyzed in the manner of Hunten et al. (1980). The simulated particle sizes range from 10 Å to 2.6μm. The chemistry of water vapor and the charge balance of the mesosphere are also analyzed in detail.Based on model calculations, including numerous sensitivity tests, several conclusions are reached. Extremely cold mesopause temperatures (<140K) are necessary to form noctilucent clouds; such temperatures only exist at high latitudes in summer. A water vapor concentration of 4–5 ppmv is sufficient to form a visible cloud. However, a subvisible cloud can exist in the presence of only 1 ppmv of H2O. Ample cloud condensation nuclei are always present in the mesosphere; at very low temperatures, either meteoric dust or hydrated ions can act as cloud nuclei. To be effective, meteoric dust particles must be larger than 10–15 Å in radius. When dust is present, water vapor supersaturations may be held to such low values that ion nucleation is not possible. Ion nucleation can occur, however, in the absence of dust or at extremely low temperatures (<130K). While dust nucleation leads to a small number (<10cm?3) of large ice particles (>0.05 μm radius) and cloud optical depths (at 550 nm) ~10?4, ion nucleation generally leads to a large number (~103cm?3) of smaller particles and optical depths ~10?5). However, because calculated nucleation rates in noctilucent clouds are highly uncertain, the predominant nucleus for the clouds (i.e., dust or ions) cannot be unambiguously established. Noctilucent clouds require several hours-up to a day-to materialize. Once formed, they may persist for several days, depending on local meteorological conditions. However, the clouds can disappear suddenly if the air warms by 10–20 K. The environmental conditions which exist at the high-latitude summer mesopause, together with the microphysics of small ice crystals, dictate that particle sizes will be ? 0.1 μm radius. The ice crystals are probably cubic in structure. It is demonstrated that particles of this size and shape can explain the manifestations of noctilucent clouds. Denser clouds are favored by higher water vapor concentrations, more rapid vertical diffusion and persistent upward convection (which can occur at the summer pole). Noctilucent clouds may also condense in the cold “troughs” of gravity wave trains. Such clouds are bright when the particles remain in the troughs for several hours or more; otherwise they are weak or subvisible.Model simulations are compared with a wide variety of noctilucent cloud data. It is shown that the present physical model is consistent with most of the measurements, as well as many previous theoretical results. Ambient noctilucent clouds are found to have a negligible influence on the climate of Earth. Anthropogenic perturbations of the clouds that are forecast for the next few decades are also shown to have insignificant climatological implications.  相似文献   

14.
We analyze observations taken with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60°S and 40°N. The methane variation was measured primarily from its absorption band at 0.61 μm, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan’s 0.4-1.6 μm spectra, which sample Titan’s atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20°S and 10°S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60°S and 40°N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27°S and 19°N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan’s visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane variations we can reproduce the NSA wavelength signatures with the derived haze characteristics. We calculate the solar heating rate as a function of latitude and derive variations of ∼10-15% near the sub-solar latitude resulting from the NSA. Most of the latitudinal variations in the heating rate stem from changes in solar zenith angle rather than compositional variations.  相似文献   

15.
The origin of Titan’s atmospheric methane is a key issue for understanding the origin of the saturnian satellite system. It has been proposed that serpentinization reactions in Titan’s interior could lead to the formation of the observed methane. Meanwhile, alternative scenarios suggest that methane was incorporated in Titan’s planetesimals before its formation. Here, we point out that serpentinization reactions in Titan’s interior are not able to reproduce the deuterium over hydrogen (D/H) ratio observed at present in methane in its atmosphere, and would require a maximum D/H ratio in Titan’s water ice 30% lower than the value likely acquired by the satellite during its formation, based on Cassini observations at Enceladus. Alternatively, production of methane in Titan’s interior via radiolytic reactions with water can be envisaged but the associated production rates remain uncertain. On the other hand, a mechanism that easily explains the presence of large amounts of methane trapped in Titan in a way consistent with its measured atmospheric D/H ratio is its direct capture in the satellite’s planetesimals at the time of their formation in the solar nebula. In this case, the mass of methane trapped in Titan’s interior can be up to ∼1300 times the current mass of atmospheric methane.  相似文献   

16.
A model of Titan's aerosol is presented which allows the particle size to vary with height. The model assumes a refractive index appropriate to an ethylene polymer and a mass flux independent of height equal to the value derived from laboratory measurements. The free parameters of the model are determined by fitting to the observed geometric albedo at 4000 and 6000 Å. A methane spectrum is derived which is in excellent agreement with observations. An aerosol optical depth of ~5 is found in the visible, with the particle radius varying from 0.01 to 8 μm. The presence of an optically thick methane cloud at the temperature minimum is indicated.  相似文献   

17.
An analysis of Titan's solar phase variation as a function of wavelength together with the continuum geometric albedo makes it possible to set limits on the real part of the refractive index and on the average particle size of the aerosol component of Titan's atmosphere: 1.5 ?nr< 2.0 and 0.20 μm <r?0.35 μm. If nris known r can be determined to within a few percent, and varies inversely with nr. Using this information in a two-layer model of a methane-aerosol atmosphere and comparing the result with Titan's visible and near-infrared methane spectrum leads to the conclusion that the top layer of Titan's atmosphere contains 0.01 km atm of methane and 2.5 extinction optical depths of aerosol, while the data are consistent with a bottom layer containing 2.2 km atm of methane and about 7.5 aerosol optical depths for nr = 1.7, r = 0.25 μm.  相似文献   

18.
Spectra from the Voyager 1 infrared interferometer spectrometer (IRIS) obtained near the time of closest approach to Jupiter were analyzed for the purpose of inferring ammonia cloud properties associated with the Equatorial Region. Comparisons of observed spectra with synthetic spectra computed from a radiative transfer formulation, that includes multiple scattering, yielded the following conclusions: (1) very few NH3 ice particles with radii less than 3 μm contribute to the cloud opacity; (2) the major source of cloud opacity arises from particles with radii in excess of 30 μm; (3) column particle densities are between 1 and 2 orders of magnitude smaller than those derived from thermochemical considerations alone, implying the presence of important atmospheric motion; and (4) another cloud system is confirmed to exist deeper in the Jovian troposphere.  相似文献   

19.
Heating occurs in Titan's stratosphere from the absorption of incident solar radiation by methane and aerosols. About 10% of the incident sunlight reaches Titan's surface and causes heating there. Thermal radiation redistributes heat within the atmosphere and cools to space. The resulting vertical temperature profile is stable against convection and a state of radiative equilibrium is established. Equating theoretical and observed temperature profiles enables an empirical determination of the vertical distribution of thermal opacity. A uniformly mixed aerosol is responsible for most of the opacity in the stratosphere, whereas collision-induced absorption of gases is the main contributor in the troposphere. Occasional clouds are observed in the troposphere in spite of the large degrees of methane supersaturation found there. Photochemistry converts CH4 and N2 into more complex hydrocarbons and nitriles in the stratosphere and above. Thin ice clouds of trace organics are formed in the winter and early spring polar regions of the lower stratosphere. Precipitating ice particles serve as condensation sites for supersaturated methane vapor in the troposphere below, resulting in lowered methane degrees of supersaturation in the polar regions. Latitudinal variations of stratospheric temperature are seasonal, and lag instantaneous response to solar irradiation by about one season for two reasons: (1) an actual instantaneous thermal response to a latitudinal distribution of absorbing gases, themselves out of phase with the sun by about one season, and (2) a sluggish dynamical response of the stratosphere to the latitudinal transport of angular momentum, induced by radiative heating and cooling. Mean vertical abundances of stratospheric organics and aerosols are determined primarily by atmospheric chemistry and condensation, whereas latitudinal distributions are more influenced by meridional circulations. In addition to preferential scavenging by precipitating ice particles from above, the polar depletion of supersaturated methane results from periodic scavenging by short-lived tropospheric clouds, coupled with the steady poleward march of the continuously drying atmosphere due to meridional transport.  相似文献   

20.
We present measurements of the altitude and eastward velocity component of mesospheric clouds in 35 imaging sequences acquired by the Mars Odyssey (ODY) spacecraft’s Thermal Emission Imaging System visible imaging subsystem (THEMIS-VIS). We measure altitude by using the parallax drift of high-altitude features, and the velocity by exploiting the time delay in the THEMIS-VIS imaging sequence.We observe two distinct classes of mesospheric clouds: equatorial mesospheric clouds observed between 0° and 180° Ls; and northern mid-latitude clouds observed only in twilight in the 200–300° Ls period. The equatorial mesospheric clouds are quite rare in the THEMIS-VIS data set. We have detected them in only five imaging sequences, out of a total of 2048 multi-band equatorial imaging sequences. All five fall between 20° south and 0° latitude, and between 260° and 295° east longitude. The mid-latitude mesospheric clouds are apparently much more common; for these we find 30 examples out of 210 northern winter mid-latitude twilight imaging sequences. The observed mid-latitude clouds are found, with only one exception, in the Acidalia region, but this is quite likely an artifact of the pattern of THEMIS-VIS image targeting. Comparing our THEMIS-VIS images with daily global maps generated from Mars Orbiter Camera Wide Angle (MOC-WA) images, we find some evidence that some mid-latitude mesospheric cloud features correspond to cloud features commonly observed by MOC-WA. Comparing the velocity of our mesospheric clouds with a GCM, we find good agreement for the northern mid-latitude class, but also find that the GCM fails to match the strong easterly winds measured for the equatorial clouds.Applying a simple radiative transfer model to some of the equatorial mesospheric clouds, we find good model fits in two different imaging sequences. By using the observed radiance contrast between cloud and cloud-free regions at multiple visible-band wavelengths, these fits simultaneously constrain the optical depths and particles sizes of the clouds. The particle sizes are constrained primarily by the relative contrasts at the available wavelengths, and are found to be quite different in the two imaging sequences: reff = 0.1 μm and reff = 1.5 μm. The optical depths (constrained by the absolute contrasts) are substantial: 0.22 and 0.5, respectively. These optical depths imply a mass density that greatly exceeds the saturated mass density of water vapor at mesospheric temperatures, and so the aerosol particles are probably composed mainly of CO2 ice. Our simple radiative transfer model is not applicable to twilight, when the mid-latitude mesospheric clouds were observed, and so we leave the properties of these clouds as a question for further work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号