首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
近年来有关太阳系天体中等挥发性元素的研究掀起了一波浪潮。锌作为中等挥发性元素,其稳定同位素对于高温挥发过程具有很好的指示作用。因此,在行星科学领域锌同位素逐渐成为研究星云和行星演化的一个理想工具。本文系统地归纳了各类陨石和行星天体储库的锌同位素组成,并对不同种类的陨石以及地外样品(碳质球粒陨石、普通球粒陨石、顽火辉石球粒陨石、橄辉无球粒陨石、铁陨石、石铁陨石、月球陨石和Apollo样品、火星陨石、灶神星陨石等)中的锌稳定同位素研究内容进行了较全面的总结。主要包括不同陨石和行星锌同位素组成的控制因素以及锌同位素对太阳系内星云过程和行星过程的指示;同时,简要论述了锌同位素在太阳系形成和演化过程中的分馏机制,并立足目前的研究基础,探讨锌同位素在行星科学领域的研究前景和发展趋势。  相似文献   

2.
蒋云  Piers KOEFOED  王昆  徐伟彪 《地质学报》2021,95(9):2878-2888
钾和其他中等挥发性元素亏损是类地行星普遍的全岩化学成分特征之一,能用来示踪不同的亏损过程.球粒陨石是组成行星的前体物质,研究球粒陨石中钾同位素的亏损和分异机制,对于太阳系物质或行星的起源、形成和演化具有十分重要的意义.本文利用近年来发展的高精度钾同位素分析技术,测试了 14 个中国南极陨石以及6 个目击型陨石(Murchison、Allende、Ningqiang、Tagish Lake、Xinyang 和Banma)的全岩钾同位素组成.结果显示,21 个碳质球粒陨石全岩δ41 K值分布范围为-0. 62‰±0. 05‰至0. 37‰±0. 08‰,平均值为-0. 32‰± 0. 24‰(2SD),比全岩硅酸盐地球(BSE)稍重.18 个普通球粒陨石全岩数据(如果异常值 GRV 021603 除外)的δ41 K值分布范围为-1. 02‰±0. 05‰到-0. 61‰±0. 02‰,平均δ41 K值为-0. 81‰±0. 15‰(2SD),比全岩硅酸盐地球稍轻.2 个目击型陨石 Murchison(CM2 型)和 Allende(CV3 型),呈现较大的内部钾同位素差异(分别为0. 22‰和0. 16‰),可能反映了水蚀变导致的钾同位素在100 mg球粒陨石全岩尺度上的不均一性.小行星母体过程(水蚀变、热变质和冲击变质)不能很好地解释球粒陨石的钾同位素分馏,母体作为一个封闭体系只是平衡均一化同一个化学群内的钾同位素成分.不同化学群球粒陨石之间的钾同位素与钾元素之间没有显示明确的相关性,这一趋势与最近国际上发表的数据在误差范围内基本一致,太阳星云的单阶段热过程如蒸发或冷凝均不能很好地解释.核合成异常是一种可能的解释,大质量恒星的星风或者超新星爆发注入可以增加一些41 K到太阳星云中,从而在原始球粒陨石中保存下来,然而这一观点需要更多研究支持.  相似文献   

3.
地球科学中铁同位素研究进展   总被引:1,自引:0,他引:1  
21世纪初,铁同位素的高精度分析因多道等离子体质谱仪的引入成为可能。铁在自然界中具有高丰度、多价态和生物可利用性,其同位素地球化学受到广泛关注,并取得巨大的进展。本文综述了铁同位素研究的进展和在地球科学中的应用。这些进展包括:(1)查明了各类陨石的铁同位素组成,并制约了太阳系及早期行星演化过程;(2)调查了地球主要储库的铁同位素组成;(3)积累了大量高、低温常见体系中两相间的铁同位素分馏系数;(4)初步探明了岩浆过程(如部分熔融、地幔交代和岩浆分异等)中的铁同位素分馏行为;(5)初步查明铁同位素在主要低温过程(如风化、早期成岩作用等)中的分馏行为;(6)实例性研究揭示了沉积岩样品铁同位素在示踪古海洋大气氧逸度变化和早期生命演化方面的潜力。随着人们对铁同位素分馏机制理解的加深,各体系中分馏系数的积累,铁同位素将在地球科学的各个方面得到更广泛的应用。  相似文献   

4.
地表硅酸盐岩矿物风化通常是水体中钙、镁、钠、钾等元素的重要来源,然而相比于水体中的钙、镁和钠,目前对钾的水文地球化学行为的认识仍十分有限。表生地球化学领域最新研究证明风化、吸附等多种水岩反应伴随着较大的钾同位素分馏,表明钾同位素技术可以用于示踪地下水中钾的来源及迁移转化。文章通过系统总结上地壳、水圈和其他地表储库(植物、肥料)的钾同位素组成,发现水圈普遍比大陆上地壳富集41K,为识别地下水的钾来源提供了基础;通过总结钾同位素在常见的水岩作用过程(硅酸盐岩矿物溶解、次生黏土形成、吸附作用、离子交换反应)中的分馏行为,发现硅酸盐岩矿物溶解分馏有限,次生黏土矿物形成引起水体富集41K,表面吸附和离子交换使水体富集39K,不同水岩反应中K同位素行为差异为示踪地下水中钾的迁移转化过程提供了基础;列举了应用钾同位素示踪硅酸盐岩风化和水体污染的最新研究成果。由于钾同位素是硅酸盐岩风化的良好示踪剂,可以利用钾同位素揭示CO2较充足含水层中钾元素释放及迁移转化机理;由于表面吸附和离子交换控制的钾同位素分馏方向与风化控制的钾同位素分馏方向不同,可以利用钾同位素识别出地下水循环过程中多种水岩反应对钾迁移转化...  相似文献   

5.
《地学前缘》2017,(5):402-415
近年来随着质谱和分析技术的进步,Ca同位素的分析精度获得了很大的提高,出现了很多高温条件下Ca同位素地球化学的研究成果。双稀释剂的合理使用在Ca同位素的分析中起关键作用。本文系统地阐述了前人对Ca同位素测试时所使用的双稀释剂技术,提供相应的计算程序,并且系统地归纳近年来高温条件下Ca同位素地球化学研究的新成果,包括单矿物对之间Ca同位素的分馏、陨石和地幔Ca同位素组成的不均一性和陨石的εCa异常及K-Ca定年等。斜方辉石和橄榄石相比于共生的单斜辉石更富集重Ca同位素,并且Δ44/40 CaOpx-Cpx受斜方辉石Ca含量和Ca—O键长的影响。地幔矿物之间具有不相同的Ca同位素组成说明地幔Ca同位素组成的不均一性。陨石及其内部难熔包裹体的Ca同位素组成变化范围很大,并且普遍存在εCa的异常。顽火辉石球粒陨石与地球具有相近的Ca同位素组成,表明它们可能具有相同的起源。但是高温条件下Ca同位素的分馏研究仍处于起步阶段,未来对于地球主要储库的Ca同位素组成、岩浆过程(部分熔融和分离结晶)和洋壳俯冲过程的Ca同位素分馏仍然需要更多地研究。  相似文献   

6.
最新的陨石学资料证明,陨石中表征早期太阳星云同位素异常的证据普遍存在,尤其是碳质球粒陨石难熔包体中。近年在铁陨石和球粒陨石单矿物中也发现了同位素异常,看来在形成行星初始物质的早期太阳星云中,同位素不均匀性是一种非常普遍的现象。 1.氧同位素异常陨石中氧同位素的变化过去一直认为是由于质量分馏造成的。例如,Onuma等(1972)将其变化归结于原始尘埃和冷却的太阳星云气体之间的同位素交换。在3个含钙铝黄长石-尖晶石的阿伦德包体中,相对于SMOW,δ~(18)O为—9.7‰~—11.5‰,这样的组成是在与太阳星云的平衡温度低至800K产生的,或者在包体形成的太阳星云区有非常低的δ~(18)O,此温度较包体的矿物学和结构显示的温度低得多,这一明显差异难以得到合理解释。Clayton等(1973)首先证明了碳质球粒陨石中无水高温矿物强烈贫重氧同位素~(17)O和~(18)O,这种效应是核过程的结果,来自于几乎纯~(16)O组分的的混合,也许产生于太阳系,也许代表了与核合成历史分离的星际尘埃。Clayton等(1977)指出,C_2、C_3和C_4球粒陨石中,相对于地球丰度都存在~(18)O过剩,所有C_3、C_4陨石全岩和矿物分离相都落在与1%  相似文献   

7.
镁同位素地球化学研究新进展及其应用   总被引:7,自引:3,他引:4  
作为一种新兴的地质示踪剂,Mg同位素正受到国际地学界日益广泛的关注。Mg同位素地球化学研究已取得了巨大的进展,近期研究工作主要包括两个方面。首先,调查了地球各主要储库和陨石的Mg同位素组成特征,结果表明陨石和地球地幔具有均一并且相似的Mg同位素组成,平均δ26Mg值分别为-0.28±0.06‰和-0.25±0.07‰;相反,上地壳和水圈的Mg同位素组成很不均一,δ26Mg值变化范围分别为-4.84‰~+0.92‰和-2.93‰~+1.13‰。其次,对一些地质和物理化学过程中Mg同位素的分馏行为进行研究,结果表明:(1)地表风化作用可以造成大的Mg同位素分馏,导致重Mg同位素残留在风化产物中而轻Mg同位素进入水圈;(2)岩浆分异过程中Mg同位素平衡分馏很小;(3)高温化学扩散和热扩散过程中Mg同位素会发生显著的动力学分馏。基于这些研究成果,Mg同位素体系已经被初步应用于示踪早期地球形成和壳内物质再循环等过程,并有望在不久的将来应用于示踪大陆地壳的化学演化和地质温度计等研究领域。  相似文献   

8.
王道德  王桂琴 《矿物学报》2012,32(3):321-340
陨石是来自含气体-尘粒的太阳早期星云盘凝聚和吸积的原始物质,大多数原始物质因吸积后的作用过程而改变(如月球、地球及火星样品),但有一些却完整的保存下来(如球粒陨石或球粒陨石中的难熔包体)。这些原始的物质通常依据同位素丰度特征来识别,依据其矿物-岩石学特征和成因可将已知的陨石划分许多更小的类型。陨石学及天体化学的新近进展包括:新近识别的陨石群;发现新类型球粒陨石及行星际尘粒中发现前太阳和星云组分;利用短寿命放射性核素完善了早期太阳系年代学;洞察宇宙化学丰度、分馏作用及星云源区及通过次生母体的作用过程阐释星云和前星云的记录。本文概述了早期太阳系内从星云到陨石的演化过程。依据这些资料,对早期太阳系所经历的多种核合成的输入、瞬时加热事件与星云动力学有一些新的认识,以及认识到小星子和行星体系的演化比以前预期的更快速。  相似文献   

9.
准确限定球粒陨石的Ca同位素组成对于研究太阳星云物质演化和行星形成都具有重要意义.选取7块典型的球粒陨石,包括3块CV3型陨石(Leoville、Allende和Vigarano)、1块CM2型陨石(Murchison)、1块CO3.2型陨石(Kainsaz)、1块EH4型陨石(Indarch)以及1块H4型陨石(LaPaz Icefield 03601),进行了Ca同位素组成的研究.其中,Kainsaz、Leoville和LaPaz Icefield 03601共3块陨石的Ca同位素组成是首次报道.结果显示:(1)在增大样品量以规避"样品量效应"的情况下,我们对CV群球粒陨石Ca同位素组成进行更加精确的制约,δ44/40Ca的平均值为0.45‰±0.04‰(n=3,2SE);(2)碳质球粒陨石的Ca同位素组成相对于硅酸盐地球偏轻,从CV群(0.45‰±0.04‰,2SE)、CM群(0.73‰±0.04‰,2SE)到CO群(0.78‰±0.03‰,2SE)逐渐变重,可能与不同化学群陨石中富钙铝难熔包体(CAIs)丰度的变化有关;(3)顽火辉石球粒陨石和普通球粒陨石的Ca同位素组成与硅酸盐地球(BSE)组成一致,证实它们可以作为地球初始的组建物质.本研究丰富了球粒陨石Ca同位素组成数据库,有利于正确认识球粒陨石的Ca同位素组成及变化原因.  相似文献   

10.
戴德求  包海梅  刘爽  尹锋 《岩石学报》2020,36(6):1850-1856
富Al球粒是原始球粒陨石中一种矿物岩石学特征介于富钙铝包体(CAIs)和镁铁质硅酸盐球粒之间的特殊集合体,所以常常认为富Al球粒在认识CAIs和镁铁质硅酸盐球粒形成演化过程中的相互联系具有特殊意义。然而,对富Al球粒的初始物质组成以及形成演化过程一直存在较多争议,而氧同位素组成研究能够对球粒演化和早期星云环境等提供重要的信息。在本文中我们报导了来自Kainsaz(1937年降落于俄罗斯,CO3型)碳质球粒陨石中的2个富Al球粒(编号K1-CH1和K2-CH2)的矿物岩石学和氧同位素组成特征。K1-CH1的矿物组成主要为橄榄石、低钙辉石和富钙长石,K2-CH2为橄榄石和富钙长石。2个球粒中的矿物均具有贫~(16)O同位素组成特征。K1-CH1中矿物的△~(17)O组成基本上位于2个区间:-11.1‰~-8.7‰和-3.9‰~0.4‰;而K2-CH2的△~(17)O介于-6.6‰~-0.6‰之间,且具有从中部至边部升高的趋势。矿物岩石学和氧同位素特征表明,这2个富Al球粒的初始物质组成为富CAIs和镁铁质硅酸盐。在球粒熔融结晶过程中,与贫~(16)O同位素组成(△~(17)O:-8.7‰~-7.8‰)的星云发生了氧同位素交换。球粒形成后,发生迁移进入陨石母体,在相对更贫~(16)O同位素组成(△~(17)O:-0.6‰~0.4‰)的母体中(流体参与)发生变质作用,并再次发生了氧同位素交换。  相似文献   

11.
应用多接收电感耦合等离子质谱(MC-ICP-MS)等分析技术进行铊(Tl)同位素分析已成为非传统稳定同位素地球化学研究的重要内容之一.对近年来Tl同位素的实验测试方法及其地质应用的有关研究进展做了详细论述,包括Tl的地球化学行为、Tl同位素分析测试技术、同位素分馏机理、在各地质储库中的组成特征以及Tl同位素的地质应用等多个方面.这些研究表明该分析技术为行星科学、古海洋学、地幔地球化学、岩石成因以及矿床学等领域的研究提供了其他同位素分析方法难以获得的重要信息,充分展示了该分析技术在地球科学和环境科学领域的应用前景.   相似文献   

12.
Stable potassium isotopes are one of the emerging non-traditional isotope systems enabled in recent years by the advance of Multi-Collector Inductively-Coupled-Plasma Mass-Spectrometry (MC-ICP-MS). In this review, we first summarize the geochemical and cosmochemical properties of K, its major reservoirs, and the analytical methods of K isotopes. Following this, we review recent literature on K isotope applications in the fields of geochemistry and cosmochemistry. Geochemically, K is a highly incompatible lithophile element, and a highly soluble, biophile element. The isotopic fractionation of K is relatively small during magmatic processes such as partial melting and fractional crystallization, whereas during low-temperature and biological processes fractionation is considerably larger. This resolvable fractionation has made K isotopes promising tracers for a variety of Earth and environmental processes, including chemical weathering, low-temperature alteration of igneous rocks, reverse weathering, and the recycling of sediments into the mantle during subduction. Sorption and interactions of aqueous K with different clay minerals during cation exchange and clay formation are likely to be of fundamental significance in generating much of the K isotope variability seen in samples from the Earth surface and samples carrying recycled surface materials from the deep Earth. The magnitude of this fractionation is process- and mineral-dependent. Comprehensive quantification of pertinent K isotope fractionation factors is currently lacking and urgently needed. Significant fractionation during biological activities, such as plant uptake, demonstrates the potential utility of K isotopes in the study of the nutrient cycle and its relation to the climate and various ecosystems, enabling new and largely unexplored avenues for future research.Of significant importance to the cosmochemistry community, K is a moderately volatile element with large variations in K/U ratio observed among chondrites and planetary materials. As this indicates different degrees of volatile depletion, it has become a fundamental chemical signature of both chondritic and planetary bodies. This volatile depletion has been attributed to various processes such as solar nebula condensation, mixing of volatile-rich and -poor reservoirs, planetary accretional volatilization via impacts, and/or magma ocean degassing. While K isotopes have the potential to distinguish these different processes, the current results are still highly debated. A good correlation between the K isotope compositions of four differentiated bodies (Earth, Mars, Moon, and Vesta) and their masses suggests a ubiquitous volatile depletion mechanism during the formation of the terrestrial planets. It is still unknown whether any of the K isotopic variation among chondrites and differentiated bodies can be attributed to inherited signatures of mass-independent isotopic anomalies.  相似文献   

13.
随着表面热离子质谱(TIMS)和多接收器电感耦合等离子体质谱(MC-ICP-MS)的广泛应用以及同位素分析方法的改进,近10年来非传统稳定同位素(Cu、Zn、Fe、Se、Mo、Cr、Hg等)的研究得到迅速发展.其中,由于Mo同位素的分馏明显受氧化还原条件的控制,使其在指示古环境及古气候的变化方面有独特的地球化学指示意义.同时,Mo同位素在指示成矿物质来源和海洋Mo循环等方面也取得较大成果.因此,Mo同位素地球化学研究已成为国际地学领域的一个前沿和热点.本文综合前人的研究成果,结合近期自己的工作,论述了Mo同位素地球化学研究领域的一些重要进展,详细介绍了Mo同位素的化学分离、提纯和质谱分析技术,并对其应用前景进行了展望.  相似文献   

14.
非传统同位素体系(如Hf、Os、Li、Fe、Ti、Mg、He、Ar等)是相对于传统同位素体系(如Sr、Nd、Pb、O等)而言的,即新近发展起来的同位素体系。随着同位素测试技术的进步和多接收电感耦合等离子体质谱仪(MC-ICP-MS)、二次离子质谱仪(SIMS)以及激光剥蚀技术配合MC-ICP-MS(LA-MC-ICP-MS)等测试手段的开发应用,多种同位素体系(包括放射性同位素和稳定同位素体系)的示踪作用在地学研究中得到了日益广泛的应用。在简要介绍传统同位素体系的基础上,旨在总结报道近年来国际上有关非传统同位素体系在地幔地球化学研究中取得的重要成果,展示这些同位素体系在地幔地球化学研究中的重要性及其可能的应用前景,以加速我国在非传统同位素地球化学方面的应用研究。  相似文献   

15.
高温下非传统稳定同位素分馏   总被引:5,自引:1,他引:4  
黄方 《岩石学报》2011,27(2):365-382
过去十几年来,非传统稳定同位素地球化学在高温地质过程的研究中取得了的重大进展。多接收诱导耦合等离子质谱(MC-ICP-MS)的应用引发了稳定同位素分析方法的重大突破,使得精确测定重元素的同位素比值成为可能。本文总结了以Li、Fe和Mg同位素为代表的非传统稳定同位素在岩石地球化学研究中的应用。Li同位素目前被广泛地用于地幔地球化学、俯冲带物质再循环和变质作用的研究中,可以用来示踪岩浆的源区性质和扩散等动力学过程。不同价态的Fe在矿物熔体相之间的分配可以产生Fe同位素分馏,可以发生在地幔交代、部分熔融、分离结晶等过程中。岩浆岩的Mg同位素则大致反映其源区的特征,地幔的Mg同位素组成比较均一,这为研究低温地球化学过程中Mg同位素的分馏提供一个均一的背景。此外,Cl,Si,Cu,Ca,U等等同位素体系也具有广阔的应用前景。对同位素分馏机制的实验研究和理论模拟为理解非传统稳定同位素数据提供了必要的指导。实验表明,高温下具有不同的迁移速度的轻、重同位素可以产生显著的动力学同位素分馏,这一分馏可以在化学扩散、蒸发和凝华等过程中发生;同位素在矿物和熔体以及流体相中化学环境的差异使得不同相之间可以发生平衡分馏。而最近的硅酸盐岩浆的热扩散和热迁移实验则揭示了一种"新"的岩浆分异和同位素分馏机制。沿着温度梯度,硅酸盐岩浆可以发生显著的元素和同位素分异,湿的安山岩可以通过这种方式演变成花岗质成分,因此这个过程可能对陆壳的产生和演化有重大影响。如果温度梯度在岩浆作用中能长期存在,热扩散就可以产生稳定同位素的分馏,这一机制有别于传统的平衡和动力学同位素分馏。 而多个稳定同位素体系的正相关关系是示踪热迁移过程的最有力证据。在热扩散过程中,流体承载的物质的浓度和它的索瑞系数有关。但是这个系数对体系的很多参数非常敏感,变化极大,因此对热扩散效应的研究产生极大的困难。对热扩散实验的镁、钙和铁同位素测量表明,同位素比值的变化与体系的化学组成以及总温度无关,只和温度变化的幅度有关,这意味着即使元素的索瑞系数变化多端,某一元素的同位素之间的索瑞系数的差别总为常数。这一发现有助于简化对热扩散和索瑞系数这一基础物理问题的研究 。  相似文献   

16.
近年来稳定Sr同位素在同位素地球化学领域越来越受到重视,在表生地球化学、古环境、考古学、地球内生作用及陨石等方面研究都取得了重要成果,这得益于高精度稳定Sr同位素分析方法的发展。文章总结了δ88/86Sr分析方法的关键技术要素。在化学提纯方面,文献中广泛使用Sr特效树脂,用离子交换法实现Sr元素的分离提纯,但Sr特效树脂价格昂贵,且具有难以消除的记忆效应,建议用阳离子树脂代替;在质谱分析方面,主要使用多接收电感耦合等离子体质谱(MCICP-MS)和热电离质谱(TIMS)进行测量,MC-ICP-MS测量具有比TIMS更高的测量效率,但是测量精度略低;对于质量歧视校正,目前使用较为广泛的方法有标样—样品间插法、Zr元素外部校正法以及双稀释剂法,其中双稀释剂法具有较高的测量精度,但在MC-ICP-MS上应用的相关研究较少。目前还缺乏对国际标准样品的δ88/86Sr的详细对比。因此,优化分析流程、提高测量精度以及更多标准样品δ88/86Sr的测定是需要加强的工作。  相似文献   

17.
有机污染物稳定同位素在线测试技术研究   总被引:1,自引:0,他引:1  
为了识别环境中有机污染物的来源和迁移转化,在线的单体稳定同位素分析(CSIA)是必不可少的关键技术,但是在实际应用中还存在问题.本文评价了目前已经开发的6种在线测定单体稳定同位素仪器的发展动态,包括气相色谱-同位素比值质谱计(GC-IRMS)、液相色谱-同位素比值质谱计(LC-IRMS)、直接引进-气相色谱-同位素比值质谱计(DI-GC-IRMS)、气相色谱-四极杆质谱计(GC-qMS)、气相色谱-多接收器电感耦合等离子体质谱计(GC-MC-ICPMS)、气相色谱-光强衰荡光谱仪(GC-CRDS).提出了在线测试中的5个值得注意的问题:①样品的预富集;②气相色谱(GC)和液相色谱(LC)分离;③多种仪器和多种方法选择使用;④有机化合物稳定同位素标准物质的开发;⑤安全保障.提出了三点建议:一是大力发展直接注入而不经过燃烧的有机污染物同位素测试技术,例如GC-qMS和GC-CRDS技术;二是继续开发研究GC-MC-ICPMS测定有机氯和有机溴同位素技术;三是快速研制有机化合物稳定同位素的国际标准物质.本文认为,在进行单体化合物同位素研究时应作多元素的同位素分析,而其最优的选择是采用直接样品注入而不经过燃烧的测试技术.  相似文献   

18.
随着分析技术的进步,非传统稳定同位素体系在地球化学、天体化学和生物地球化学等研究领域的应用日益广泛。钛(Ti)是一个非常重要的过渡族金属元素,在地球和其他类地球行星中广泛存在。但是由于Ti是一种难熔的、流体不活动性元素,高温地质过程中Ti同位素分馏很小。人们对Ti同位素体系的地球化学应用的关注相对其他非传统稳定同位非常有限。而近年来,随着化学纯化方案的优化以及双稀释剂方法的改进和仪器质谱性能的提高,Ti同位素组成的高精度测试已经能够实现。天然样品中Ti同位素组成的变化随之得以发现,使得学者们能够利用这一新的稳定同位素体系来解决与高温和低温地球化学相关的问题。很快Ti同位素体系地球化学研究成为当前国际地质学界的前沿研究课题和新的发展方向之一。本文首先在简要介绍Ti元素和Ti同位素体地球化学性质的基础上,介绍了Ti元素化学分离和Ti同位素分析方法。随后笔者总结了已有的不同类型球粒陨石和地球样品的质量相关Ti同位素组成研究结果,对硅酸盐地球的Ti同位素组成做了初步评估。前人对高温地质样品的Ti同位素组成研究初步探明Ti同位素在岩浆演化过程,例如部分熔融和结晶分异等重要地质过程中的分馏行为。笔者在此基础上探讨了结晶分异过程中引起Ti同位素分馏的主要控制因素,指出Ti同位素是潜在的研究岩浆演化过程的新工具。最后笔者探讨了Ti同位素地球化学未来的发展方向,以加速我国在Ti同位素地球化学方面的应用研究。  相似文献   

19.
土壤镉污染已成为危害人体健康的主要因素之一,要实现精准、快速和有效地防治土壤镉污染,首先必须厘清土壤中镉的来源及其迁移转化行为。近年来,随着镉同位素分析技术的进步及其分馏机制认识的深入,镉同位素在土壤镉示踪中展示出了巨大的应用潜力。本文在前人研究的基础上,归纳了土壤样品镉同位素分析前处理方法以及测试技术的研究进展。对于基质复杂的土壤样品,高温高压密闭消解和微波消解可以满足其镉同位素测试要求。在分离纯化镉回收率足够、干扰元素去除彻底的情况下,应用多接收电感耦合等离子体质谱(MC-ICP-MS)分析镉同位素并采用标准-样品匹配法、外标法或双稀释剂法进行质量歧视校正,均可获得较高精度的土壤镉同位素组成数据。同时,本文概括了土壤多个潜在镉源的镉同位素组成以及典型过程(风化淋滤、吸附、沉淀/共沉淀、络合)镉同位素分馏方向与程度。结合最新研究成果,总结了镉同位素在示踪土壤镉来源及其迁移转化过程中的应用。在未来的工作中,需进一步开发和优化高精度镉同位素分析方法,建立土壤镉同位素指纹图谱,揭示土壤多组分、多界面过程中的镉同位素分馏机制和特征。  相似文献   

20.
李延河 《地球学报》2020,41(5):583-589
同位素定年和示踪技术已渗透到地球科学的各个方面, 成为确定地质事件时代和成岩成矿年龄、示踪成岩成矿物质来源和形成环境条件的重要手段, 推动地球科学发展的重要动力。随着分析技术的不断发展, 微区/微量同位素、非传统同位素、高维度同位素已成为当前国际同位素地球化学研究的前沿和重点领域, 近年来我国在该领域也取得长足发展和一系列重大成果。本“同位素分析新技术与地质应用研究新进展”专辑集中刊发了13篇这方面的文章, 主要涵盖了两个方向的研究成果: (1)同位素地质分析新方法及标准物质研制; (2)同位素地球化学研究新进展, 主要包括同位素示踪技术在矿床和海洋沉积环境中应用研究。本文将对收录本专辑论文的研究工作做一简要介绍, 对深入了解我国同位素地质分析技术及应用研究最新进展具有一定参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号