首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although ultrahigh‐pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east‐central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high‐pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle‐derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two‐fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition.  相似文献   

2.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

3.
The Vårdalsneset eclogite situated in the Western Gneiss Region, SW Norway, is a well preserved tectonite giving information about the deformation regimes active in the lower crust during crustal thickening and subsequent exhumation. The eclogite constitutes layers and lenses variably retrograded to amphibolite and is composed of garnet and omphacite with varying amounts of barroisite, actinolite, clinozoisite, kyanite, quartz, paragonite, phengite and rutile. The rocks record a five‐stage evolution connected to Caledonian burial and subsequent exhumation. (1) A prograde evolution through amphibolite facies (T =490±63 °C) is inferred from garnet cores with amphibole inclusions and bell‐shaped Mn profile. (2) Formation of L>S‐tectonite eclogite (T =680±20 °C, P=16±2 kbar) related to the subduction of continental crust during the Caledonian orogeny. Lack of asymmetrical fabrics and orientation of eclogite facies extensional veins indicate that the deformation regime during formation of the L>S fabric was coaxial. (3) Formation of sub‐horizontal eclogite facies foliation in which the finite stretching direction had changed by approximately 90°. Disruption of eclogite lenses and layers between symmetric shear zones characterizes the dominantly coaxial deformation regime of stage 3. Locally occurring mylonitic eclogites (T =690±20 °C, P=15±1.5 kbar) with top‐W kinematics may indicate, however, that non‐coaxial deformation was also active at eclogite facies conditions. (4) Development of a widespread regional amphibolite facies foliation (T =564±44 °C, P<10.3–8.1 kbar), quartz veins and development of conjugate shear zones indicate that coaxial vertical shortening and sub‐horizontal stretching were active during exhumation from eclogite to amphibolite facies conditions. (5) Amphibolite facies mylonites mainly formed under non‐coaxial top‐W movement are related to large‐scale movement on the extensional detachments active during the late‐orogenic extension of the Caledonides. The structural and metamorphic evolution of the Vårdalsneset eclogite and related areas support the exhumation model, including an extensional detachment in the upper crust and overall coaxial deformation in the lower crust.  相似文献   

4.
中国大陆科学钻探主孔位于苏鲁超高压带南部的东海县毛北榴辉岩体之上。主孔0-600米深度的榴辉岩的塑性变形以具中等倾角的东倾面理,近南北向的水平拉伸线理、“A”型剪切褶皱和一系列平行面理的微型韧性剪切带为特征。使用电子背散射(EBSD)技术测量的主孔7个榴辉岩样品的石榴石和绿辉石的晶格优选定向(LPO)表明:石榴石基本上无序排列,而绿辉石表现出强烈的LPO。绿辉石的[001]轴近平行于拉伸线理方向,(010)面的法线和[100]轴垂直面理分布,{110}的法线形成垂直面理的环带,反映绿辉石的位错蠕变由[001](100)和1/2〈^-110〉滑移系控制,其不对称的LPO指示了由北向南的剪切指向。根据单斜辉石的高温实验结果,毛北榴辉岩经历了800-900℃的超高压变质作用。通过构造重塑,揭示毛北榴辉岩体为剪切流变褶皱,形成于扬子板块深俯冲时的超高压变质过程。因此榴辉岩中保留的早期岩石组构特征可以为板块的深俯冲运动学和俯冲极性提供重要信息。  相似文献   

5.
Numerous lenses of eclogite occur in a belt of augen orthogneisses in the Gubaoquan area in the southern Beishan orogen, an eastern extension of the Tianshan orogen. With detailed petrological data and phase relations, modelled in the system NCFMASHTO with thermocalc , a quantitative P–T path was estimated and defined a clockwise P–T path that showed a near isothermal decompression from eclogite facies (>15.5 kbar, 700–800 °C, omphacite + garnet) to high‐pressure granulite facies (12–14 kbar, 700–750 °C, clinopyroxene + sodic plagioclase symplectitic intergrowths around omphacite), low‐pressure granulite facies (8–9.5 kbar, ~700 °C, orthopyroxene + clinopyroxene + plagioclase symplectites and coronas surrounding garnet) and amphibolite facies (5–7 kbar, 600–700 °C, hornblende + plagioclase symplectites). The major and trace elements and Sm–Nd isotopic data suggest that most of the Beishan eclogite samples had a protolith of oceanic crust with geochemical characteristics of an enriched or normal mid‐ocean ridge basalt. The U–Pb dating of the Beishan eclogites indicates an Ordovician age of c. 467 Ma for the eclogite facies metamorphism. An 39Ar/40Ar age of c. 430 Ma for biotite from the augen gneiss corresponds to the time of retrograde metamorphism. The combined data from geological setting, bulk composition, clockwise P–T path and geochronology support a model in which the Beishan eclogites started as oceanic crust in the Palaeoasian Ocean, which was subducted to eclogite depths in the Ordovician and exhumed in the Silurian. The eclogite‐bearing gneiss belt marks the position of a high‐pressure Ordovician suture zone, and the calculated clockwise P–T path defines the progression from subduction to exhumation.  相似文献   

6.
Granulite facies anorthosites on Holsenøy Island in the Bergen Arcs region of western Norway are transected by shear zones 0.1–100 m wide characterized by eclogite facies assemblages. Eclogite formation is related to influx of fluid along the shears at temperatures of c. 700d?C and pressures in excess of 1.7 GPa. Combined carbon and nitrogen stable isotope, 40Ar/36Ar, trace-element and petrological data have been used to determine the nature and distribution of fluids across the anorthosite-eclogite transition. A metre-wide drilled section traverses the eclogitic centre of the shear into undeformed granulite facies garnet-clinopyroxene anorthosite. Clinozoisite occurs along grain boundaries and microcracks in undeformed anorthosite up to 1 m from the centre of the shear and clinozoisite increases in abundance as the edge of the shear zone is approached. The eclogite-granulite transition, marked by the appearance of sodic pyroxene and loss of albite, occurs within the most highly sheared section of the traverse. The jadeite-in reaction coincides with increased paragonite activity in mica. The separation between paragonite and clinozoisite reaction fronts can be semiquantitatively modelled assuming advective fluid flow perpendicular to the shear zone. The inner section of the traverse (0.25 m wide) is marked by retrogressive replacement of omphacite by plagioclase + paragonite accompanied by veins of quartz-phengite-plagioclase. C-N-Ar characteristics of fluid inclusions in garnet show that fluids associated with precursor granulite, eclogite and retrogressed eclogite are isotopically distinct. The granulite-eclogite transition coincides with a marked change in CO2 abundance and δ13C (<36ppm, δ13C=-2% in the granulite; <180 ppm, δ13C=-10% in the eclogite). The distribution of Ar indicates mixing between influxed fluid (40Ar/36Ar > 25 times 103) and pre-existing Ar in the granulite (40Ar/36Ar < 8 times 103). δ15N values decrease from +6% in the anorthosite to +3% within the eclogite shear. The central zone of retrogressed eclogite post-dates shearing and is characterised by substantial enrichment of Si, K, Ba and Rb. Fluids are CO2-rich (δ13C ~ -5%) with variable N2 and Ar abundances and isotopic compositions. Both Ar and H2O have penetrated the underformed granulite fabric more than 0.5m beyond the granulite/eclogite transition during eclogite formation. Argon isotopes show a mixing profile consistent with diffusion through an interconnecting H2O-rich fluid network. In contrast, a carbon-isotope front coincides with the deformation boundary layer, indicating that the underformed anorthosite was impervious to CO2-rich fluids. This is consistent with the high dihedral angle of carbonic fluids, and may be interpreted in terms of evolving fluid compositions within the shear zone.  相似文献   

7.
On Holsnøy, an island off the coast of Western Norway, an anorthositic complex metamorphosed to granulite facies was partially overprinted by a later eclogite facies metamorphism. Eclogite facies rocks (containing omphacite, garnet, kyanite and hydrous phases such as mica and zoisite) occur in shear zones of various scales and adjacent to veins. Previous studies of shear zones on Holsnøy reported evidence for substantial element mobility (Jamtveit et al ., 1990; Mattey et al ., 1994). In this work, we compare chemical compositions of granulite and its undeformed eclogitized equivalent adjacent to veins in locations where a single band of granulite can be traced and sampled as it approaches the vein. This tracing is crucial because the pre-granulite rocks cover a substantial compositional range, indicative of a petrologically variable protolith consisting of anorthosite, gabbro and jotunite. We analysed multiple core samples collected across nine separate granulite-eclogite transition zones located at veins in anorthositic, jotunitic and gabbroic protoliths for major and trace elements. For each transition, no compositional difference between the average granulite and average eclogite composition was found at the 90% confidence level except for LOI (loss on ignition), which was consistently significantly higher in the eclogite samples. Although not significant at the 90% confidence level for any single traverse, the average eclogite concentrations of SiO2 , Na2O, Cs, As and Br exceed the average granulite concentrations for eight or all nine of the traverses. For most traverses, statistical analysis of the data limits any gain of SiO2 in the eclogites to no more than a few relative per cent. Other than the introduction of volatile substances, presumably an H2O-rich fluid, eclogitization associated with vein formation was essentially isochemical.  相似文献   

8.
Omphacite and garnet coronas around amphibole occur in amphibolites in the Hong'an area, western Dabie Mountains, China. These amphibolites consist of an epidote–amphibolite facies assemblage of amphibole, garnet, albite, clinozoisite, paragonite, ilmenite and quartz, which is incompletely overprinted by an eclogite facies assemblage of garnet, omphacite and rutile. Coronas around amphibole can be divided into three types: an omphacite corona; a garnet–omphacite–rutile corona; and, a garnet–omphacite corona with less rutile. Chemographic analysis for local reaction domains in combination with petrographical observations show that reactions Amp + Ab + Pg = Omp +Czo + Qtz + H2O, and Amp + Ab = Omp ± Czo + Qtz + H2O may lead to the development of omphacite coronas. The garnet–omphacite–rutile corona was formed from the reaction Amp + Ab + Czo + Ilm ± Qtz = Omp + Grt + Rt + H2O. In garnet–omphacite coronas, the garnet corona grew during an early stage of epidote amphibolite facies metamorphism, whereas omphacite probably formed by the reactions forming the omphacite corona during the eclogite facies stage. It is estimated that these reactions occurred at 0.8–1.4 GPa and 480–610 °C using the garnet–clinopyroxene thermometer and omphacite barometer in the presence of albite.  相似文献   

9.
Eclogite facies carbonate rocks have been discovered associated with the granulite–eclogite transitional rocks within Bergen Arc system, Caledonian Orogen of western Norway. The local occurrences of marbles and calc‐silicates are found subparallel to the mafic eclogite facies shear zones on Holsnøy Island. Marbles contain the assemblage calcite (Ca0.99Sr0.01CO3), calcian strontianite (Ca0.18?0.44Sr0.53?0.84CO3), clinopyroxene (Jd7?32), epidote/allanite (Ps0?33), titanite, garnet (Alm52?56Grs28?33Pyp11?16), barite (Ba0.90?0.99Sr0.01?0.10SO4), celestine (Sr0.67?0.98Ba0.01?0.23Ca0.01?0.11SO4), and one apparently homogeneous grain of intermediate composition (Ba0.49Ca0.01Sr0.50SO4). Adjacent eclogites have clinopyroxene with similar jadeite contents (Jd14?34) and similar garnet (Alm51?60Grs26?36Pyp8?14) compositions. The marbles have high contents of Sr (9500–11000 p.p.m) and Y (115–130 p.p.m). However, low concentrations of some key trace elements (110–160 p.p.m. Ba and <5 p.p.m. Nb) appear to indicate that the marble is not a metamorphosed carbonatite. The 87Sr/86Sr ratios range from 0.7051 to 0.7059. Field and petrological relationships suggest that metasomatic reactions and fluids played a significant role in producing and/or modifying the marbles. The breakdown of scapolite in the granulite into carbonates and sulphates during eclogite facies metamorphism may have contributed to the metasomatic formation of the marbles along shear zones. Fluids involved during subduction are an important catalyst for metamorphism and are recognized to have played a critical role in the localized transformation from granulite to eclogite in the Holsnøy Island area. Thermobarometry indicates 640–690 °C and 18–20 kbar for adjacent eclogites and temperatures of 580–650 °C for the calc‐silicates. The marble assemblages are consistent with fluid that is dominantly comprised of H2O (XCO2 < 0.03) under high‐pressure conditions. Phase equilibria of the marbles constrain the fO2 of the fluids and imply oxidizing conditions of the deep crustal fluids. At present the source of the fluids remains unresolved. The results provide additional insights into the variable and evolving nature of fluids related to subduction and high‐pressure metamorphism.  相似文献   

10.
T. M. Boundy  K. Mezger  E. J. Essene   《Lithos》1997,39(3-4):159-178
The U-Pb and Sm-Nd dating of deep crustal rocks from the Bergen Arcs system helps resolve enigmatic aspects of the tectonic evolution of the Caledonian Orogen in western Norway and yields insights into the arrested stages of eclogite development within the granulites of the area. The U-Pb dating of zircon from one of the eclogite facies shear zones yields an upper intercept age of 945 ± 5 Ma [all errors two standard deviations (2σ)], which is similar to other zircon ages from the granulite facies protolith. The age is interpreted to represent the time of late Proterozoic (Sveconorwegian) granulite metamorphism. The U-Pb ages of sphene and epidote show that the eclogites formed early in the evolution of the Caledonian Orogen (pre-Scandian phase) at about 460 Ma. An eclogite facies quartz vein yields a Sm-Nd whole rock-garnet isochron of 440 ± 12 Ma that may reflect the onset of cooling immediately after peak eclogite facies conditions, although the Sm-Nd systematics reveal some isotopic disequilibrium within the sample. In tandem with previous 40Ar/39Ar age determinations from, an adjacent eclogite of 450 Ma for hornblende and 430 Ma for muscovite, these data indicate that < 30 Ma elapsed between formation of the eclogites and the initial stages of cooling and exhumation to at least mid-crustal levels. This corresponds to minimum cooling rates of 14 °C/m.y. The timing relations suggest that the formation and exhumation of these eclogites from the overlying Caledonian Nappe wedge in western Norway are related to an early phase of crustal subduction during or somewhat before the major phase of continent-continent collision.

The short period of time between the formation of the eclogites and the initial stages of exhumation and rapid cooling is consistent with the only partial and localized transformation of the granulite to eclogite. Isolated occurrences of eclogite within the granulite, the formation of eclogite along metasomatic fronts and the formation of hydrous eclogite facies minerals within the “dry” granulite all point to the importance of fluids in the transformation and re-equilibration of the granulite to eclogite. Together, field and isotopic data demonstrate that both the localized and limited access of fluids and the rapid cycling of continental crust through the deepest portions of the orogen to upper crustal levels resulted in the preservation of the arrested stages of eclogite formation and survival of the granulites metastably through eclogite facies conditions.  相似文献   


11.
大别山碧溪岭地区超高压变质岩构造分析   总被引:7,自引:1,他引:7  
大比例尺 (1∶10 0 0 0 )构造制图及构造分析表明 ,碧溪岭地区超高压变质岩石含有丰富的构造演化历史记录。同碰撞或挤压组构只保留于榴辉岩及其它超高压变质岩透镜体内部 ,表现为高角度网络状超高压剪切带与弱应变透镜体域规律组合格式。前者由面理或糜棱岩化榴辉岩组成 ,后者由块状榴辉岩及石榴橄榄岩组成。碰撞期后伸展构造表现为区域性的假单斜状 ,内部呈低缓角度的网络状强应变带及所环绕的透镜状弱应变域组合格式 ,强应变带的岩石为由榴辉岩退变成的角闪岩相高压片麻岩及部分熔融形成的含榴花岗岩 ,透镜状弱应变域的岩石为弱角闪相改造的榴辉岩及石榴橄榄岩。不同尺度上同碰撞或挤压组构及碰撞期后伸展组构所显示的这种残斑基质流变学结构样式 ,虽然与先期原岩成分、结构、流变学的不均一性有关 ,但主要是多期递进应变分解作用的结果 ,支持榴辉岩“原地”成因模式。依据构造学证据和可利用的岩石学及同位素年代学资料 ,分析了超高压变质岩石的形成及折返过程 ,指出碧溪岭地区超高压变质岩石是在 2 45~ 2 10Ma形成的 ,碰撞期后伸展作用主要发生在 2 0 0~ 170Ma。在超高压变质岩石向地壳表层折返过程中 ,张扭作用可能有重要功能 ,不支持碧溪岭地区遭受过多期超高压变质作用的推论。  相似文献   

12.
High-grade exotic blocks in the Franciscan Complex at Jenner, California, show evidence for polydeformation/metamorphism, with eight distinct stages. Two parallel sets of mineral assemblages [(E) eclogite, and (BS) laminated blueschist] representing different bulk chemistry were identified. Stage 1, recorded by parallel aligned inclusions (S1) of crossite + omphacite + epidote + ilmenite + titanite + quartz (E), and glaucophane + actinolite + epidote + titanite (BS) in the central parts of zoned garnets, represents the epidote blueschist facies. The onset of a second stage (stage 2) is represented by a weak crenulation of S1 and growth of garnet. This stage develops a well-defined S2 foliation of orientated barroisite + epidote + titanite (E), or subcalcic actinolite + epidote + titanite (BS) at c. 90d? to S1, with syntectonic growth of garnet, defining the (albite-)epidote-amphibolite facies. A third stage, with aligned inclusions of glaucophane + (subcalcic) actinolite + phengite parallel to S2 in the outermost rims of large garnet grains, is assigned to the transitional (albite-)epidote-amphibolite/(garnet-bearing) epidote blueschist facies. The fourth stage represents the peak metamorphism, and was identified by unorientated matrix minerals in the least retrograded samples. In this stage the mineral assemblages garnet + omphacite + glaucophane + phengite (E) and garnet + winchite + phengite + epidote (BS) both represent the eclogite facies. Stage 5 is represented by the retrogression of eclogite facies assemblages to the epidote blueschist facies assemblages crossite/glaucophane + garnet + omphacite + epidote + phengite (E), and glaucophane + actinolite + epidote + phengite (BS), with the development of an S5 foliation subparallel to S2. Stage 6 represents a crenulation of S5, with the development of a well-defined S6 crenulation cleavage wrapping around relics of the eclogite facies assemblages. This crenulation cleavage is further weakly crenulated during a D7 event. Post-D7 (stage 8) is recorded by the growth of lawsonite + chlorite ± actinolite replacing garnet, and by veins of lawsonite + pumpellyite + aragonite and phengite + apatite. The different, yet coeval, mineral parageneses observed in rock types (E) and (BS) are probably due to differences in bulk chemistry. The metamorphic evolution from stage 1 to stage 8 seems to have been broadly continuous, following an anticlockwise P-Tpath: (1) epidote blueschist (garnet-free) to (2) (albite-)epidote-amphibolite to (3) transitional epidote blueschist (garnet-bearing)/(albite-)epidote-amphibolite to (4) eclogite to (5) epidote blueschist (garnet-bearing) to (6-7) epidote blueschist (garnet-free) facies to (8) lawsonite + pumpellyite + aragonite-bearing assemblages. This anticlockwise P-T path may have resulted from a decreasing geothermal gradient with time in the Mesozoic subduction zone of California at early or pre-Franciscan metamorphism.  相似文献   

13.
Relict eclogites and associated high-pressure rocks are present in the Eastern Segment of the SW Swedish gneiss region (the tectonic counterpart of the Parautochthonous Belt of the Canadian Grenville). These rocks give evidence of Sveconorwegian eclogite facies metamorphism and subsequent pervasive reworking and deformation at granulite and amphibolite facies conditions. The best-preserved eclogite relics suggest a clockwise PT t history, beginning in the amphibolite facies, progressing through the eclogite facies, decompressing and partially reequilibrating through the high- and medium-pressure granulite facies, before cooling through the amphibolite facies. Textures demonstrate the former coexistence of the plagioclase-free assemblages garnet+clinopyroxene+quartz+rutile+ilmenite, garnet+clinopyroxene+ kyanite+rutile, and garnet+kyanite+quartz+rutile. The former existence of omphacite is evidenced by up to 45 vol.% plagioclase expelled as small grains within large clinopyroxene. Matrix plagioclase is secondary and occurs expelled from clinopyroxene or in fine-grained, granulite facies reaction domains formed during resorption of garnet and kyanite. Garnet shows preserved prograde growth zoning with rimward increasing pyrope content, decreasing spessartine content and decreasing Fe/(Fe+Mg) ratio, but is partly resorbed and reequilibrated at the rims. PT estimates from microdomains with clinopyroxene+plagioclase+quartz+garnet indicate pressures of 9.5–12 kbar and temperatures of 705–795 °C for a stage of the granulite facies decompression. The preservation of the prograde zoning suggests that the rocks did not reside at these high temperatures for more than a few million years, and chemical disequilibrium and ‘frozen’ reaction textures indicate heterogeneous reaction progress and overstepping of reactions during the decompression through the granulite facies. Together these features suggest a rapid tectonic exhumation. The eclogite relics occur within a high-grade deformation zone with WNW–ESE stretching and associated oblique normal-sense, top-to-the-east (sensu lato) displacement, suggesting that extension was a main cause for the decompression and exhumation. Probable tectonic scenarios for this deformation are Sveconorwegian late-orogenic gravitational collapse or overall WNW–ESE extension.  相似文献   

14.
Abstract The D'Entrecasteaux Islands of eastern Papua New Guinea consist of a number of active metamorphic core complexes formed under an extensional tectonic setting related to sea-floor spreading in the west Woodlark Basin. The complexes are defined by mountainous domes (>2500 m high) of fault-bounded, high-grade metamorphic rocks (including eclogite facies) intruded by 2–4-Ma granodiorite plutons. Garnet–clinopyroxene exchange thermometers indicate that the temperature of equilibration of the eclogites was 730–900° C. The jadeite component of omphacite indicates minimum pressure of 21 kbar, suggesting depths of >70 km. The metamorphic rocks have undergone widespread retrogression to amphibolite facies. Retrogression of the metamorphic basement is associated with shearing and formation of the metamorphic core complexes. P–T conditions in the early stages of shear zone activity, determined using the garnet–biotite exchange thermometer and the GASP and GRIPS barometers, were 570–730° C and 7–11 kbar. A second phase of re-equilibration at much lower pressures appears to be related to the widespread intrusion of granodiorite plutons. One re-equilibrated gneiss indicated maximum temperature of 730° C at estimated pressures of approximately 4 kbar. This late, high-temperature metamorphism is also indicated by reactions involving the production of hercynite and corundum in aluminous gneisses and formation of sillimanite at the expense of kyanite. Two major episodes of granodiorite intrusion occurred during uplift and exhumation of the core complexes. Both closely coincide spatially with high-temperature metamorphic rocks, the onset of deformation in extensional shear zones and subsequent uplift of the metamorphic basement. These observations indicate a fundamental link between uplift and granodiorite intrusion during continental extension and the formation of the D'Entrecasteaux Islands metamorphic core complexes.  相似文献   

15.
Timing constraints on shear zones can provide an insight into the kinematic and exhumation evolution of metamorphic belts. In the Musgrave Block, central Australia, granulite facies gneisses have been affected, to varying degrees, by mylonitic deformation, some of which attained eclogite facies. The Davenport Shear Zone is a dominant strike-slip system that formed at eclogite facies conditions ( T  ≈650  °C and P ≈12.0  kbar). Sm–Nd mineral isochrons obtained from equilibrated high-pressure assemblages, as well as 40Ar–39Ar data, show that the eclogite and greenschist facies high-strain overprints were coeval, at c .  550  Ma. Mylonitic processes do not appear to have reset the U–Pb system in zircon, but may have partially disturbed it. The thermal gradient in the Musgrave Block crust at c .  550  Ma was c .  16  °C  km−1 and at c .  535  Ma was c .  18  °C  km−1, based on P – T  estimates of eclogite and greenschist facies shear zones, respectively. These estimates are similar to present-day geothermal gradients in many stable continental shield areas, suggesting that the region did not undergo a significant transient perturbation of the geotherm. Therefore, in the Musgrave Block, cooling subsequent to eclogite facies metamorphism appears to have been controlled by exhumation, rather than by the removal of a heat source. Estimated exhumation rates in the range 0.2 to ≥1.5  mm year−1 are comparable with other orogenic belts, rather than cratonic areas elsewhere.  相似文献   

16.
Eclogites within exhumed continental collision zones indicate regional burial to depths of at least 60 km, and often more than 100 km in the coesite‐stable, ultra‐high pressure (UHP) eclogite facies. Garnet, omphacitic pyroxene, high‐Si mica, kyanite ± coesite should grow at the expense of low‐P minerals in most felsic compositions, if equilibrium obtained at these conditions. The quartzofeldspathic rocks that comprise the bulk of eclogite facies terranes, however, contain mainly amphibolite facies, plagioclase‐bearing assemblages. To what extent these lower‐P minerals persisted metastably during (U)HP metamorphism, or whether they grew afterwards, reflects closely upon crustal parameters such as density, strength and seismic character. The Nordfjord area in western Norway offers a detailed view into a large crustal section that was subducted into the eclogite facies. The degree of transformation in typical pelite, paragneiss, granitic and granodioritic gneiss was assessed by modelling the equilibrium assemblage, comparing it with existing parageneses in these rocks and using U/Th–Pb zircon geochronology from laser ablation ICPMS to establish the history of mineral growth. U–Pb dates define a period of zircon recrystallization and new growth accompanying burial and metamorphism lasting from 430 to 400 Ma. Eclogite facies mafic rock (~2 vol.% of crust) is the most transformed composition and records the ambient peak conditions. Rare garnet‐bearing pelitic rocks (<10 vol.% of crust) preserve a mostly prograde mineral evolution to near‐peak conditions; REE concentrations in zircon indicate that garnet was present after 425 Ma and feldspar broke down after 410 Ma. Felsic gneiss – by far the most abundant rock type – is dominated by quartz + biotite + feldspar, but minor zoisite/epidote, phengitic white mica, garnet and rutile point to a prograde HP overprint. Relict textures indicate that much of the microstructural framework of plagioclase, K‐feldspar, and perhaps biotite, persisted through at least 25 Ma of burial, and ultimately UHP metamorphism. The signature reaction of the eclogite facies in felsic rocks – jadeite/omphacite growth from plagioclase – cannot be deduced from the presence of pyroxene or its breakdown products. We conclude that prograde dehydration in orthogneiss leads to fluid absent conditions, impeding equilibration beyond ~high‐P amphibolite facies.  相似文献   

17.
We present an integrated study of geochemistry, petrofabrics and seismic properties of strongly sheared eclogites from the Chinese Continental Scientific Drilling (CCSD) project in the Sulu ultrahigh-pressure (UHP) metamorphic terrane, eastern China. First, geochemical data characterize diverse protoliths of the studied eclogites. The positive Eu- and Sr-anomalies, negative Nb anomaly and flat portion of heavy rare earth elements in coarse-grained rutile eclogites (samples B270 and B295) suggest a cumulate origin in the continental crust, whereas the negative Nb anomaly and enrichment of light rare earth elements in retrograde eclogites (samples B504, B15 and B19) imply an origin of continental basalts or island arc basalts. Second, P-wave velocities (Vp) of three typical eclogite samples were measured under confining pressures up to 500 MPa and temperatures to 700 °C. At 500 MPa and room temperature, the mean Vp reaches 8.50-8.53 km/s in samples B270 and B295 but drops to 7.86 km/s in sample B504, and the P-wave anisotropy changes from 1.7-2.7% to 5.5%, respectively. The pressure and temperature derivatives of Vp are larger in the retrograde eclogite than in fresh ones. Third, the electron backscatter diffraction (EBSD) measurements of the eclogites reveal random crystal preferred orientation (CPO) of garnet and pronounced CPO of omphacite, which is characterized by a strong concentration of [001]-axes sub-parallel to the lineation and of (010)-poles perpendicular to the foliation. The asymmetric CPO of omphacite in sample B270 recorded a top-to-the-south shear event during subduction of the Yangtze plate. The calculated fastest Vp is generally sub-parallel to the lineation, but a different deformation environment during exhumation could form second-order variations in omphacite CPO and affect the Vp distribution in eclogites (e.g., the fastest Vp is at ~ 35° from the foliation in sample B295). Comparison between measured and calculated seismic properties indicates that the CPO of omphacite controls the seismic anisotropy of eclogites at high pressure, and compositional layering and retrograde minerals will increase the anisotropy. Calculated P-wave velocities agree well with velocities measured at 500 MPa and room temperature for fresh eclogites, but much higher than those of retrograde eclogite. As a case study, the laboratory-derived Vp-P and Vp-T relationships were used to estimate P-wave velocities of eclogites and peridotites beneath the Western Superior Province, Canada. The results indicate that besides the fabric-induced anisotropy, the direction dependence of pressure and temperature derivatives of Vp can significantly increase seismic anisotropy of eclogites with depth, which results in eclogites being an important candidate for the seismic anisotropy in the upper mantle. Due to their very high density and velocity, garnet-rich eclogites within peridotite could be detected in seismic reflections in subduction zones.  相似文献   

18.
Mafic granulite, generated from eclogite, occurs in felsic granulite at Kle?, Blanský les, in the Bohemian Massif. This is significant because such eclogite is very rare within the felsic granulite massifs. Moreover, at this locality, strong interaction has occurred between the mafic granulite and the adjacent felsic granulite producing intermediate granulite, such intermediate granulite being of enigmatic origin elsewhere. The mafic granulite involves garnet from the original eclogite, containing large idiomorphic inclusions of omphacite, plagioclase and quartz, as well as rutile. The edge of the garnet is replaced by a plagioclase corona, with the garnet zoned towards the corona and also the inclusions. The original omphacite–quartz–?plagioclase matrix has recrystallized to coarse‐grained polygonal (‘equilibrium’‐textured) plagioclase‐diopsidic clinopyroxene–orthopyroxene also with brown amphibole commonly in the vicinity of garnet. Somewhat larger quartz grains are embedded in this matrix, along with minor ilmenite, rutile and zircon. Combining the core garnet composition with core inclusion compositions gives a pressure of the order of 18 kbar from assemblage and isopleths on a P?T pseudosection, with temperature poorly constrained, but most likely >900 °C. From this P?T pseudosection, the recrystallization of the matrix took place at ~12 kbar, and from Zr‐in‐rutile thermometry, at relatively hot conditions of 900–950 °C. It is largely at these conditions that the eclogite/mafic granulite interacted with the felsic granulite to make intermediate granulite (see next paper).  相似文献   

19.
In orogens worldwide and throughout geologic time, large volumes of deep continental crust have been exhumed in domal structures. Extension-driven ascent of bodies of deep, hot crust is a very efficient mechanism for rapid heat and mass transfer from deep to shallow crustal levels and is therefore an important mechanism in the evolution of continents. The dominant rock type in exhumed domes is quartzofeldspathic gneiss (typically migmatitic) that does not record its former high-pressure (HP) conditions in its equilibrium mineral assemblage; rather, it records the conditions of emplacement and cooling in the mid/shallow crust. Mafic rocks included in gneiss may, however, contain a fragmentary record of a HP history, and are evidence that their host rocks were also deeply sourced. An excellent example of exhumed deep crust that retains a partial HP record is in the Montagne Noire dome, French Massif Central, which contains well-preserved eclogite (garnet+omphacite+rutile+quartz) in migmatite in two locations: one in the dome core and the other at the dome margin. Both eclogites record P ~ 1.5 ± 0.2 GPa at T  ~  700 ± 20°C, but differ from each other in whole-rock and mineral composition, deformation features (shape and crystallographic preferred orientation, CPO), extent of record of prograde metamorphism in garnet and zircon, and degree of preservation of inherited zircon. Rim ages of zircon in both eclogites overlap with the oldest crystallization ages of host gneiss at c. 310 Ma, interpreted based on zircon rare earth element abundance in eclogite zircon as the age of HP metamorphism. Dome-margin eclogite zircon retains a widespread record of protolith age (c. 470–450 Ma, the same as host gneiss protolith age), whereas dome-core eclogite zircon has more scarce preservation of inherited zircon. Possible explanations for differences in the two eclogites relate to differences in the protolith mafic magma composition and history and/or the duration of metamorphic heating and extent of interaction with aqueous fluid, affecting zircon crystallization. Differences in HP deformation fabrics may relate to the position of the eclogite facies rocks relative to zones of transpression and transtension at an early stage of dome development. Regardless of differences, both eclogites experienced HP metamorphism and deformation in the deep crust at c. 310 Ma and were exhumed by lithospheric extension—with their host migmatite—near the end of the Variscan orogeny. The deep crust in this region was rapidly exhumed from ~50 to <10 km, where it equilibrated under low-P/high-T conditions, leaving a sparse but compelling record of the deep origin of most of the crust now exposed in the dome.  相似文献   

20.
Exhumed eclogitic crust is rare and exposures that preserve both protoliths and altered domains are limited around the world. Nominally anhydrous Neoproterozoic anorthositic granulites exposed on the island of Holsnøy, in the Bergen Arcs in western Norway, preserve different stages of progressive prograde deformation, together with the corresponding fluid‐assisted metamorphism, which record the conversion to eclogite during the Ordovician–Silurian Caledonian Orogeny. Four stages of deformation can be identified: (1) brittle deformation resulting in the formation of fractures and the generation of pseudotachylites in the granulite; (2) development of mesoscale shear zones associated with increased fluid–rock interaction; (3) the complete large‐scale replacement of granulite by hydrous eclogite with blocks of granulite sitting in an eclogitic “matrix”; and (4) the break‐up of completely eclogitized granulite by continued fluid influx, resulting in the formation of coarse‐grained phengite‐dominated mineral assemblages. P–T constraints derived from phase equilibria forward modelling of mineral assemblages of the early and later stages of the conversion to eclogite document burial and partial exhumation path with peak metamorphic conditions of ~21–22 kbar and 670–690°C. The P–T models, in combination with existing T–t constraints, imply that the Lindås Nappe underwent extremely rapid retrogressive pressure change. Fluid infiltration began on the prograde burial path and continued throughout the recorded P–T evolution, implying a fluid source that underwent progressive dehydration during subduction of the granulites. However, in places limited fluid availability on the prograde path resulted in assemblages largely consuming the available fluid, essentially freezing in snapshots of the prograde evolution. These were carried metastably deeper into the mantle with strain and metamorphic recrystallization partitioned into areas where ongoing fluid infiltration was concentrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号