首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
Stiffness degradation of natural fine grained soils during cyclic loading   总被引:5,自引:0,他引:5  
Cyclic behavior of natural fine grained soils under a broad range of strains were investigated considering the effects of plasticity index and changes in confining pressures based on cyclic triaxial tests. A total of 98 stress controlled cyclic triaxial tests were conducted on normally consolidated and slightly overconsolidated samples. The investigation was divided into two parts. The first part consists of stress controlled cyclic triaxial tests under different stress amplitudes that were conducted to estimate the modulus reduction and the thresholds between nonlinear elastic, elasto-plastic and viscoplastic behavior. The second part involves the investigation of the undrained stress–strain behavior of fine grained soils under irregular cyclic loadings. The results showed that the elastic threshold is approximately equal to 90% of Gmax. Another transition point was defined as the flow threshold where the value of tangent of shear modulus ratio changes for the second time. Simple empirical relationships to estimate the dynamic shear modulus and damping ratio was formulated and compared with the similar empirical relationships proposed in the literature. The results provide useful guidelines for preliminary estimation of dynamic shear modulus and damping ratio values for fine grained soils based on laboratory tests.  相似文献   

2.
According to the results of cyclic triaxial tests on Hangzhou sands, a correlation is presented between liquefaction resistance and elastic shear modulus. Material-dependent but independent of confining stress, shows the linear relation of (σd/2)1/2 with Gmax. For its application to different soils, a method proposed by Tokimatsu [Tokimatsu K, Uchida A. Correlation between liquefaction resistance and shear wave velocity. Soils Found 1990:30(2):33–42] is utilized to normalize the shear modulus with respect to minimum void ratio. A simplified equation is established to evaluate the liquefaction potential by shear-wave velocity. The critical shear-wave velocity of liquefaction is in linear relation with 1/4 power of depth and the peak horizontal ground surface acceleration during earthquakes. The equation proposed in this paper is compared with previous methods especially the procedure proposed by Andrus [RD Andrus, KH Stokoe. Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron Eng 2000:126(11):1015–25]. The results show its simplicity and effectiveness when applied to sands, but more validation or modification is needed for its application to sand with higher fines content.  相似文献   

3.
通过对某核电厂取水明渠导流堤地基土室内共振柱试验及粉砂的动三轴液化试验,测定了动剪切模量、阻尼比与动剪应变幅的双曲线关系,分析了导流堤地基土的动力变形特性,探讨了砂土的抗液化强度与液化振次之间的乘幂函数关系,确定了该地基土的抗液化强度指标。试验结果为评价导流堤的地震稳定和液化分析提供了相关参数。  相似文献   

4.
Small strain shear modulus Gmax is an essential parameter in soil dynamics, and it is usually estimated based on the Hardin and Richart equation. However, many previous researches on sands have indicated that the Hardin and Richart equation does not consider the influences of cyclic loading history on Gmax. In this paper, effects of cyclic loading history on Gmax of saturated clays under undrained conditions are studied using a combination device of piezoelectric-ceramic bender element system and cyclic triaxial apparatus. The dynamic pre-loading includes both relatively high amplitudes of cyclic stresses and cyclic strains. Gmax without cyclic loading history is also investigated for the comparison purpose. Test results show that, at the same effective stress, both cyclic strain history and cyclic stress history will induce reduction of Gmax compared to the corresponding Gmax values with non-cyclic loading effects. In strain-controlled tests, the reduction of Gmax is slight and relatively stable; while in stress-controlled tests, the reduction of Gmax increases suddenly and remarkably when the effective stresses degrade to a certain degree. The comparison between double amplitude axial strain and residual excess pore water pressure behaviors show that the remarkable reduction of Gmax can demonstrate the cyclic failure of saturated clays.  相似文献   

5.
本文通过对某核电厂取水明渠导流堤地基土粉砂层室内共振柱试验及动三轴液化试验,测定了动剪切模量、阻尼比与动剪应变幅的双曲线关系,分析了粉砂的动力变形特性,探讨了砂土的抗液化强度与液化振次之间的乘幂函数关系,确定了该地基土的抗液化强度指标。为评价导流堤的地震稳定和液化分析提供了相关参数,同时对堤坝工程场地的地震安全性评价和液化评判有良好的借鉴和参考价值。  相似文献   

6.
开展场地地震动反应分析是众多海洋工程活动顺利实施和长期安全运行的重要保障,其中查明海底土小应变动力特性是十分关键的。文章借助海上原位钻孔取样和室内共振柱仪对辽东湾近海海底土小应变动力特性开展试验研究,探讨前人总结提出的滨海海底土初始动剪切模量Gmax预测经验公式在辽东湾海域的适用性,对比文章试验结果与周边海域已有海底土剪切波速测试结果,分析小应变范围内海底土动剪切模量的衰减特征和阻尼比发展演变趋势,并同时进行定量化模拟预测,评价海底土动剪切模量衰减曲线的归一化特征。研究结果表明:(1)共振柱试验得到的原状海底土剪切波速与周边海域已有海底土剪切波速测试结果吻合良好;(2)相比起陆地土,海洋土在小应变范围内归一化动剪切模量G/Gmax衰减得更慢,阻尼比增长得也更慢;(3)通过引入临界剪应变,不同土类和埋深对应的海底土小应变动剪切模量衰减曲线可以进行归一化。研究成果对合理开展海洋工程场地地震动反应分析评价具有一定的指导意义。  相似文献   

7.
Frozen soil plays an important role on the stability of railway and highway subgrade in cold regions. However, the dynamic properties of frozen soil subjected to the freeze–thaw cycles have rarely been investigated. In this study, cryogenic cyclic triaxial tests were conducted on frozen compacted sand from Nehe, Heilongjiang Province in China which was subjected to the closed-system freeze–thaw cycles. A modified Hardin hyperbolic model was suggested to describe the backbone curves. Then, dynamic shear modulus and damping ratio versus cyclic shear strain were analyzed under the different freeze–thaw cycles, temperatures, initial water contents, loading frequencies and confining pressures. The results indicate that the freeze–thaw process plays a significant effect on the dynamic shear modulus and damping ratio, which slightly change after one freeze–thaw cycle. Dynamic shear modulus increases with increasing initial water content, temperature, loading frequency and confining pressure. Damping ratio increases with increasing initial water content, while decreases with increasing temperature and loading frequency. The effect of confining pressure on the damping ratio was found not significant. Furthermore, the empirical expressions were formulated to estimate dynamic shear modulus and damping ratio of the frozen compacted sand. The results provide guidelines for evaluating the infrastructures in cold regions.  相似文献   

8.
Dynamic properties of municipal solid waste (MSW) from two dump sites located at Delhi, India are evaluated from field and large scale laboratory tests. Shear wave velocity (Vs) profiles of MSW, measured at these two sites using surface wave techniques, are in range of Vs data reported for MSW landfills worldwide. Representative bulk MSW samples were collected from large test pits excavated at the two dump sites to determine the near surface unit weight. Large scale undrained cyclic triaxial (CTX) tests were conducted on reconstituted MSW specimens to investigate the effect of various parameters such as composition, confining pressure, number of loading cycles, loading frequency and saturation on the dynamic properties. Undrained CTX tests, conducted on the specimens with and without fibrous materials demonstrated the effect of fibrous waste constituents on the stiffness and damping behavior of MSW. Specimens consisting of fibrous waste constituents such as plastics and textiles exhibited significantly less modulus reduction compared to specimens with negligible amount of fibrous content. The modulus reduction (G/Gmax) and material damping ratio curves derived from the present study are in the range reported for MSW in the literature. The G/Gmax curves from present study are in good agreement with curves recommended for MSW at Tri-Cities landfill in USA and Tianziling landfill in China. Dynamic properties evaluated from the present study add to the growing database of the worldwide dataset and can be useful for evaluating the seismic stability and associated permanent deformations of the existing dumps in and around Delhi.  相似文献   

9.
According to the results of cyclic triaxial tests, a linear correlation is presented between liquefaction resistance and elastic shear modulus, which shows the relation of G max (kPa) with (σd/2)1/2(kPa)1/2. When applied to soils from different sites, the correlation can be normalized in reference to its minimum void ratio (e min). Accordingly, an improved method is established to evaluate the liquefaction potential with shear-wave velocity. The critical shear-wave velocity of liquefaction is in linear relation with 1/4 power of depth and the maximum acceleration during earthquakes, which can be used to explain the phenomenon that the possibility of liquefaction decreases with the increment of the depth. Compared with previous methods this method turns out simple and effective, which is also verified by the results of cyclic triaxial tests. Foundation item: State Natural Science Foundation (59678020) and Natural Science Foundation of Zhejiang Province (RC9609).  相似文献   

10.
为研究砂-锯末混合模型土的动力参数规律特性,采用动三轴试验,研究了此类土的滞回圈特性以及其动剪切模量和阻尼比随循环加载次数的变化规律。试验结果表明:分级循环加载过程中,随着荷载级别的增加,滞回圈的面积逐渐增大,形状从柳叶形向新月形发展;模型土的动剪切模量在各循环下基本为常量而阻尼比呈上下波动;而随荷载级别的增大,动剪切模量均值减小,阻尼比均值增大;与一般砂土相比,模型土的动力参数曲线分布形态类似,但动剪切模量比更小,阻尼比更大。  相似文献   

11.
针对荆江大堤江陵段下伏地层广泛分布的饱和粉细砂,参照原位试验成果重塑粉细砂试样,按估算的固结应力比(Kc约为1.6)对试样动剪模量、阻尼比及总应力动强度进行测试,结果表明:(1)试样应力-应变骨干曲线与Hardin-Drnevich双曲线模型假设高度吻合,Hardin公式可很好地拟合动模量/阻尼比与动应变的关系。在研究试样密实度范围内,最大动模量随围压和密实度的增加而增加,但围压对动模量的敏感性更高,且相同围压下动剪模量比与动应变关系曲线近乎重合。围压增大或密实度升高均会引起阻尼比的降低,1%应变对应的阻尼比分布在0.15~0.21之间;(2)偏压状态下以累积轴向应变5%作为液化判别标准进行抗液化强度试验,随特征振次及测试围压的增大,液化动剪应力比相应减小,试样振动孔压比最高仅能达到0.8~0.9;(3)由总应力法求取的动内摩擦角与黏聚力均随设定特征振次的增加而下降,且内聚力并非约等于0,表明动力作用下该试样具有一定的黏滞性。  相似文献   

12.
Shear modulus and damping ratio of grouted sand   总被引:2,自引:0,他引:2  
An experimental comparative study of three different grouted sands in terms of their effects on the values of two dynamic properties is presented. The dynamic properties studied are the shear modulus and the damping ratio which are determined with resonant column tests and cyclic triaxial tests. The behaviour of a pure Fontainebleau sand is compared with the behaviour of a Fontainebleau sand grouted with a silicate grout, a micro-fine cement grout and a mineral grout. The effects of the grouting treatment, the type of grout, the confining pressure, and the strains, on the shear modulus and the damping ratio are studied. The test results have shown that grouting improves the stiffness of the sand especially for small strains. Whatever the type of material, confining stress improves the shear modulus whereas it has a negligible effect on the damping ratio. When strain increases, the shear modulus decreases and the damping ratio increases.  相似文献   

13.
The August 17, 1999 Kocaeli earthquake affected the city of Adapazari, which is located in the northwest of Turkey, with severe liquefaction and bearing capacity failures causing tilting of buildings, excessive settlements and lateral displacements. To understand the stress–strain behavior and pore pressure behavior of undisturbed soils during the earthquake, the cyclic and post-cyclic shear strength tests have been conducted on soil samples obtained from Adapazari in a cyclic triaxial test system within the scope of this research. Cyclic tests have been conducted under stress controlled and undrained conditions. Post-cyclic monotonic tests have been conducted following cyclic tests. The strength curves obtained in the experiments showed that the dynamic resistance of silty sand was found to be 45% lower than those of high plasticity soils (MH). The strength of clayey soils with the plasticity index of PI=15–16% was lower compared to the strength of high plasticity soils. Also, it was observed that silty sand soils had the lowest strength. The dynamic strength of the soils increased with the increase in plasticity.  相似文献   

14.
This paper focuses on using high-frequency GAP-SENSORs (GSs), accelerometers, and load cells in a laminar shear box (LSB) filled with loose Toyoura sand to understand the effects of impact loads and cyclic shaking at 1-G on soil properties. The shear wave velocity at small strain (Vs) was calculated directly from first arrival reference using displacement time-history of two GSs under impact loading. Moreover, from first peak using the reduced deformation amplitude technique, damping ratio was calculated. In addition, shaking table tests were performed under harmonic loading with amplitude of acceleration inside the model ground varying from 0.02 g to 1 g. The frequencies of excitation varied from 1 Hz to 10 Hz. GSs and inside accelerometers were used to directly measure the outside lateral deformation and shear stress at different elevations of LSB, respectively. Results show that the shear modulus (G) and the damping ratio (D) behavior of model sand are generally consistent with the behavior presented by similar tests using only accelerometers. In addition, damping ratio increases as frequency loading increases. Characteristic changes in two shear stress components in shaking loading conditions were also investigated using high precision inside load cells.  相似文献   

15.
The aim of the present study is twofold. Firstly, the paper investigates the undrained cyclic and post-cyclic behaviour of two silica sands by means of multi-stage cyclic triaxial tests. Secondly, based on the post-cyclic response observed in the element test, the authors formulate a simplified stress–strain relationship that can be conveniently used for the construction of p–y curves for liquefiable soils. The multi-stage loading condition consists of an initial cyclic loading applied to cause liquefaction, followed by undrained monotonic loading that aimed to investigate the post-cyclic response of the liquefied sample. It was found that due to the tendency of the liquefied soil to dilate upon undrained shearing, the post-liquefaction strain–stress response was characterised by a distinct strain–hardening behaviour. The latter is idealized by means of a bi-linear stress–strain model, which can be conveniently formulated in terms of three parameters, i.e.: (i) take-off shear strain, γto, i.e. shear strain required to mobilize 1 kPa of shear strength; (b) initial secant shear modulus, G1, defined as 1/γto; (c) post-liquefied shear modulus at large strain, G2 (γγto). Based on the experimental results, it is concluded that these parameters are strongly influenced by the initial relative density of the sample, whereby γto decreases with increasing relative density. Differently both shear moduli (G1 and G2) increases with increasing relative density. Lastly, the construction of new p–y curves for liquefiable soils based on the idealized bi-linear model is described.  相似文献   

16.
Cyclic triaxial tests on reconstituted sand samples are broadly employed in practice while they ignore the inherent characteristics of soil in field condition such as aging, fabric, and prior strain history. Relative state parameter index, ξR, is utilized in a probabilistic framework to adjust the cyclic triaxial resistance ratio of sands at 15 uniform cycles (CRRtx,15) to field condition. A wide-ranging database containing the results of cyclic triaxial tests conducted on reconstituted samples has been compiled to derive a correlation between relative state parameter index (ξR) and triaxial cyclic resistance ratio. The adjustment coefficients proposed by researchers are employed to correct CRRtx,15ξR relationship for actual field condition. The adjusted CRRtx,15ξR relationships are applied to a database of field liquefaction case histories composed of both SPT and CPT based data and their performances in field condition are evaluated. It is demonstrated that constant triaxial-to-field adjusting coefficients cannot ever predict conservative results. Logistic regression method is employed to derive a field probabilistic criterion that obtains the likelihood of liquefaction initiation in terms of ξR. The ξR-based boundary curve standing for 20% likelihood of liquefaction initiation is found to be the most conservative limit state boundary to be used in field conditions. Finally, the triaxial and field CRRξR relationships are composed and a probabilistic triaxial-to-field adjustment coefficient is proposed in terms of ξR and a given liquefaction probability. It is anticipated that the proposed relationship could reasonably correct the results of cyclic triaxial testing on freshly reconstituted sand samples.  相似文献   

17.
基于航空工业组团阎良片区地震小区划项目中大量动三轴试验结果,通过双曲线拟合方法,得到主要土类(黄土状土、粉质粘土、粉土、细砂)在8个典型剪应变(0.000005、0.00001、0.00005、0.0001、0.0005、0.001、0.005、0.01)下的动剪切模量比和阻尼比统计值,并将得到的统计值与廖振鹏给出的建议值、陈党民等给出的典型值和袁晓铭等给出的推荐值进行比较,进一步论证土动力学参数的地域性特征。文中还探讨了土样埋深和取样手段(试样等级)对动剪切模量比和阻尼比的影响。文中给出的统计值可为该片区地震小区划中的土层地震反应模型提供参数,同时也为研究该片区场地土动力特性及重大工程地震安全性评价工作提供参考和借鉴。  相似文献   

18.
辽宁台安砂土属于易液化砂,提升其抗液化性能具有重要的工程意义。文章针对纳米硅溶胶(CS)对辽宁台安砂土抗液化性能的改良效果进行探究,通过不排水动三轴试验,对纯砂样和改良砂样的液化特性进行对比研究,分析CS浓度和固化时间两个参量对改良砂样动力特性的影响。研究结果表明:(1)CS能够显著提升台安砂土的抗液化性能,在动载作用下改良砂样均未发生液化破坏。(2)随CS浓度和固化时间的增加,试样动孔压ud、动应变εd呈现先迅速下降后趋于平缓的发展规律;当CS浓度增至4%、固化时间达到3周后,试样抗液化性能的提升效果不再明显。(3)改良砂样的滞回曲线变得更加稳定。随CS浓度增加,阻尼先降低后趋于稳定,动弹性模量逐渐增大并趋于平缓,但伴随有一定的波动;随固化时间增大,阻尼呈减小趋势,动弹性模量呈增大趋势。研究成果可为辽宁台安地区砂土液化治理提供参考依据。  相似文献   

19.
Bender element (BE) tests of saturated sand have increased interest to researchers currently. However, the measurement of small strain modulus from BE tests shows large difference between saturated and dry conditions. In this study, BE tests of a type of clean sand (Fujian sand) and two types of natural sands (Hangzhou sand and Nanjing sand) were performed. For the purposes of comparison, resonant column (RC) test and torsional shear (TS) test were also carried out on the same specimen. The factors that influence the determination of the travel time of shear wave in BE tests are discussed and a reliable method for the determination of the shear-wave velocity is obtained. It is found that the shear-wave velocities Vs of saturated Fujian sand (clean sand) and Hangzhou sand (natural sand) obtained from BE tests are 5–10% greater than those obtained from RC and TS tests. However, the Vs of saturated Nanjing sand (natural sand) obtained from BE, RC and TS tests show good agreement with a maximum difference of about 3%. Sands with various fines contents were also tested in an attempt to explain the differences between the two saturated natural sands. Biot׳s theory accounting for the dispersion of shear wave was employed to interpret the results of BE tests. The results indicate that the fines content of natural sand plays an important effect on the hydraulic conductivity, which affects the relative motion between soil particles and fluid when a high frequency shear wave propagates in the specimen. Based on this, a method for the determination of small strain shear modulus in BE test was proposed for both saturated clean sands and natural sands.  相似文献   

20.
A one-dimensional constitutive model, developed for the nonlinear ground response analysis of layered soil deposits, is calibrated and validated experimentally in this paper. The small number of parameters renders the model easily implementable, yet quite flexible in effectively reproducing almost any type of experimentally observed hysteretic soil behavior. In particular, the model generates realistic shear modulus and damping curves as functions of shear strain, as well as stress–strain hysteresis loops. The model is calibrated against three sets of widely-used published shear modulus and damping (G : γ and ξ : γ) curves and a library of parameter values is assembled to facilitate its use. The model, along with a developed explicit finite-difference code, NL-DYAS, for analyzing the wave propagation in layered hysteretic soil deposits, is tested against established constitutive models and numerical tools such as Cyclic1D [12] and SHAKE [42], and validated against experimental data from two centrifuge tests. Emphasis is given on the proper assessment of the Vs profile in the centrifuge tests, on the role of soil nonlinearity, and on comparisons of two inelastic codes (NL-DYAS and Cyclic1D) with equivalent linear (SHAKE) analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号