首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capturing strain localization in reinforced soils   总被引:2,自引:1,他引:1  
Lade’s single hardening soil model with Cosserat rotation embodied in the finite element method is employed to investigate the behavior of geosynthetic reinforced soils with special attention to the development of shear banding. The ability of the finite element model to detect shear banding in a reinforced soil is examined against three high quality small-scale laboratory plane strain tests on Toyoura sand with and without reinforcement. These three tests were chosen because of the clear failure surfaces that developed in the soil during loading. The FEM analyses were able to reasonably simulate the plane strain laboratory tests including both unreinforced and reinforced cases. The FEM analyses gave reasonably good agreement with the experimental results in terms of global stress–strain relationships and shear band occurrences. Furthermore, and based on FE analyses of a hypothetical geosynthetic reinforced soil (GRS) retaining wall, it is shown that the geosynthetic reinforcements are very effective in hindering the formation of shear bands in GRS retaining walls when small spacing between the reinforcement layers was used. When used properly, the geosynthetic reinforcements made the soil behave as a truly reinforced mass of considerable stiffness and strength.  相似文献   

2.
This paper presents a finite element model for analysing the behaviour of granular material wrapped with polyethylene bags under vertical compression and cyclic shearing. The simple Mohr–Coulomb model is used to represent the soil behaviour. The polyethylene bag is represented by a linear-elastic–perfect-plastic model. The soil-bag interface is modelled with contact constraints. The main purpose of the numerical analysis is to validate the anticipated performance of soilbags under various loading conditions and hence the effectiveness of soilbags as a method of ground improvement.  相似文献   

3.
防波堤土工织物加筋地基离心模型试验及数值模拟   总被引:7,自引:2,他引:5  
以黄骅港北防波堤工程为依托,对土工织物加筋软粘土地基及斜坡式防波堤体系的固结过程进行了离心模型试验和有限元数值模拟,通过分析地基土体固结过程中防波堤-加筋垫层-基体系的位移场和应力场的发展及织物拉应力分布和发展,验证离心试验及数值模拟方法的合理性,并得出以下几点主要结论:(1)土工织物加筋垫层的作用机理为其抗拉性限制自身横向变形,通过与附近土体的摩擦作用限制其侧向变形;(2)加筋减小防波堤-垫层-地基体系的高应力水平区,避免堤身与地基高应力水平区域的连通,增强系统稳定性;(3)在离心试验采用的分层地基的条件下,加筋减小了浅层软基和堤身的侧向位移量,对系统总位移有抑制作用;(4)试验中织物替代材料的极限拉伸强度发挥程度较低,其与砂垫层间摩擦强度的发挥水平约为23.8%。  相似文献   

4.
In an effort to study the relation of fabrics to the critical states of granular aggregates, the discrete element method (DEM) is used to investigate the evolution of fabrics of virtual granular materials consisting of 2D elongated particles. Specimens with a great variety of initial fabrics in terms of void ratios, preferred particle orientations, and intensities of fabric anisotropy were fabricated and tested with direct shear and biaxial compression tests. During loading of a typical specimen, deformation naturally localizes within shear bands while the remaining of the sample stops deforming. Thus, studying the evolution of fabric requires performing continuous local fabric measurements inside these bands, a suitable task for the proposed DEM methodology. It is found that a common ultimate/critical state is eventually reached by all specimens regardless of their initial states. The ultimate/critical state is characterized by a critical void ratio e which depends on the mean stress p, while the other critical state fabric variables related to particle orientations are largely independent of p. These findings confirm the uniqueness of the critical state line in the e ? p space, and show that the critical state itself is necessarily anisotropic. Additional findings include the following: (1) shear bands are highly heterogeneous and critical states exist only in a statistical sense; (2) critical states can only be reached at very large local shear deformations, which are not always obtained by biaxial compression tests (both physical and numerical); (3) the fabric evolution processes are very complex and highly dependent on the initial fabrics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The paper presents the results of a finite element analysis of the dynamic response of a geosynthetic reinforced soil retaining wall that is constructed with dry-stacked modular concrete blocks as the facia system. In the finite element model, the cyclic shear behavior of the backfill soil is described by a hyperbolic stress-strain relationship with Masing hysteretic unload-reload behavior. The reinforcement material is modelled using a similar hysteretic model which takes into account the measured response of cyclic load-extension tests performed on unconfined geogrid specimens in the laboratory. Interface shear between wall components is simulated using slip elements. The results of finite element analyses giving the seismic response of a typical geogrid reinforced segmental retaining wall subjected to prescribed acceleration records are presented. The results of analyses highlight the influence of dynamic loading on: (1) wall displacement; (2) cumulative interface shear force and displacement between facing units; (3) tensile forces developed in the reinforcement and; (4) acceleration response over the height of the wall. A number of implications to the design of these structures are identified based on the results of these simulations.  相似文献   

6.
为探究赤泥改性黄土的基本工程特性,进行无侧限抗压试验、直剪试验及渗透试验,得出赤泥改性黄土的最佳配比,建立了抗剪强度、无侧限抗压强度与电阻率的经验公式。通过动三轴试验,分析了循环动荷载下改性黄土的累积塑性变形、动弹性模量及浸出毒性。结果表明,随赤泥含量增加,改性黄土无侧限抗压强度和黏聚力都先增大后减小,当赤泥含量为15%时其28 d无侧限抗压强度达到3.5 MPa,较不掺入赤泥时提高约34.7%;改性黄土的渗透系数随赤泥含量增加先快速降低,至赤泥含量5%后趋于稳定;改性黄土的抗剪强度、无侧限抗压强度与电阻率呈良好的线性关系;改性黄土在循环动荷载下的临界动应力达600 kPa,最大动弹性模量比未改性黄土高出6倍,且其浸出液不具有浸出毒性。  相似文献   

7.
The paper presents a model for the analysis of granular foundation beds reinforced with several geosynthetic layers. Such reinforced granular beds are often placed on soft soil strata for an efficient and economical transfer of superstructure load. The granular bed is modeled by the Pasternak shear layer and the geosynthetic reinforcement layers by stretched rough elastic membranes. The soft soil is represented by a series of nonlinear springs. The reinforcement has been considered to be extensible and it is assumed that the deformation at the interface of the reinforcements and soil are same. The nonlinear behavior of the granular bed and the soft soil is considered. Plane strain conditions are considered for the loading and reinforced foundation soil system. An iterative finite difference scheme is applied for obtaining the solution and results are presented in nondimensional form. The results from the proposed model are compared to the results obtained for multilayer inextensible geosynthetic reinforcement system. Significant reduction in the settlement has been observed when the number of reinforcement layer is increased. In case of inextensible reinforcements as the number of reinforcement layer is increased the settlement is decreased with a decreasing rate, but in case of extensible reinforcement the reduction rate is almost constant. Nonlinear behavior of the soft soil decreases as number of reinforcement layer is increased. The effect of the stiffness of the geosynthetic layer on the settlement response becomes insignificant for multilayer reinforced system, but the mobilized tension in the reinforcement layers increases as the stiffness of the geosynthetic layers increases.  相似文献   

8.
In the present study, a mechanical model has been developed to study the behavior of multilayer geosynthetic-reinforced granular fill over stone column-reinforced soft soil. The granular fill and geosynthetic reinforcement layers have been idealized by Pasternak shear layer and rough elastic membranes, respectively. The Kelvin–Voight model has been used to represent the time-dependent behavior of saturated soft soil. The stone columns are idealized by stiffer springs and assumed to be linearly elastic. The nonlinear behavior of the soft soil and granular fill is considered. The effect of consolidation of soft soil due to inclusion of the stone columns on settlement response has also been included in the model. Plane strain conditions are considered for the loading and reinforced foundation soil system. An iterative finite difference scheme is applied for obtaining the solution and results are presented in nondimensional form. It has been observed that if the soft soil is improved with stone columns, the multilayer reinforcement system is less effective as compared to single layer reinforcement to reduce the total settlement as there is considerable reduction in the total settlement due to stone column itself. Multilayer reinforcement system is effective for reducing the total settlement when stone columns are not used. However, multilayer reinforcement system is effective to transfer the stress from soil to stone column. The differential settlement is also slightly reduced due to application of multiple geosynthetic layers as compared to the single layer reinforcement system.  相似文献   

9.
取样与施工过程会对天然沉积结构性软黏土产生扰动,使土体的工程性质发生演化,一些学者分别以扰动度和损伤变量两个特征参数对该问题进行了较为深入的研究,但扰动度与描述土体应力状态的损伤变量之间的相关性目前仍未明晰。为此,以连云港天然沉积结构性软黏土进行不同应力路径下快速加载试验模拟土体应力损伤,对损伤后土体进行固结试验和无侧限抗压强度试验,结合张孟喜提出的损伤变量以及两种常用的扰动度(变形和强度)的定义,评价了损伤后土体的损伤变量和扰动度,探讨二者间关系。结果表明,损伤后土体压缩曲线屈服前的斜率并未产生明显改变,即损伤变量与按变形定义的扰动度间关系不明显;而损伤变量与以强度定义的扰动度之间存在线性递增关系,说明了当土体沿着某一路径加载时,越接近破坏线,其损伤程度越高,土体的强度也随之降低。  相似文献   

10.
The paper presents a mechanical model to predict the behavior of geosynthetic-reinforced granular fill resting over soft soil improved with group of stone columns subjected to circular or axi-symmetric loading. The saturated soft soil has been idealized by spring-dashpot system. Pasternak shear layer and rough elastic membrane represent the granular fill and geosynthetic reinforcement layer, respectively. The stone columns are idealized by stiffer springs. The nonlinear behavior of granular fill and soft soil is considered. Consolidation of the soft soil due to inclusion of stone columns has also been included in the model. The results obtained by using the present model when compared with the reported results obtained from laboratory model tests shows very good agreement. The effectiveness of geosynthetic reinforcement to reduce the maximum and differential settlement and transfer the stress from soft soil to stone columns is highlighted. It is observed that the reduction of settlement and stress transfer process are greatly influenced by stiffness and spacing of the stone columns. It has been further observed that for both geosynthetic-reinforced and unreinforced cases, the maximum settlement does not change if the ratio between spacing and diameter of stone columns is greater than 4.  相似文献   

11.
An extensive literature on the shear behavior of continuum–particulate interfaces has been developed during the last four decades. However, relatively limited work regarding the behavior of interfaces under different loading conditions has been published. This paper presents a discrete element modeling study, along with comparisons from experimental data, of interface behavior under axial and torsional drained loading conditions. Detailed studies allow for links between micro‐scale particle behavior and observed global response to be developed and for the latter to be evaluated in light of particle–particle and particle–continuum interactions. The results of this study indicate that axial and torsional interface shear induce inherently different loading conditions, as shown by the different failure envelopes, stress paths, and induced soil volume changes and deformations. Furthermore, the results presented in this paper indicate that particle‐level mechanisms, such as particle rotations and contact slippage, play different roles in axial and torsional shear. Coordination number, polar histograms, particle displacements, particle rotations, and local void ratio measurements provide further insights into the fabric evolution, loading conditions, and failure mechanisms induced by these two shear modes. This study expands the current understanding of interface behavior and discusses potential improvements to geotechnical systems that leverage the characteristics of different imposed loading conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
土工合成材料与土工合成材料加筋砂土的相关特性   总被引:14,自引:4,他引:10  
吴景海 《岩土力学》2005,26(4):538-541
目前土工合成材料加筋的理论研究明显落后于工程实践。为了指导土工合成材料的优选和研究加筋机理,以5种国产土工合成材料为加筋材料,它们分别是针刺无纺土工织物、涤纶纤维经编土工格栅、玻璃纤维经编土工格栅、双向塑料拉伸土工格栅和土工网,系统进行三轴压缩试验以比较各种土工合成材料对砂土的加筋效果。试验结果表明:(1)各种土工合成材料加筋砂土的抗剪强度和应力应变特性不同;(2)无纺土工织物适合用于允许大变形的加筋土工程,涤纶纤维经编土工格栅和塑料拉伸土工格栅均适合用于对变形有较严格要求的加筋土工程,玻璃纤维经编土工格栅适合用于对变形有严格限制的加筋工程,设计时需要较大的安全系数,土工网适用低等级的加筋土工程;(3)砂土对各种土工合成材料侧向收缩的约束作用差异显著。  相似文献   

13.
This paper presents the effect of random inclusion of polypropylene fibers on strength characteristics of soil. Locally available cohesive soil (CL) is used as medium and polypropylene fibers with three aspect ratios (l/d = 75, 100 and 125) are used as reinforcement. Soil is compacted with standard Proctor’s maximum density with low percentage of reinforcement (0–1% by weight of oven-dried soil). Direct shear tests, unconfined compression tests and CBR tests were conducted on un-reinforced as well as reinforced soil to investigate the strength characteristics of fiber-reinforced soil. The test results reveal that the inclusion of randomly distributed polypropylene fibers in soil increases peak and residual shear strength, unconfined compressive strength and CBR value of soil. It is noticed that the optimum fiber content for achieving maximum strength is 0.4–0.8% of the weight of oven-dried soil for fiber aspect ratio of 100.  相似文献   

14.
吴越  杨仲轩  徐长节 《岩土力学》2016,37(9):2569-2576
采用离散元方法,利用半径扩展法和重力沉积法分别生成具有初始各向同性和各向异性内结构的试样,并开展三轴不排水压缩和拉伸试验,研究不同制样方法产生的初始各向异性对砂土宏微观力学特性及其临界状态的影响。运用组构张量对砂土的各向异性进行量化,分析不同初始组构各向异性对组构张量演化的影响并确定了组构张量的临界值。试验结果表明:初始组构各向异性对试样的剪胀性有重要影响,由于受重力影响形成初始各向异性,其各向异性程度越大、组构方向与加载方向越一致,剪胀性越显著;初始组构各向异性对试样的临界状态没有影响,砂土的组构张量具有唯一的临界状态值。  相似文献   

15.
Admixtures and reinforcement materials are frequently used in practice to stabilize coarse and fine grained soils and to improve their engineering properties. However, a limited number of studies have been carried out on fiber-reinforced fine grained soils. In this study, a series of unconfined compression tests, direct shear tests, and California Bearing Ratio tests were carried out to investigate the effect of randomly distributed polypropylene fiber on the strength behavior of a fine grained soil. The content of polypropylene fiber was varied between 0.25 and 1% by total dry weight of the reinforced samples. It was observed that unconfined compression strength, cohesion intercept and California Bearing Ratio increased with the addition of fibers. On the other hand, the results of the tests indicated that shear strength angle was not affected significantly by the fiber reinforcement.  相似文献   

16.
A new constitutive model for intact rock is presented recognising that rock strength, stiffness and stress–strain behaviour are affected by the size of the rock being subjected to loading. The model is formulated using bounding surface plasticity theory. It is validated against a new and extensive set of unconfined compression and triaxial compression test results for Gosford sandstone. The samples tested had diameters ranging from 19 to 145 mm and length-to-diameter ratios of 2. The model captures the continuous nonlinear stress–strain behaviour from initial loading, through peak strength to large shear strains, including transition from brittle to ductile behaviour. The size dependency was accounted for through a unified size effect law applied to the unconfined compressive strength—a key model input parameter. The unconfined compressive strength increases with sample size before peaking and then decreasing with further increasing sample size. Inside the constitutive model two hardening laws act simultaneously, each driven by plastic shear strains. The elasticity is stress level dependent. Simple linear loading and bounding surfaces are adopted, defined using the Mohr–Coulomb criterion, along with a non-associated flow rule. The model simulates well the stress–strain behaviour of Gosford sandstone at confining pressures ranging from 0 to 30 MPa for the variety of sample sizes considered.  相似文献   

17.
This paper deals with soil/reinforced geotextile interface behaviour in direct shear and pullout movements. A soil/geosynthetic direct shear apparatus, developed in accordance to EN ISO 12957-1 (2004) and ASTM D5321-92 (1992) standards, is presented. Some details of the test (like: specimen fixation, influence of the vertical stress on the registered horizontal force, type of test and measurement of the vertical displacement) are discussed and modifications in the test procedures are adopted. Then, the reinforced geotextile and the residual soil of granite used in the research are described. The behaviour of soil/geosynthetic interface in direct shear is characterized based on modified direct shear tests and maximum interface shear stress is determined at peak and residual for a confining stress of 50 kPa. The modification in the pullout test apparatus described by Lopes and Ladeira (1996a; 1996b) and by Lopes and Lopes (1999) are noticed. The behaviour of soil/geosynthetic interface in pullout is characterized based on pullout tests performed, in accordance EN 13738 (2004), and interface shear stress at maximum pullout force is defined for a confining stress of 50 kPa. Finally, the values of interface coefficient at soil/geosynthetic interface are obtained in direct shear and in pullout and then compared. The main conclusions that can be outlined from the present study are the following: modifications should be made to EN ISO 12957-1 (2004) standard, namely in what concerns the dependence of the measured horizontal force from the vertical stress, the difficulties to perform constant area direct shear test with the lower half box filled with soil and on the measurement of the vertical displacement of the load plate; on the contrary to which is normally accepted the characteristics of the behaviour of soil/geosynthetic interface in pullout, when the geosynthetic has a full plane contact area with the soil, are not able to be obtained based on results of direct shear tests, as in this type of tests the contribution of the geosynthetic deformation on the characteristics of the interface in pullout is not considered.  相似文献   

18.
加筋土堤表层壁体效果的评价   总被引:3,自引:1,他引:3  
刘斯宏  陈越 《岩土力学》2001,22(4):361-365
用水平加筋材料加固土堤时,常常在表层设置一列土袋用于施工中临时挡土及固定水平加筋材料,该到土袋形成一表层壁体,对土堤整体稳定有着很大作用,介绍了考虑表层壁体对加筋土堤的整体稳定作用的方法。该方法分为两个步骤来验算土堤的最小安全系数;其一是将表层一列土袋假想成一刚性壁体,该假想刚性壁体作为一薄壁挡墙作用于后面的补强土堤上;其二是对设有土袋的区域,稳定计算中考虑由于土袋张力引起的附加粘聚力c。并重点说明了该附加粘聚力c的产生机理并给出试验验证结果。  相似文献   

19.
土的基本力学特性及其弹塑性描述   总被引:8,自引:2,他引:6  
姚仰平  侯伟 《岩土力学》2009,30(10):2881-2902
Cam-clay模型是在等向加载试验基础上建立起来的且能够描述正常固结土在常规三轴试验条件下应力-应变关系的最简单弹塑性模型,是建立各种土的弹塑性本构模型的基础。文中分别按加载方式的不同和土组构的不同,对描述与应力状态、应力历史、应力路径、持荷时间等因素有关的加载方式下土应力应变特性的弹塑性本构模型进行了归纳。对反映不同组构所形成的结构性、各向异性和颗粒破碎等特性的弹塑性本构模型进行了综述,并着重介绍了描述应力状态的三维化方法、反映应力历史影响的超固结土模型和模拟渐近状态路径的渐近状态模型等典型研究成果。  相似文献   

20.
加筋垫层应力扩散特性试验研究   总被引:4,自引:0,他引:4  
采用数值试验方法研究加筋垫层的应力扩散特性。首先提出一种基于附加应力反算的加筋垫层应力扩散角计算方法,然后应用该方法研究了加筋垫层应力扩散角的单因素影响规律。表明加筋垫层应力扩散角的范围为45~60°,且加筋垫层设置参数和筋材参数都存在最优值,其对应的应力扩散角最大,最后应用正交试验和多元回归分析方法研究了加筋垫层应力扩散角的多因素影响规律,分析结果表明筋材的间距对应力扩散角变化的影响最大,其次是筋材的首间距,筋材长度对应力扩散角的影响最小,所得到的加筋垫层应力扩散角综合计算公式可为工程实践提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号