首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ginzburg-Landau equations are derived for the magnetic and gluomagnetic gauge fields in the color superconducting core of a neutron star containing a CFL-condensate of diquarks. The interaction of the diquark CFL-condensate with the magnetic and gluomagnetic gauge fields is taken into account. The behavior of the magnetic field in a neutron star is studied by solving the Ginzburg-Landau equations taking correct account of the boundary conditions, including the gluon confinement conditions. The magnetic field distribution in the quark and hadronic phases of a neutron star is found. It is shown that a magnetic field generated in the hadronic phase by the entrainment effect penetrates into the quark core in the form of quark vortex filaments because of the presence of screening Meissner currents. __________ Translated from Astrofizika, Vol. 50, No. 1, pp. 87–98 (February 2007).  相似文献   

2.
The behavior of the magnetic field inside the superconducting quark matter core of a neutron star is investigated in the framework of the Ginzburg-Landau theory. We take into account the simultaneous coupling of the diquark condensate field to the usual magnetic and to the gluomagnetic gauge fields. We solve the problem for three different physical situations: a semi-infinite region with a planar boundary, a spherical region, and a cylindrical region. We show that Meissner currents near the quark core boundary effectively screen the external static magnetic field.  相似文献   

3.
The Ginzburg-Landau equations are derived for the magnetic and gluomagnetic gauge fields of nonabelian semi-superfluid vortex filaments in color superconducting cores of neutron stars containing a diquark CFL condensate. The interaction of the diquark CFL condensate with the magnetic and gluomagnetic gauge fields is taken into account. The asymptotic values of the energies of these filaments are determined from the quantization conditions. It is shown that a lattice of semi-superfluid vortex filaments with a minimal quantum of circulation develops in the quark superconducting core during rotation of the star. The magnetic field in the core of this vortex is on the order of 1018 G. A cluster of proton vortices, which develops in the hadron phase surrounding every superfluid neutron vortex owing to an entrainment effect, creates new semi-superfluid vortex filaments with a minimal quantum of circulation in the quark superconducting core. Translated from Astrofizika, Vol. 51, No. 4, pp. 633–646 (November 2008).  相似文献   

4.
As a neutron star spins down, the nuclear matter is continuously converted into quark matter due to the core density increase, and then latent heat is released. We have investigated the thermal evolution of neutron stars undergoing such deconfinement phase transition. We have taken into account the conversion in the frame of the general theory of relativity. The released energy has been estimated as a function of changed rate of deconfinement baryon number. The numerical solutions to the cooling equation are seen to be very different from those without the heating effect. The results show that neutron stars may be heated to higher temperatures which is well matched with pulsar's data despite the onset of fast cooling in neutron stars with quark matter cores. It is also found that the heating effect has a magnetic field strength dependence. This feature could be particularly interesting for high temperatures of low-field millisecond pulsars at a later stage. The high temperature could fit the observed temperature for PSR J0437−4715.  相似文献   

5.
We construct a model for the magnetic-field evolution of an isolated neutron star by assuming that its core is a type II superconductor and that the field penetrates the core in the form of magnetic lines (fluxoids). We consider the fluxoid expulsion from the core and the field dissipation in a conducting crust. The magnetic-field evolution is calculated self-consistently by taking into account the inverse effect of crustal magnetic line bending on the fluxoid velocity in the core. We consider the evolution of two magnetic configurations, in which the bulk of the magnetic flux passes through the neutron-star core and crust. The buoyancy of fluxoids and the force from the neutron vortexes are mainly responsible for their expulsion from the core in the former and latter cases, respectively.  相似文献   

6.
We apply the model of flux expulsion from the superfluid and superconductive core of a neutron star, developed by Konenkov & Geppert, both to neutron star models based on different equations of state and to different initial magnetic field structures. Initially, when the core and the surface magnetic field are of the same order of magnitude, the rate of flux expulsion from the core is almost independent of the equation of state, and the evolution of the surface field decouples from the core field evolution with increasing stiffness. When the surface field is initially much stronger than the core field, the magnetic and rotational evolution resembles that of a neutron star with a purely crustal field configuration; the only difference is the occurrence of a residual field. In the case of an initially submerged field, significant differences from the standard evolution only occur during the early period of the life of a neutron star, until the field has been re-diffused to the surface. The reminder of the episode of submergence is a correlation of the residual field strength with the submergence depth of the initial field. We discuss the effect of the re-diffusion of the magnetic field on the difference between the real and the active age of young pulsars and on their braking indices. Finally, we estimate the shear stresses built up by the moving fluxoids at the crust–core interface and show that these stresses may cause crust cracking, preferentially in neutron stars with a soft equation of state.  相似文献   

7.
The effect of a neutron-proton vortex system on the rotation dynamics of neutron stars is examined. The dynamics of the motion of a two component superfluid system in the core of a neutron star yields an equation for the evolution of the pulsar's rotation period. The spin down of the star owing to energy release at the core boundary, which is associated with a contraction of the length of the neutron vortex as it moves radially and magnetic energy of the vortical cluster is released, is taken into account. Evolutionary curves are constructed for pulsars with different magnetic fields and stellar radii. For certain values of the coefficient of friction between the superfluid and normal components in the core of the neutron star, at the end of its evolution a radio pulsar may become an anomalous x-ray pulsar or a source of soft gamma radiation with a period on the order of 10 seconds.  相似文献   

8.
The magnetic field distribution in the superfluid, spherical, hadronic core of a rotating neutron star, which consists of vortex and vortex-free zones, is investigated. Due to the effect of entrainment of superconducting protons by rotating superfluid neutrons, a nonuniform magnetic field, the average value of which is constant, is formed in the vortex zone of the neutron star, directed parallel to the star's axis of rotation. It is shown that at the stellar surface, near the equatorial plane, there is a vortex-free zone of macroscopic size in which there is no magnetic field. The magnetic field near the boundaries of the vortex-free zone falls off exponentially with depth into the interior of this zone. This result essentially alters earlier concepts about the magnetic field distribution in the superfluid hadronic core of a neutron star. Outside the hadronic core the magnetic field has a dipole character with a magnetic moment on the order of 1030 g×cm3.  相似文献   

9.
The presence of a magnetic field in a neutron star interior results in a dynamical coupling between the fluid core and the elastic crust. We consider a simple toy-model where this coupling is taken into account and compute the system’s mode oscillations. Our results suggest that the notion of pure torsional crust modes is not useful for the coupled system, instead all modes excite Alfvén waves in the core. However, we also show that among a rich spectrum of global MHD modes the ones most likely to be excited by a fractured crust are those for which the crust and the core oscillate in concert. For our simple model, the frequencies of these modes are similar to the “pure crustal” frequencies. We advocate the significant implications of these results for the attempted theoretical interpretation of QPOs during magnetar flares in terms of neutron star oscillations.   相似文献   

10.
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars.  相似文献   

11.
In this paper we present a new result, namely that the primal magnetic field of the collapsed core during a supernova explosion will, as a result of the conservation of magnetic flux, receive a massive boost to more than 90 times its original value by the Pauli paramagnetization of the highly degenerate relativistic electron gas just after the formation of the neutron star. Thus, the observed super-strong magnetic field of neutron stars may originate from the induced Pauli paramagnetization of the highly degenerate relativistic electron gas in the interior of the neutron star. We therefore have an apparently natural explanation for the surface magnetic field of a neutron star.  相似文献   

12.
早期中子星和夸克物质   总被引:1,自引:0,他引:1  
夸克禁闭的解除与夸克物质的存在一直是物理学家极感兴趣的问题。尽管理论上已指出在超高温或超高密的条件下可以有夸克物质存在,但是由于地面实验室的条件所限,目前还不能通过实验证实这一点.宇宙中被观测到的中子星(例如crab和Vela脉冲星)的中心密度大于4倍的核物质密度,其中心温度也可以达到10~8—10~9K,于是人们希  相似文献   

13.
We consider the evolution of neutron stars during the X-ray phase of high-mass binaries. Calculations are performed assuming a crustal origin of the magnetic field. A strong wind from the companion can significantly influence the magnetic and spin behaviour of a neutron star even during the main-sequence life of the companion. In the course of evolution, the neutron star passes through four evolutionary phases ('isolated pulsar', propeller, wind accretion, and Roche lobe overflow). The model considered can naturally account for the observed magnetic fields and spin periods of neutron stars, as well as the existence of pulsating and non-pulsating X-ray sources in high-mass binaries. Calculations also predict the existence of a particular sort of high-mass binary with a secondary that fills its Roche lobe and a neutron star that does not accrete the overflowing matter because of fast spin.  相似文献   

14.
考虑到混杂星既具有奇异夸克物质核,又具有中子星固体壳层的特殊结构,运用完全自洽的二级修正方法,研究了在低温极限下(T<109K)混杂星的体粘滞耗散时标,并利用该时标计算了混杂星的临界旋转频率,发现其最小值为704.42 Hz(对应1.42 ms脉冲周期).与中子星和奇异星比较,更好地解释了观测数据.  相似文献   

15.
We consider the expulsion of the magnetic field from the super-conducting core of a neutron star and its subsequent decay in the crust. Particular attention is paid to a strong feedback of the distortion of magnetic field lines in the crust on the expulsion of the flux from the core. This causes a considerable delay in the core flux expulsion if the initial field strength is larger than 1011 G. It is shown that the hypothesis on the magnetic field expulsion induced by the neutron-star spin-down is adequate only for a relatively weak initial magnetic field B ≈1011 G. The expulsion time-scale depends not only on the conductivity of the crust, but also on the initial magnetic field strength itself. Our model of the field evolution naturally explains the existence of the residual magnetic field of neutron stars. Its strength is correlated with the impurity concentration in neutron-star crusts and anticorrelated with the initial field strengths.  相似文献   

16.
We have considered a hot neutron star with a quark core,a mixed phase of quark-hadron matter,and a hadronic matter crust and have determined the equation of state of the hadronic phase and the quark phase.We have then found the equation of state of the mixed phase under the Gibbs conditions.Finally,we have computed the structure of a hot neutron star with a quark core and compared our results with those of the neutron star without a quark core.For the quark matter calculations,we have used the MIT bag model...  相似文献   

17.
We study, via a Monte Carlo simulation, a population of isolated asymmetric neutron stars where the magnitude of the magnetic field is low enough so that the dynamical evolution is dominated by the emission of gravitational waves. A starting population, with age uniformly distributed back to 100 Myr (or 500 Myr) and endowed with a birth kick velocity, is evolved in the Galactic gravitational potential to the present time. In describing the initial spatial distribution, the Gould belt, with an enhanced neutron star formation rate, is taken into account. Different models for the initial period distribution are considered. The star ellipticity, measuring the amount of deformation, is drawn from an exponential distribution. We estimate the detectability of the emitted gravitational signals by the first and planned second generation of interferometric detectors. Results are parametrized by the fraction of the whole galactic neutron star population made up of these kinds of sources. Some possible mechanisms, which would make possible the existence of such a population, are discussed. A comparison of the gravitational spin-down with the braking due to a possible interaction of the neutron star with the interstellar medium is also presented.  相似文献   

18.
19.
20.
Just as a rotating magnetized neutron star has material pulled away from its surface to populate a magnetosphere, a similar process can occur as a result of neutron-star pulsations rather than rotation. This is of interest in connection with the overall study of neutron star oscillation modes but with a particular focus on the situation for magnetars. Following a previous Newtonian analysis of the production of a force-free magnetosphere in this way Timokhin et al., we present here a corresponding general-relativistic analysis. We give a derivation of the general relativistic Maxwell equations for small-amplitude arbitrary oscillations of a non-rotating neutron star with a generic magnetic field and show that these can be solved analytically under the assumption of low current density in the magnetosphere. We apply our formalism to toroidal oscillations of a neutron star with a dipole magnetic field and find that the low current density approximation is valid for at least half of the oscillation modes, similarly to the Newtonian case. Using an improved formula for the determination of the last closed field line, we calculate the energy losses resulting from toroidal stellar oscillations for all of the modes for which the size of the polar cap is small. We find that general relativistic effects lead to shrinking of the size of the polar cap and an increase in the energy density of the outflowing plasma. These effects act in opposite directions but the net result is that the energy loss from the neutron star is significantly smaller than suggested by the Newtonian treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号