首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10 to 1400 cm−1 (1000-7 μm). In this paper we analyze a zonally averaged set of CIRS spectra taken at the highest (0.48 cm−1) resolution, firstly to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the ν4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm−1. Stratospheric temperatures at 5 mbar are generally warmer in the north than the south by 7-8 K, while tropospheric temperatures show no such asymmetry. Both latitudinal temperature profiles however do show a pattern of maxima and minima which are largely anti-correlated between the two levels. We then use the derived temperature profiles to infer the vertical abundances of C2H2 and C2H6 by modeling tropospheric absorption (∼200 mbar) and stratospheric emission (∼5 mbar) in the C2H2ν5 and C2H6ν9 bands, and also emission of the acetylene (ν4+ν5)−ν4 hotband (∼0.1 mbar). Acetylene shows a distinct north-south asymmetry in the stratosphere, with 5 mbar abundances greatest close to 20° N and decreasing from there towards both poles by a factor of ∼4. At 200 mbar in contrast, acetylene is nearly flat at a level of ∼3×10−9. Additionally, the abundance gradient of C2H2 between 10 and 0.1 mbar is derived, based on interpolated temperatures at 0.1 mbar, and is found to be positive and uniform with latitude to within errors. Ethane at both 5 and 200 mbar shows increasing VMR towards polar regions of ∼1.75 towards 70° N and ∼2.0 towards 70° S. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors of 2.7 and 3.5, respectively, at latitude 70°. However, the lifetime of C2H6 in the stratosphere (3×1010 s at 5 mbar) is much longer than the dynamical timescale for meridional mixing inferred from Comet SL-9 debris (5-50×108 s), and therefore the rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite occurs, with the relatively short photochemical lifetime (3×107 s), compared to meridional mixing times, ensuring that the expected photochemical trends are visible.  相似文献   

2.
Hydrocarbons in the upper atmosphere of Saturn are known, from Voyager, ground-based, and early Cassini results, to vary in emission intensity with latitude. Of particular interest is the marked increase in hydrocarbon line intensity near the south pole during southern summer, as the increased line intensity cannot be simply explained by the increased temperatures observed in that region since the variations between C2H2 and C2H6 emission in the south pole region are different. In order to measure the latitudinal variations of hydrocarbons in Saturn's southern hemisphere we have used 3 cm−1 resolution Cassini CIRS data from 2006 and combined this with measurements from the ground in October 2006 at NASA's IRTF using Celeste, an infrared high-resolution cryogenic grating spectrometer. These two data sets have been used to infer the molecular abundances of C2H2 and C2H6 across the southern hemisphere in the 1-10 mbar altitude region. We find that the latitudinal acetylene profile follows the yearly average mean daily insolation except at the southern pole where it peaks in abundance. Near the equator (5° S) the C2H2 abundance at the 1.2 mbar level is (1.6±0.19)×10−7 and it decreases by a factor of 2.7 from the equator toward the pole. However, at the pole (∼87° S) the C2H2 abundance jumps to (1.8±0.3)×10−7, approximately the equatorial value. The C2H6 abundance near the equator at the 2 mbar level is (0.7±0.1)×10−5 and stays approximately constant until mid-latitudes where it increases gradually toward the pole, attaining a value of (1.4±0.4)×10−5 there. The increase in ethane toward the pole with the corresponding decrease in acetylene is consistent with southern hemisphere meridional winds [Greathouse, T.K., Lacy, J.H., Bézard, B., Moses, J.I., Griffith, C.A., Richter, M.J., 2005. Icarus 177, 18-31]. The localized increase in acetylene at the pole provides evidence that there is dynamical transport of hydrocarbons from the equator to the southern pole.  相似文献   

3.
These are the first results from nadir studies of meridional variations in the abundance of stratospheric acetylene and ethane from Cassini/CIRS data in the southern hemisphere of Saturn. High resolution, 0.5 cm−1, CIRS data was used from three data sets taken in June-November 2004 and binned into 2° wide latitudinal strips to increase the signal-to-noise ratio. Tropospheric and stratospheric temperatures were initially retrieved to determine the temperature profile for each latitude bin. The stratospheric temperature at 2 mbar increased by 14 K from 9° to 68° S, including a steep 4 K rise between 60° and 68° S. The tropospheric temperatures showed significantly more meridional variation than the stratospheric ones, the locations of which are strongly correlated to that of the zonal jets. Stratospheric acetylene abundance decreases steadily from 30 to 68° S, by a factor of 1.8 at 2.0 mbar. Between 18° and 30° S the acetylene abundance increases at 2.0 mbar. Global values for acetylene have been calculated as (1.9±0.19)×10−7 at 2.0 mbar, (2.6±0.27)×10−7 at 1.6 mbar and (3.1±0.32)×10−7 at 1.4 mbar. Global values for ethane are also determined and found to be (1.6±0.25)×10−5 at 0.5 mbar and (1.4±0.19)×10−5 at 1.0 mbar. Ethane abundance in the stratosphere increases towards the south pole by a factor of 2.5 at 2.0 mbar. The increase in stratospheric ethane is especially pronounced polewards of 60° S at 2.0 mbar. The increase of stratospheric ethane towards the south pole supports the presence of a meridional wind system in the stratosphere of Saturn.  相似文献   

4.
Measurements of the vertical and latitudinal variations of temperature and C2H2 and C2H6 abundances in the stratosphere of Saturn can be used as stringent constraints on seasonal climate models, photochemical models, and dynamics. The summertime photochemical loss timescale for C2H6 in Saturn's middle and lower stratosphere (∼40-10,000 years, depending on altitude and latitude) is much greater than the atmospheric transport timescale; ethane observations may therefore be used to trace stratospheric dynamics. The shorter chemical lifetime for C2H2 (∼1-7 years depending on altitude and latitude) makes the acetylene abundance less sensitive to transport effects and more sensitive to insolation and seasonal effects. To obtain information on the temperature and hydrocarbon abundance distributions in Saturn's stratosphere, high-resolution spectral observations were obtained on September 13-14, 2002 UT at NASA's IRTF using the mid-infrared TEXES grating spectrograph. At the time of the observations, Saturn was at a LS≈270°, corresponding to Saturn's southern summer solstice. The observed spectra exhibit a strong increase in the strength of methane emission at 1230 cm−1 with increasing southern latitude. Line-by-line radiative transfer calculations indicate that a temperature increase in the stratosphere of ≈10 K from the equator to the south pole between 10 and 0.01 mbar is implied. Similar observations of acetylene and ethane were also recorded. We find the 1.16 mbar mixing ratio of C2H2 at −1° and −83° planetocentric latitude to be and , respectively. The C2H2 mixing ratio at 0.12 mbar is found to be at −1° planetocentric latitude and at −83° planetocentric latitude. The 2.3 mbar mixing ratio of C2H6 inferred from the data is and at −1° and −83° planetocentric latitude, respectively. Further observations, creating a time baseline, will be required to completely resolve the question of how much the latitudinal variations of C2H2 and C2H6 are affected by seasonal forcing and/or stratospheric circulation.  相似文献   

5.
We have performed high-resolution spectral observations at mid-infrared wavelengths of C2H6 (12.16 μm), and C2H2 (13.45 μm) on Saturn. These emission features probe the stratosphere of the planet and provide information on the hydrocarbon photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer Celeste, in conjunction with the McMath-Pierce 1.5-m solar telescope in November and December 1994. We used Voyager IRIS CH4 observations (7.67 μm) to derive a temperature profile on the saturnian atmosphere for the region of the stratosphere. This profile was then used in conjunction with height-dependent volume mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. Our ground-based measurements indicate abundances of for C2H6 (1.0 mbar pressure level), and for C2H2 (1.6 mbar pressure level). We also derived new mixing ratios from the Voyager mid-latitude IRIS observations; 8.6±0.9×10−6 for C2H6 (0.1-3.0 mbar pressure level), and 1.6±0.2×10−7 for C2H2 (2.0 mbar pressure level).  相似文献   

6.
Observations of the Composite InfraRed Spectrometer (CIRS) during the entire nominal Cassini mission (2004-2008) provide us with an accurate global view of composition and temperature in the middle atmosphere of Titan (between 100 and 500 km). We investigated limb spectra acquired at resolution at nine different latitudes between 56°S and 80°N, with a better sampling in the northern hemisphere where molecular abundances and temperature present strong latitudinal variations. From this limb data acquired between February 2005 and May 2008, we retrieved the vertical mixing ratio profiles of C2H2, C2H4, C2H6, C3H8, CH3C2H, C4H2, C6H6, HCN, HC3N and CO2. We present here for the first time, the latitudinal variations of the C2H6, C3H8, CO2, C2H4 and C6H6 vertical mixing ratios profiles. Some molecules, such as C2H6 or C3H8 present little variations above their condensation level. The other molecules (except CO2) show a significant enhancement of their mixing ratios poleward of 50°N. C2H4 is the only molecule whose mixing ratio decreases with height at latitudes below 46°N. Regions depleted in C2H2, HCN and C4H2 are observed around 400 km (0.01 mbar) and 55°N. We also inferred a region enriched in CO2 located between 30 and 40°N in the 2-0.7 mbar pressure range. At 80°N, almost all molecules studied here present a local minimum of their mixing ratio profiles near 300 km (∼0.07 mbar), which is in contradiction with Global Circulation Models that predict constant-with-height vertical profiles due to subsidence at the north pole.  相似文献   

7.
Limb spectra recorded by the Composite InfraRed Spectrometer (CIRS) on Cassini provide information on abundance vertical profiles of C2H2, C2H4, C2H6, CH3C2H, C3H8, C4H2, C6H6 and HCN, along with the temperature profiles in Titan's atmosphere. We analyzed two sets of spectra, one at 15° S (Tb flyby) and the other one at 80° N (T3 flyby). The spectral range 600-1400 cm−1, recorded at a resolution of 0.5 cm−1, was used to determine molecular abundances and temperatures in the stratosphere in the altitude range 100-460 km for Tb and 170-495 km for T3. Both temperature profiles show a well defined stratopause, at around 310 km (0.07 mbar) and 183 K at 13° S, and 380 km (0.01 mbar) with 207 K at 80° N. Near the north pole, stratospheric temperatures are colder and mesospheric temperatures are warmer than near the equator. C2H2, C2H6, C3H8 and HCN display vertical mixing ratio profiles that increase with height at 15° S and 80° N, consistent with their formation in the upper atmosphere, diffusion downwards and condensation in the lower stratosphere, as expected from photochemical models. The CH3C2H and C4H2 mixing ratios also increase with height at 15° S. But near the north pole, their profiles present an unexpected minimum around 300 km, observed for the first time thanks to the high vertical resolution of the CIRS limb data. C2H4 is the only molecule having a vertical abundance profile that decreases with height at 15° S. At 80° N, it also displays a minimum of its mixing ratio around the 0.1-mbar level. For C6H6, an upper limit of 1.1 ppb (in the 0.3-10 mbar range) is derived at 15° S, whereas a constant mixing ratio profile of is inferred near the north pole. At 15° S, the vertical profile of HCN exhibits a steeper gradient than other molecules, which suggests that a sink for this molecule exists in the stratosphere, possibly due to haze formation. All molecules display a more or less pronounced enrichment towards the north pole, probably due, in part, to subsidence of air at the north (winter) pole that brings air enriched in photochemical compounds from the upper atmosphere to lower levels.  相似文献   

8.
Using TEXES, the Texas Echelon cross Echelle Spectrograph, mounted on the Gemini North 8-m telescope we have mapped the spatial variation of H2, CH4, C2H2 and C2H6 thermal-infrared emission of Neptune. These high-spectral-resolution, spatially resolved, thermal-infrared observations of Neptune offer a unique glimpse into the state of Neptune’s stratosphere in October 2007, LS = 275.4° just past Neptune’s southern summer solstice (LS = 270°). We use observations of the S(1) pure rotational line of molecular hydrogen and a portion of the ν4 band of methane to retrieve detailed information on Neptune’s stratospheric vertical and meridional thermal structure. We find global-average temperatures of 163.8 ± 0.8, 155.0 ± 0.9, and 123.8 ± 0.8 K at the 7.0 × 10−3-, 0.12-, and 2.1-mbar levels with no meridional variations within the errors. We then use the inferred temperatures to model the emission of C2H2 and C2H6 in order to derive stratospheric volume mixing ratios (hence forth, VMR) as a function of pressure and latitude. There is a subtle meridional variation of the C2H2 VMR at the 0.5-mbar level with the peak abundance found at −28° latitude, falling off to the north and south. However, the observations are consistent within error to a meridionally constant C2H2 VMR of at 0.5 mbar. We find that the VMR of C2H6 at 1-mbar peaks at the equator and falls by a factor of 1.6 at −70° latitude. However, a meridionally constant VMR of at the 1-mbar level for C2H6 is also statistically consistent with the retrievals. Temperature predictions from a radiative-seasonal climate model of Neptune that assumes the hydrocarbon abundances inferred in this paper are lower than the measured temperatures by 40 K at 7 × 10−3 mbar, 30 K at 0.12 mbar and 25 K at 2.1 mbar. The radiative-seasonal model also predicts meridional temperature variations on the order of 10 K from equator to pole, which are not observed. Assuming higher stratospheric CH4 abundance at the equator relative to the south pole would bring the meridional trends of the inferred temperatures and radiative-seasonal model into closer agreement.We have also retrieved observations of C2H4 emission from Neptune’s stratosphere using TEXES on the NASA Infrared Telescope Facility (IRTF) in June 2003, LS = 266°. Using the observations from the middle of the planet and an average of the middle three latitude temperature profiles from the 2007 observations (9.5° of LS later, the seasonal equivalent of 9.5 Earth days within Earth’s seasonal cycle), we infer a C2H4 VMR of at 1.5 × 10−3 mbar, a value that is 3.25 times that predicted by global-average photochemical models.  相似文献   

9.
Mid- and far-infrared spectra from the Composite InfraRed Spectrometer (CIRS) have been used to determine volume mixing ratios of nitriles in Titan's atmosphere. HCN, HC3N, C2H2, and temperature were derived from 2.5 cm−1 spectral resolution mid-IR mapping sequences taken during three flybys, which provide almost complete global coverage of Titan for latitudes south of 60° N. Three 0.5 cm−1 spectral resolution far-IR observations were used to retrieve C2N2 and act as a check on the mid-IR results for HCN. Contribution functions peak at around 0.5-5 mbar for temperature and 0.1-10 mbar for the chemical species, well into the stratosphere. The retrieved mixing ratios of HCN, HC3N, and C2N2 show a marked increase in abundance towards the north, whereas C2H2 remains relatively constant. Variations with longitude were much smaller and are consistent with high zonal wind speeds. For 90°-20° S the retrieved HCN abundance is fairly constant with a volume mixing ratio of around 1 × 10−7 at 3 mbar. More northerly latitudes indicate a steady increase, reaching around 4 × 10−7 at 60° N, where the data coverage stops. This variation is consistent with previous measurements and suggests subsidence over the northern (winter) pole at approximately 2 × 10−4 m s−1. HC3N displays a very sharp increase towards the north pole, where it has a mixing ratio of around 4 × 10−8 at 60° N at the 0.1-mbar level. The difference in gradient for the HCN and HC3N latitude variations can be explained by HC3N's much shorter photochemical lifetime, which prevents it from mixing with air at lower latitude. It is also consistent with a polar vortex which inhibits mixing of volatile rich air inside the vortex with that at lower latitudes. Only one observation was far enough north to detect significant amounts of C2N2, giving a value of around 9 × 10−10 at 50° N at the 3-mbar level.  相似文献   

10.
The Cassini Huygens mission provides a unique opportunity to combine ground-based and spacecraft investigations to increase our understanding of chemical and dynamical processes in Titan’s atmosphere. Spectroscopic measurements from both vantage points enable retrieving global wind structure, temperature structure, and atmospheric composition. An updated analysis of Titan data obtained with the NASA Goddard Space Flight Center’s Infrared Heterodyne Spectrometer (IRHS) and Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) prior to and during the Cassini Huygens mission is compared to retrievals from measurements with the Cassini Composite Infrared Spectrometer (CIRS). IRHS/HIPWAC results include the first direct stratospheric wind measurements on Titan, constraints on stratospheric temperature, and the study of atmospheric molecular composition. These results are compared to CIRS retrievals of wind and temperature profile from thermal mapping data and ethane abundance at 10-15° South latitude, near the equatorial region. IRHS/HIPWAC wind results are combined with other direct techniques, stellar occultation measurements, and CIRS results to explore seasonal variability over nearly one Titan year and to provide an empirical altitude profile of stratospheric winds, varying from ∼50 to 210 m/s prograde. The advantage of fully resolved line spectra in species abundance measurements is illustrated by comparing the possible effect on retrieved ethane abundance by blended spectral features of other molecular constituents, e.g., acetylene (C2H2), ethylene (C2H4), allene (C3H4), and propane (C3H8), which overlap the ν9 band of ethane, and are not resolved at lower spectral resolution. IR heterodyne spectral resolution can discriminate weak spectral features that overlap the ν9 band of ethane, enabling ethane lines alone to be used to retrieve abundance. Titan’s stratospheric mean ethane mole fraction (8.6±3 ppmv) retrieved from IRHS/HIPWAC emission line profiles (resolving power λλ∼106) is compared to past values obtained from lower resolution spectra and from CIRS measurements (resolving power λλ∼2×103) and more compatible recent analysis. Results illustrate how high spectral resolution ground-based studies complement the spectral and spatial coverage and resolution of moderate spectral resolution space-borne spectrometers.  相似文献   

11.
The reaction between dicarbon (C2) and acetylene was recently suggested as a possible competitive reaction in the atmospheres of Titan, Saturn and Uranus by rate constant measurements at very low temperatures [see Canosa, A., Páramo, A., Le Picard, S.D., Sims, I.R., 2007. An experimental study of the reaction kinetics of C2(X1Σg+) with hydrocarbons (CH4, C2H2, C2H4, C2H6 and C3H8) over the temperature range 24-300 K: implications for the atmospheres of Titan and the Giant Planets. Icarus 187, 558-568]. We have investigated the reaction of the two low lying electron states of C2 and acetylene by the crossed molecular beam (CMB) technique with mass spectrometric detection. C4H, already identified as a primary product in previous CMB experiments, is confirmed as such, even though the mechanism of formation is inferred to be partly different with respect to the previous study. An experimental setup has been devised to characterize the internal population of C2 and refine the interpretation of the scattering results. The implications for the modelling of the atmospheres of Giant Planets and Titan, as well as cometary comae and the interstellar medium, are discussed.  相似文献   

12.
Ethylene (C2H4) emission has been measured in the poles and equator of Jupiter. The 949 cm−1 spectra were recorded with a high resolution spectrometer at the McMath-Pierce telescope at Kitt Peak in October-November 1998 and at the Infrared Telescope Facility at Mauna Kea in June 2000. C2H4 is an important product of methane chemistry in the outer planets. Knowledge of its abundance can help discriminate among the various proposed sets of CH4 photolysis branching ratios at Ly-α, and determine the relative importance of the reaction pathways that produce C2H2 and C2H6. In the equatorial region the C2H4 emission is weak, and we were only able to detect it at high air-mass, near the limb. We derive a peak equatorial molar abundance of C2H4 of 4.5×10−7-1.7×10−6 near 2.2×10−3 mbar, with a total column of 5.7×1014-2.2×1015 molecules cm−2 above 10 mbar depending upon choice of thermal profile. We observed enhanced C2H4 emission from the poles in the regions where auroras are seen in X-ray, UV, and near infrared images. In 2000 we measured a short-term change in the distribution of polar C2H4 emission; the emission in the north IR auroral “hot spot” decreased by a factor of three over a two-day interval. This transient behavior and the sensitivity of C2H4 emission to temperature changes near its contribution peak at 5-10 microbar suggests that the polar enhancement is primarily a thermal effect coupled with vertical transport. Comparing our observations from Kitt Peak and Mauna Kea shows that the C2H4 emission of the northern non-“hot spot” auroral regions did not change over the three-year period while that in the southern polar regions decreased.  相似文献   

13.
The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we model zonal averages of thermal infrared spectra from the two instruments, Voyager 1 IRIS and Cassini CIRS, to retrieve the vertical and meridional profiles of temperature, and the abundances of the two minor hydrocarbons, acetylene (C2H2) and ethane (C2H6). The spatial variation of these gases is controlled by both chemistry and dynamics, and therefore their observed distribution gives us an insight into both processes. We find that the two gases paint quite different pictures of seasonal change. Whilst the 2-D cross-section of C2H6 abundance is slightly increased and more symmetric in 2000 (northern summer solstice) compared to 1979 (northern fall equinox), the major trend of equator to pole increase remains. For C2H2 on the other hand, the Voyager epoch exhibits almost no latitudinal variation, whilst the Cassini era shows a marked decrease polewards in both hemispheres. At the present time, these experimental findings are in advance of interpretation, as there are no published models of 2-D Jovian seasonal chemical variation available for comparison.  相似文献   

14.
G.S. Orton  H.H. Aumann 《Icarus》1977,32(4):431-436
The Q and R branches of the C2H2 ν5 fundamental, observed in emission in an aircraft spectrum of Jupiter near 750 cm?1, have been analyzed with the help of an improved line listing for this band. The line parameters have been certified in the laboratory with the same interferometer used in the Jovian observations. The maximum mixing ratio of C2H2 is found to be between 5 × 10?8 and 6 × 10?9, depending on the form of its vertical distribution and the temperature structure assumed for the lower stratosphere. Most consistent with observations of both Q and R branches are: (1) distributions of C2H2 with a constant mixing ratio in the stratosphere and a cutoff at a total pressure of 100 mbar or less, and (2) the assumption of a temperature at 10?2 bar which is near 155°K.  相似文献   

15.
W. Macy 《Icarus》1980,41(1):153-158
Matching computed spectra for the ν4 band of methane, the ν9 band of ethane, and the R branch of the ν5 band of acetylene to observed spectra for Neptune suggests mixing ratios of CH4/H2 ~ 10?3?10?2, C2H6/H2 ~ 10?6, and C2H2/H2 ~ 10?8 in the stratosphere.  相似文献   

16.
The dynamics of Titan's stratosphere is discussed in this study, based on a comparison between observations by the CIRS instrument on board the Cassini spacecraft, and results of the 2-dimensional circulation model developed at the Institute Pierre-Simon Laplace, available at http://www.lmd.jussieu.fr/titanDbase [Rannou, P., Lebonnois, S., Hourdin, F., Luz, D., 2005. Adv. Space Res. 36, 2194-2198]. The comparison aims at both evaluating the model's capabilities and interpreting the observations concerning: (1) dynamical and thermal structure using temperature retrievals from Cassini/CIRS and the vertical profile of zonal wind at the Huygens landing site obtained by Huygens/DWE; and (2) vertical and latitudinal profiles of stratospheric gases deduced from Cassini/CIRS data. The modeled thermal structure is similar to that inferred from observations (Cassini/CIRS and Earth-based observations). However, the upper stratosphere (above 0.05 mbar) is systematically too hot in the 2D-CM, and therefore the stratopause region is not well represented. This bias may be related to the haze structure and to misrepresented radiative effects in this region, such as the cooling effect of hydrogen cyanide (HCN). The 2D-CM produces a strong atmospheric superrotation, with zonal winds reaching 200 m s−1 at high winter latitudes between 200 and 300 km altitude (0.1-1 mbar). The modeled zonal winds are in good agreement with retrieved wind fields from occultation observations, Cassini/CIRS and Huygens/DWE. Changes to the thermal structure are coupled to changes in the meridional circulation and polar vortex extension, and therefore affect chemical distributions, especially in winter polar regions. When a higher altitude haze production source is used, the resulting modeled meridional circulation is weaker and the vertical and horizontal mixing due to the polar vortex is less extended in latitude. There is an overall good agreement between modeled chemical distributions and observations in equatorial regions. The difference in observed vertical gradients of C2H2 and HCN may be an indicator of the relative strength of circulation and chemical loss of HCN. The negative vertical gradient of ethylene in the low stratosphere at 15° S, cannot be modeled with simple 1-dimensional models, where a strong photochemical sink in the middle stratosphere would be necessary. It is explained here by dynamical advection from the winter pole towards the equator in the low stratosphere and by the fact that ethylene does not condense. Near the winter pole (80° N), some compounds (C4H2, C3H4) exhibit an (interior) minimum in the observed abundance vertical profiles, whereas 2D-CM profiles are well mixed all along the atmospheric column. This minimum can be a diagnostic of the strength of the meridional circulation, and of the spatial extension of the winter polar vortex where strong descending motions are present. In the summer hemisphere, observed stratospheric abundances are uniform in latitude, whereas the model maintains a residual enrichment over the summer pole from the spring cell due to a secondary meridional overturning between 1 and 50 mbar, at latitudes south of 40-50° S. The strength, as well as spatial and temporal extensions of this structure are a difficulty, that may be linked to possible misrepresentation of horizontally mixing processes, due to the restricted 2-dimensional nature of the model. This restriction should also be kept in mind as a possible source of other discrepancies.  相似文献   

17.
Using the 20-m Onsala Observatory telescope (Sweden), we performed observations of the CH3C2H(6-5) line toward several regions of massive star formation to estimate the kinetic temperature of the gas and study its variations over the sources. Intense lines were detected in five objects. For these, we estimated the kinetic temperature of the gas near the CS and N2H+ molecular emission peaks by the method of population diagrams. A significant temperature difference between these peaks is noticeable only in W3 and, to a lesser degree, in DR 21. In the remaining cases, it is insignificant. This indicates that the chemical differentiation of the molecules in these regions cannot be associated with temperature variations. The kinetic temperature determined from methyl acetylene observations is usually slightly higher than the temperature estimated from ammonia observations. This is probably because the methyl acetylene emission originates in denser, i.e., deeper and hotter layers of the cloud.  相似文献   

18.
We reduced ultraviolet spectra of Saturn from the IUE satellite to produce a geometric albedo of the planet from 1500 to 3000 Å. By matching computer models to the albedo we determined a chemical composition consistent with the data. This model includes C2H2 and C2H6 with mixing ratios and distributions of (9 ± 3) × 10?8 in the top 20 mbar of the atmosphere with none below for C2H2 and (6 ± 1) × 10?6 also in the top 20 mbar with none below for C2H6. The C2H2 and C2H6 distributions and the C2H6 mixing ratio are taken directly from the Voyager IRIS model [R. Courtin et al., Bull. Amer. Astron. Soc.13, 722 (1981), and private communication]. The Voyager IRIS model also includes PH3, which is not consistent with the uv albedo from 1800 to 2400 Å. Our model requires a previously unidentified absorber to explain the albedo near 1600 Å. After considering several candidates, we find that the best fit to the data is obtained with H2O, having a column density of (6 ± 1) × 10?3 cm-am.  相似文献   

19.
We have theoretically studied the influence of a far-infrared radiation (FIR) field from Hπ region on the cooling by C and O atoms, C+ ion and CO molecule in a photodissociation region, and a molecular cloud associated with Hπ region (hereinafter referred as HI region) at low temperatures (T k≤200 K). Comparisons have been made for cooling with and without FIR for two extreme abundances (10−4 and 10−7) of the mentioned species for temperatures ranging between 10 and 200K and an hydrogen particle density range 10 cm−3n o≤ 107 cm3. The cooling by the species with low line-splitting (CI, Cπ and CO) is significantly influenced by the radiation field for temperaturesT k < 100 K while the effect of radiation field on cooling by OI is significant even at higher temperatures (T k > 100 K). The effect of FIR field on the cooling of CO from low rotational transitions is negligibly small, whereas it is considerable for higher transitions. In general, the cooling terms related to the short-wavelength transitions are more affected by FIR than those related to longer wavelengths. It is also demonstrated here that in the determination of thermal structure of an HI region the dust grains play an important role in the heating of gas only through photoelectron emission following irradiation by far-ultraviolet (FUV) radiation, as the infrared radiation from the dust is too small to have substantial effect on the cooling. It is found that in the Hπ /HI interface the FIR field from grains in the Hπ region is not capable of modifying the temperature of the warmest regions but does so in the inner part where the temperature is low enough.  相似文献   

20.
The planet-encircling springtime storm in Saturn’s troposphere (December 2010–July 2011, Fletcher, L.N. et al. [2011]. Science 332, 1413–1414; Sánchez-Lavega, A. et al. [2011]. Nature 475, 71–74; Fischer, G. et al. [2011]. Nature 475, 75–77) produced dramatic perturbations to stratospheric temperatures, winds and composition at mbar pressures that persisted long after the tropospheric disturbance had abated. Thermal infrared (IR) spectroscopy from the Cassini Composite Infrared Spectrometer (CIRS), supported by ground-based IR imaging from the VISIR instrument on the Very Large Telescope and the MIRSI instrument on NASA’s IRTF, is used to track the evolution of a large, hot stratospheric anticyclone between January 2011 and March 2012. The evolutionary sequence can be divided into three phases: (I) the formation and intensification of two distinct warm airmasses near 0.5 mbar between 25 and 35°N (B1 and B2) between January–April 2011, moving westward with different zonal velocities, B1 residing directly above the convective tropospheric storm head; (II) the merging of the warm airmasses to form the large single ‘stratospheric beacon’ near 40°N (B0) between April and June 2011, disassociated from the storm head and at a higher pressure (2 mbar) than the original beacons, a downward shift of 1.4 scale heights (approximately 85 km) post-merger; and (III) the mature phase characterised by slow cooling (0.11 ± 0.01 K/day) and longitudinal shrinkage of the anticyclone since July 2011. Peak temperatures of 221.6 ± 1.4 K at 2 mbar were measured on May 5th 2011 immediately after the merger, some 80 K warmer than the quiescent surroundings. From July 2011 to the time of writing, B0 remained as a long-lived stable stratospheric phenomenon at 2 mbar, moving west with a near-constant velocity of 2.70 ± 0.04 deg/day (?24.5 ± 0.4 m/s at 40°N relative to System III longitudes). No perturbations to visible clouds and hazes were detected during this period.With no direct tracers of motion in the stratosphere, we use thermal windshear calculations to estimate clockwise peripheral velocities of 200–400 m/s at 2 mbar around B0. The peripheral velocities of the two original airmasses were smaller (70–140 m/s). In August 2011, the size of the vortex as defined by the peripheral collar was 65° longitude (50,000 km in diameter) and 25° latitude. Stratospheric acetylene (C2H2) was uniformly enhanced by a factor of three within the vortex, whereas ethane (C2H6) remained unaffected. The passage of B0 generated a new band of warm stratospheric emission at 0.5 mbar at its northern edge, and there are hints of warm stratospheric structures associated with the beacons at higher altitudes (p < 0.1 mbar) than can be reliably observed by CIRS nadir spectroscopy. Analysis of the zonal windshear suggests that Rossby wave perturbations from the convective storm could have propagated vertically into the stratosphere at this point in Saturn’s seasonal cycle, one possible source of energy for the formation of these stratospheric anticyclones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号